Beyond infinite time scale separation

Edgeworth approximations for subgrid-scale parameterization

Jeroen Wouters °*# and Georg Gottwald #

©Meteorological Institute, University of Hamburg

4School of Mathematics and Statistics, University of Sydney

UH
i
LoV Universitdit Hamburg

DER FORSCHUNG | DER LEHRE | DER BILDUNG

THE UNIVERSITY OF

SYDNEY




The model reduction problem

Many systems of scientific interest are to complex to simulate numerically.
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E.g. climate models can resolve only part of the relevant processes of the
climate system.

Can a dynamical system of lower dimensionality be determined that

approximates the full system? 1



Approach: Model reduction through time scale separation

e Assume a time scale separation between slow variables x and fast

variables y
dx = fo(x,y) dt + fi(x,y) dt (resolved/slow/“climate”)
dy = %g(x, y)dt + éa(x, y) dw (unresolved/fast/“weather”)

e As e — 0 the fast y variable decorrelates ever faster and acts as a
Gaussian white noise on the slow variables and the slow x variable

converges weakly to an SDE.

e This idea can be made mathematically rigourous by the method of
homogenization

stochastic: Khasminsky ‘66, Kurtz °73, Papanicolaou 76
deterministic: Melbourne & Stuart '11, Gottwald & Melbourne 13, Melbourne & Kelly '15, De

Simoi & Liverani '14



Slow-fast systems in geophysics

Barotropic vorticity equation with topography
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This can be modeled by a system with a time scale separation parameter

% = %fl(lb)
% = 50:(¥) + ta1(V)

Reduces through homogenization, assuming infinite time scale separation to

dU = a(U) dt + o (U) dW
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The CLT and the Edgeworth expansion

The Central Limit Theorem
Assume X; are

n
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where 1 = E[X;] and 0% = E[X?]

For finite n, there are deviations to the CLT
These are described by the
1

o

where Hs is the third Hermite polynomial and v = E[X]
Feller (1957) “An introduction to probability