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Motivating question

Let 4 be a finite field, with cardinality g = p".
Let X/F4 be a smooth projective curve of genus g.

lll-posed question

If X is supersingular, is it more likely to be maximal or minimal?

Outline (joint with V. Karemaker).

@ Definitions of maximal, minimal, supersingular curves.

@ A twisted example.

© Definitions of fully maximal, mixed, fully minimal curves.

O Results

@ Arithmetic analysis for the explicit moduli space g =3, p=2.
© Open questions
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1. Zeta functions of curves

Let X /F4 be a smooth curve of genus g.

Weil Conjectures
The zeta function of X/Fq is a rational function

Z(X/Fq, T) = L(X/Fq, T)/(1=T)(1 —qT),

where the L-polynomial L(X/Fq,t) € Z[T] has degree 2g

and L(X/Fq, T) = [12%,(1 — 0y T) with |oy| = /.

Note that P(Jac(X)/Fq, T) = T29L(X/Fq, T~) is the characteristic
polynomial of the relative Frobenius endomorphism of Jac(X).

Let {aiy,04,...,0g,04} be the Weil numbers of X /Fy.
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1. Hasse-Weil bound and maximal/minimal

Let {aiy,04,...,0g,04} be the Weil numbers of X /F,.
The normalized Weil numbers are {z1,z1,...,2g,Z4} Where z; = a;/,/q.

The number of points satisfies #X(Fq) = q+1— Y7, (o + &), which
implies the Hasse-Weil bound: |#X(Fq) — (9+1)| < 29./9.

The curve X /Fq is maximal (resp. minimal) if its normalized Weil
numbers all equal —1 (resp. 1). Need g square (r even).

v

Note that X /F, is maximal if and only if L(X/Fq, T) = (1 ++/9T)?9 and
minimal if and only if L(X/Fq, T) = (1 —/qT)%9.

Fact: if X/Fq has NWNs {z4,z1,..., 24,24},

then X/Fqm has NWNs {z{",z",..., 2z, Z7"}.
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1. Supersingular elliptic curves

If E/Fq is an elliptic curve, then #E(Fg) =g+1—a.
The zeta function of E is Z(E/Fq, T) = (1—aT +qT?)/(1—T)(1 —qT).

E supersingular if the Newton polygon of 1 —aT + gT? has slopes 1/2.
i
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Fact: p| aiff E supersingular.
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1. Facts about supersingular elliptic curves

For all p, there exists a supersingular elliptic curve E/F . (Igusa).
The number of isomorphism classes of ss E/Fp is | 5| +¢.

E is supersingular iff End( E) non-commutative (order in quat. algebra)

Example: p=3 mod 4: y? = x3 — x.
Example: p=2mod 3: y? = x3+1.

E is supersingular iff the Cartier operator annihilates H°(E,Q").

p odd: y? = h(x), where h(x) cubic with distinct roots, is supersingular
iff the coefficient ¢, ¢ of xP~ in h(x)(P~1)/2 is zero.
(Igusa) y? = x(x —1)(x —A) is supersingular for % choices of A € F,.

E supersingular iff its only p-torsion point is the identity:
Elpl(Fp) = {id}.
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1. Definition of Newton polygon

Let X be a smooth projective curve defined over Fq, with g = p".
Zeta function of X is Z(X/Fq,T) = L(X/Fq, T)/(1=T)(1—qT)

where L(X/Fq, T) =129, (1 — 0, T) € Z[T] and || = /.

The Newton polygon of X is the NP of the L-polynomial.
Find p-adic valuation v; of coefficient of T' in L(X/Fq, T).
Draw lower convex hull of (i, v;/r) where g=p".

Facts: The NP goes from (0,0) to (2g,9).
NP line segments break at points with integer coefficients;
If slope A occurs with length m,, so does slope 1 —A.

Definition

X /Fq is supersingular if the Newton polygon of L(X/Fg,t) is a line
segment of slope 1/2.
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1. The supersingular property

Let X be a smooth projective curve defined over Fq, with g = p".
The following are equivalent:
@ X is supersingular;
@ the Newton polygon of L(X/Fq, T) is a line segment of slope 1/2;

© each eigenvalue of the relative Frobenius morphism equals ,/q
for some root of unity {;

© X is minimal (satisfies lower bound in Hasse-Weil bound for
number of points) over Fqr for some r;

@ Tate: End(Jac(X xr, k)) ® Qp ~ My(Dp), Dp quat alg ram at p, oo;

© Oort: Jac(X) is geometrically isogenous to a product of
supersingular elliptic curves.

Rachel Pries (CSU) Fully maximal and minimal BIRS 8/43



6. Existence of supersingular curves?

For all p and g, there exists:
a supersingular p.p. abelian variety of dimension g, namely EY;
and a supersingular singular curve of genus g.

Open Question 1:

Does there exist a supersingular smooth curve of genus g defined over
a finite field of characteristic p, for every p and g?

Yes: g =1,2,3 for all p. Not known for all p when g > 4.

Yes when p =2 (Van der Geer/Van der Vlugt) then there exists a
supersingular curve of every genus.
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1. Period and parity

It X/Fq is supersingular, then {zy,2y,...,24,Z4} are roots of unity.

Definition

The Fq-period u(X) is the smallest m € N such that g™ is square (rm is
even) and (i) z" = —1forall1 <i<g,or(i)z"=1forall1<i<g.

The Fy-parity §(X) is 1 in case (i) and is —1 in case (ii).

Then X/F 40 is maximal in case (i) and minimal in case (ii).

Better question:
If X/IFq is supersingular, is it more likely to have parity 1 or —17
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2. A curve of mixed type

Let X/F,, be plane curve x4+ y9 +z9 = 0. Note g =

Example

If p=—1 mod d, then X is maximal over F.. But if d =0 mod 4, then
X has a twist which is not maximal over any extension of Fp.

Proof.
The Hermitian curve X : X' + yP*" + 2P+ = 0 is maximal over F

Since p+1=0mod d, there exists A € ', with order s = (p+1)/d.
There is a Galois cover h: X — X given by (x1,y1,21) — (x5, y5,25).
So X is a quotient of X by a subgroup of automorphisms def. over Fee

By Serre, X is also maximal over F, proving the first claim. O

v

The NWNs of X/F. are all —1. The NWNs of X /F, are &/ (mult. g).
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2. A curve x9 + y9 4+ z9 = 0 of mixed type continued

Letp=—-1moddand4|d.

Let A € ]F;;Z have order d; = d/2.

Letg e Autsz(X) be the automorphism g(x,y,z) = (My, X, 2).
Note g has order d.

Let Xy/F, be the twist of X by g.
Fact: the NWNs of Xy/F . depend on the action of g("g).

We compute that

9"g)(xy.2) = g(FrgFr)(x,y,2)
= g(Fr(g(x'/P,y'P,Z1/PY))
= g(Fr(my'/P,x'P,2/P)) = g(\y, x, 2)
= (Mx, Ay, 2) = (Mx,A7 Ty, 2),
where the last equality uses the fact that p=—1 mod d.
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2. A curve x9+ y9+ z9 — 0 of mixed type continued

Claim: Case 1. d =4
Then X : x*+ y*+z* = 0 has a twist which is not maximal over Fn.

Proof.

Auer/Top: Jac(X) ~r, E3, where E : 2y? = x® — x is maximal over Fpe.
The NWNs of X/F . are {—1,...,—1} (maximal).

Now g has order 4 and the quotient of X by g has genus 1.

Since i ¢ Fp, g acts on Jac(X) via two invariant factors, with minimal
polynomials x> +1 and x —1.

Note g(7g) = g? acts with eigenvalues —1,—1,1 on Jac(X)/F .

Then the twist X /F, has NWNs {1,1,1,1,-1,-1}.
Thus the NWNs of the twist X, /Fp are £1 (mult. 4) and /.
Hence, the twist X, /Fp is not maximal over any extension of [Fp,. O

v
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2. A curve x9+ y9+ z9 — 0 of mixed type continued

Then X : x4+ y9+ 29 = 0 has a twist which is not maximal over Fpm.

Proof.
The NWNs of X/F . are all —1.

| \

The NWNSs of the twist X;/F > include —e for € eigenvalue for action of
9(f'g) on H'(X, 0). This includes & = 1 and & = ;.

Now —1 has order 2 but —A does not: (because dy = d/2 is even, so
—\1 has order d; if dy =0 mod 4 and has odd order if di =2 mod 4).

In either case, the twist Xy /Fp is not maximal over any extension of Fp
since the 2-divisibility of the orders of its NWNs is not constant. O

v
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3. Fully maximal/minimal abelian varieties and curves

(joint with Valentijn Karemaker)

Abstract: We introduce and study a new way to catagorize
supersingular abelian varieties or curves defined over a finite field by
classifying them as fully maximal, mixed or fully minimal.

The type of A depends on the normalized Weil numbers of A and its
twists over its minimal field of definition.

We analyze these types for supersingular abelian varieties and
curves under conditions on the automorphism group.

In particular, we present a complete analysis of these properties for
supersingular elliptic curves and supersingular abelian surfaces in
arbitrary characteristic.

For supersingular curves of genus 3 in characteristic 2, we use a
parametrization of a moduli space of such curves by Viana and
Rodriguez to determine the L-polynomial and the type of each.
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3. Definitions of fully maximal, fully minimal, mixed

Let X /Iy be a smooth projective curve of genus g.

A twist of X/K is a curve X’/K for which there exists a geometric
isomorphism ¢ : X xx k — X' xx k.

Let ©(X/K) be the set of K-isomorphism classes of twists X’/K of X.

Definition of type: KP

A supersingular curve X with minimal field of definition K is of one of
the following types:

@ fully maximal it X'/K has K-parity 8 =1 for all X' € ©(X/K);

Q@ fully minimal if X'/K has K-parity 8§ = —1 for all X’ € ©(X/K);

© mixed if there exist X', X" € ©(X/K) with K-parities §(X’) = 1 and
3(X")=—1.

v
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3. Mixed is not the same as hyperelliptic

If a maximal curve has a minimal twist, then X is hyperelliptic

Suppose that ¢ : X xx k = X’ xx k where X/K is maximal and X'/K is
minimal (or vice versa). Then X is hyperelliptic and gy =1 and X'/K is
a quadratic twist.

Despite this:
There are mixed curves that are not hyperelliptic (example above)
and hyperelliptic curves that are not mixed (examples below).

The mixed property depends on more data:

NWNSs of X over minimal field of definition K

orders of twists (K-Frobenius order of elements in Frobenius
conjugacy classes in Autk (X))
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Analysis g =1

Proposition: K/P

Let E be a supersingular elliptic curve defined over a finite field of
characteristic p. If E is defined over Fp, then it is fully maximal;
otherwise, it is mixed.

Proof: (uses work of Waterhouse)
p =2, all twists of y?+ y = x3 have parity 1.

p odd and Autk(E) % Z/2:
All twists of y? = x3 41 (j=0) and y? = x3 — x (j = 1728) have parity 1.

podd and Aut,(E) ~Z/2:
If defined over F, then NWNs are {+/};
If not, then NWNs of E and E, are {1,1} and {—1,1}

or {{3,C3} and {&s,{g}, parity —1 and 1.
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Let ©(X/K) be the set of K-isomorphism classes of twists X’/K of X.

There are bijections:

O(X/K)— H'(Gk, Autk(X)) — { K-Frobenius conjugacy classes of Auty(X)}

Definition: g, h € Aut(X) are K-Frobenius conjugate if there exists
T € Autc(X) such that g = v~ " h(Fxt), where (Fxt) = FretFr, .

Notation: X’/K a K-twist of X/K with ¢ : X xx k = X' x k k.

Let & and g := g, be the corresponding cocycle and automorphism.
Let K7, be the field of definition of ¢ (of degree T, over K).

Rachel Pries (CSU) Fully maximal and minimal BIRS 19/43



3. Facts about twists

K-Frobenius order
The degree T is the smallest positive integer T such that

9(Fxg)(Fkg)---(Fix ' g) =id.

Suppose that ¢ : X xx, k — X’ x k, k is a geometric isomorphism.
Suppose that Gy = &y(Frk,) is in Autk,(X). Then the relative Frobenius
endomorphism 7’ of X’ satisfies

0 lomoo=nx0G, . (1)

v
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3. the 2-divisibility of orders of NWNs

Suppose that {z1,21,..., 24,24} are the normalized Weil numbers of a
supersingular curve X/K.

Recall that z4,..., 2y are roots of unity.

We measure the 2-divisibility of their orders in the next definition.

Definition

Let e; = ordx(|zj|). The 2-valuation vector of X/K is
e=e(A/K):={eq,...,eq}.
The notation e = {e} means that e;=efor1 <i<g.

Parity=1 (maximal over Fqym) iff e = {e} with e > 1 (e > 2 if r odd).

Twists that don’t change e

Suppose that X’/K is a twist of X/K of order T. Let et = ordx(T).
If er <min{e;|1<i<g}, then e(X'/K)=e.
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Characterizing the mixed case when Autk(A) # 7Z/2

If X/K has parity +1 and its twist X’ /K has parity —1, then the order T
of the twist is even.

More precisely:
Suppose X/K has K-period M. Let ey = orda(M).

Note that ey, is determined by the parity of X and g, the 2-divisibility of
the orders of the NWNs (roots of unity).

Let X’ /K be a K-twist of order T. Let er = orda(T).

No switch of parity

If X/K has K-parity +1 and er < ey, then X’/K also has K-parity +1.
If X/K has K-parity —1 and et < ey, then X’/K also has K-parity —1.
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General results: K/P

Let g=p’. Let A be p.p. abelian variety of dimension g.

If Ais simple and r is even, then A/FFq is not fully minimal.

Suppose that |Aut,(A)| =2. Then
@ Ais fully maximal if and only if (i) e = {e} with e > 2;

Q@ Ais fully minimal if and only if (ii) the e; are not all equal, or
e={e} withec {0,1} and r is odd;

© Ais mixed if and only if (iii) e = {e} with e€ {0,1} and r is even.

v

If |Autx(A)| =2, g is odd, and r is odd, then A is fully maximal.
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Philosophical digression

Is the condition that Autk(A) ~ Z/2 restrictive?

Open Question 2:

What is the automorphism group of A, for n a geometric generic point
of the supersingular locus A4y ss of the moduli space of p.p. abelian
varieties of dimension g > 2?

g =2, p odd: Using Katsura/Oort, Achter/Howe, the proportion of
supersingular p.p. A/F,r with Autx(A) 2 Z/2 goes to 0 as r — oo,

(This is false when g =2 and p = 2 by Van der Geer/Van der Vlugt).

g =3, p=2: we prove that automorphism group is (Z/2 x Z/2) x Z/3
on an open, dense subset of A3 s.
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Philosophical digression continued

The proportion of F4-points of Ay ss which represent abelian varieties A
that are simple over K is not known in general.

Li/Oort: the generic supersingular abelian variety A, has a-number 1
for all g and p.

If Z/2 xZ/2 C Autk(A), then Ais not simple over K by Kani/Rosen.
If p is odd, this also implies that A has a-number at least 2.

So, for p odd, one expects the proportion of supersingular A/K with
ZLJ27 x )27 C Autk(A) to be small.
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Analysis for g =2

A/Fq simple abelian surface.
P(A/Fq, T)=T*+ a1 T3+ aT?+qai; T +q? € Z[T].

The typical situation is when Autx(A) ~ Z/2. What types occur?

Proposition (KP):

Let A be a supersingular simple p.p. abelian surface with minimal field
of definition Fpr. Assume Auty(A) ~7Z/2.

If r is odd, then A is not mixed; Cases (1), (2b), (3a), (6) are fully
maximal and Cases (2a), (5), (7a) are fully minimal.

If r is even, then A is not fully minimal; Cases (1), (3a), and (7b) are
fully maximal and Cases (4) and (8) are mixed.

Cases as listed in following table.
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Analysis for g =2

First 4 columns from Maisner/Nart (see also HMNR)

Let L/Fq minimal over which A~ Ey x Ep. Let ty = deg(L/FFq). Let ng = ng, = ng, label Ey/Land E3/L.

We compute z/L, one of the NWNs (z,Z,z,Z) of A/L. We compute NWN(A/Fq). We compute the period P and parity & of A/Fq.
P )

(a1,a0) rp fh | ne | z/L NWN(A/Fq)

1a | (0,0) rodd, p=3mod4 orreven, | 2 | 3 i (€. G.3.Q) 4 1
p#1mod 4

b | (0,0) rodd, p=1mod4 orr even, | 4 | 1 -1 (6. 2.8.8) 4 1
p=5mod 8

2a | (0,9) rodd, p#1mod3 212 |G | g ce) 6 | 1

2b (0,9) rodd, p=1mod3 6 1 -1 (12,813 Q Ras 5) 6 1

3a | (0,-q) roddand p#£3orrevenand | 2 | 2 -3 | (§12.892.895: diz) 6 1
p#1mod3

3b | (0,—q) roddandp=1mod3orreven | 3 | 3 i (612:¢13.68,,¢75) | 6 1
and p=4,7,10 mod 12

4a (v9,9) revenand p# 1 mod 5 5 1 1 (Cs, §5 25 §5) 5 -1

4 | (-v3.9) revenand p# 1 mod5 5 |1 | G &N C?0,€170) 5 1

5a | (v/54,39) roddand p=5 5 1 +1 (‘;10 210 2;5 §5) 10 -1

5b | (-v/59,3q) | roddandp=5 5 |1 +1 (Cw .85, 62) 10 | -1

6a | (1/29,9) rodd and p=2 4 |2 “G | (G3.005.603.8,) | 12 1

6b | (-+/29.9) roddand p=2 412 s (§24 §24 Cg4 Cos) | 12 1

7a | (0,-2q) r odd 2 |1 (1, 1) 2 -1

7b (0,2q) revenand p=1mod 4 2 2 -1 (i, —I i, —l) 2 1

8a (2v9.3q) revenand p=1mod3 3 1 1 (€3, C RN §2) 3 -1

8b (—21/4,3q) revenand p=1mod3 3 1 —1 (%6.83:%6.53) 3 1
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Analysis when g =2

Also deal with simple supersingular surfaces with Autx(A) % Z/2.

Igusa: 6 equations of curves of genus 2 with Aut,(X) £ Z/2.
Ibukiyama/Katsura/Oort - determine when these are supersingular.

Using Cardona/Nart, we determine the type for each of these.

Open Question 3:
What are the sizes of the isogeny classes listed in the table?

The answer to Open Question 3 would shed light on the probability
that a supersingular abelian surface A/Fg is fully maximal, mixed, or
fully minimal.
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A procedure for studying parities of twists

The key information to retain about the normalized Weil numbers is the
divisibility of their orders by 2.

We summarize this information in a multiset e(A/K).

The key information to retain about the twist is its effect on the NWNs,
which can be controlled by the divisibility of its order T by 2.

If the structure of Autk(X) is complicated, then the order of the twist is
not easily determined from the order of g € Autk(X).

In particular, if G is non-abelian, then an automorphism g of order 2
can produce a twist of order 4.
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5. Supersingular moduli forg=3 and p=2

When p =2 and g = 3, the supersingular locus of the moduli space
Mz @ F» is irreducible of dimension 2.

Viana and Rodriguez parametrize it by the 2-dimensional family
Xap: x+y+a(x3y+xy®)+bx?y? = 0. (2)
For each supersingular curve X, of genus 3 over a finite field of

characteristic 2, we determine whether X, is fully maximal, fully
minimal, or mixed.

This involves an analysis of twists by g € Autx(Xa), which is a group
of order either 12 or 36.

In fact, we determine L(X, /K, T) almost completely.

(See related results by Nart/Ritzenthaler).
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Main result when g=3and p=2

Let K = FFor be the smallest field containing a, b.
Let h € F . be such that h* + h= 2. Note that h € Fq iff Tr,(2) =0,
where Tr, : For — F» denotes the trace map. Let K’ =Fq(h).

Theorem K/P:

@ If ris odd, then X is fully maximal if h € Fq and mixed if h ¢ Fy.

Q If r=2mod 4, then X, is fully minimal if h ¢ Fq and mixed if
heFg.

© If r=0mod 4, then X, is fully minimal.

Moreover, Jac(Xp) has the same type as X, p, unless r = 0 mod 4 and
h € Fq, in which case Jac(Xzp) is mixed.

v

The proportion of (a,b) € (IE"g,)2 for which X3 is mixed is slightly
greater than % when r is odd and slightly smaller than % when
r=2mod 4.
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The L-polynomial of X, over K’

For K = For, define
Lek(T)=(1—(V2i)' T)(1 = (=V20)'T), (3)
and, when r is even, define
Lok (T)=(1—(286)/2T)(1 — (245 )2 T). (4)

The NWNSs are {(+i)'} for Lgx(T) and {552, &5 "%} for Lk (T).

Proposition

Let K =Fq(h), where h € F e is such that h? + h= 4.
Define ¢y = ab, ¢ = (51723, 3 = (3)%3-

Then L(Xap/K', T) = Lok (T)™Lnk(T)3~™, where
m=#{i€{1,2,3} | ¢j is a cube in (K")*}.
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Key facts about the geometry of X 5

Xa,p has an involution t(x,y) = (¥, x) and the quotient is

E; ZR2+R:C183.

The cover X, — E; has equation Z2+Z = 2R.

The involutionv: R+— R+1 on E; lifts to X3, viav(Z) =Z+h.
Let Eo: T2+ T = cp(aS)% and Ez : U? + U = c3(aS)3.

Lemma

@ The cover Xyp — Eqp — IP’?S is Galois with group
So = (1,0) ~ Z/27 x Z./27 and equation

4 a,5, 4 _133
Z+(1+b)Z+bZ_baS.

@ Over K, the quotients of X, by 1, v and v are Ey, Es, and E;.
Q Finally, Jac(Xa7b) ~k E1® Eo @ Es.
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The L-polynomial of X, over K

When h ¢ g, this is not quite strong enough, because it only gives
information about the L-polynomial over F .

This ambiguity can be partially resolved using the Artin L-series
L(Eap/Fq, T,x), where y is the nontrivial character of Z/2Z.

Note L(Xap/Fq, T) = L(Eap/Fq, T)L(Eap/Fq, T,X).
Let py be the coefficient of T in L(Eap/K, T,%).

Let / (resp. S1) be the number of K-points of E,p, that are inert (resp.
split) in Xap. Then py = Sy — k.

Using quadratic twists, one can see that p; = 0.
This suffices to determine e(Xa/K).
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The twists of X;

Let G = Autk(Xap). It contains So = (t,v) ~ Z/27 x 7/ 2.
There is an order 3 automorphism of Xj p, given by

c: (x,y)— (Cax,Czy) oro: (S,R,Z) — ((3S,R, 2).

Note that ¢ is defined over Fq if r is even and over F . if r is odd. Also,
G centralizes Sp.

Ifa+# b, then G = Sy x (o) is an abelian group of order 12.
If a+ b, then G is a semidirect product Sy x H where H is a cyclic
group of order 9.
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Example: Xjp is fully maximal when r odd and h € Fq

Let r be odd and h € Iy

The L-polynomial shows that NWNs are £/ (multiplicity 3).

So e=1{2,2,2} and X, has parity 1.

There are 4 Frobenius conjugacy classes of twists, represented by
elements of Sy, which are defined over K and thus have order T = 2.

Soer=1.

This means the twists do not change e, so all twists have parity 1.
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Example: X; p is mixed when r odd and h € Fq

Let r be odd and h ¢ Fy.

The L-polynomial shows that the NWNs are in {£i} Uu1».
In any case, e(Xap/K) = {2,2,2} so X, has parity 1.

There are 2 Frobenius conjugacy classes, thus one non-trivial twist,
which is represented by v.

Over K', e(Xap/K') = {1,1,1}.

The nontrivial twist corresponds to v/« = 1, which negates the two
conjugate pairs of NWNs for E; and Es.

Thus the twist has e(Xj ,/K’) = {1,0,0}.
One checks that e(X ,/K) = {2,0,1}, of parity —1.

Thus, Xjp is mixed.
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6. Why supersingular Jacobians are unlikely

Let 44 be the moduli space of p.p. abelian varieties of dimension g.
The image of My in 4y is open and dense for g < 3.

Observation (Oort 2005) dim(A4y) = g(g+1)/2 and

the dimension of the supersingular locus 4 ss is |g%/4].

The difference d4 is length of longest chain of NPs connecting the
supersingular NP o4 to the ordinary NP v.

If g > 9, then 85 > 3g — 3 = dim(My).

Either (i) My does not admit a perfect stratification by NP
(i.e., there are two NPs & and &, such that 44[&+] is in the closure of A4[E5]

but My[E+] is not in the closure of My[Es].)
or (ii) some NPs do not occur for Jacobians of smooth curves.

Test case: g =11 with NP Gs g © Gg 5 having slopes of 5/11,6/11
(does occur when p =2 - Blache).
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Supersingular case sometimes does not occur among

wildly ramified covers
Deuring-Shafarevich formula restricts p-rank.

Oort: If p= 2, there does not exist a hyperelliptic supersingular curve
of genus 3.

Scholten/Zhu: p =2, n> 2, there is no hyperelliptic supersingular
curve with g =2"—1.

(for odd p, generalized for Artin-Schreier covers X %P‘ by Blache,
who studied first slope of NP of more general AS curves)

Van der Geer/Van der Vlugt: If p =2, then there exists a
supersingular curve of every genus.
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Supersingular Artin-Schreier curves

Def: R[x] € k[x] is an additive polynomial if R(x1 + x2) = R(x1) + R(x2).
Then R[x] = cox + c1xP + chp2 + chxph.

Supersingular Artin-Schreier curves VdG/VdV

If R(x) € k[x] is an additive polynomial of degree p”, then
X : yP — y = xR(x) is supersingular with genus p"(p—1)/2.

Proof: Induction on h, starting with h=0.
Key fact: Jac(X) is isogenous to a product of Jacobians of
Artin-Schreier curves for additive polynomials of smaller degree.

Remark: BHMSSYV studied L-polynomials, automorphism groups of X.
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Existence of supersingular curves when p =2

Van der Geer and Van der Vlugt
If p= 2, then there exists a supersingular curve over F» of every genus.

Proof sketch: Expand g as (with s; <s;_1+r_1+2)
g:231(1 +2_|_...+2"1)_|_232(1 +2+...2f2)+...+23t(1 +2_|_...+2ft)_

LetL= @521 L; for L; subspace of dim d; := r;+ 1 in vector space of
additive polynomials of deg 24, with u; = (s;+1) =X} (rj+1).

If feL,let Cs: yP—y = xf. Let Y be fiber product of C; — P for all
feL. Then Jy ~ ®r.0Jc, (thus supersingular). Also, gy = Y120 9c,-

The number of f € L which have a non-zero contribution from L;, but
not from L; for j > i, is (2% —1)T;_} 2%. Each adds 2" to g.

So gy =Li (2% - 1) 2924 =¥l 29(1 +---427) = g.
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Supersingular Artin-Schreier curves for odd p

Here is what VdG/VdV’s method produces for odd p.

Proposition: K/P

Let g= Gp(p—1)?/2 where G=Y|_;p%(1+p+---p"). Then there
exists a supersingular curve over Fp, of genus g.

VdG/VdV also prove that there exists a supersingular curve defined
over [, of every genus. The construction is a little more complicated.
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An accessible open question

Open Question 4:

Determine the type (fully maximal, mixed, fully minimal) for known
classes of supersingular curves:

g =2, p=2: Van der Geer/Van der Vlugt;

g=p"(p—1)/2, X: yP —y = xR(x),
Bouw/Ho/Malmskog/Scheidler/Srinivasan/Vincent;

arbitrary g, over F»: Van der Geer/Van der Viugt;
the odd p generalization of the previous line;

covers of Hermitian curve: Gieulietti’lKorchmaros,
Garcia/Guneri/Stichtenoth.
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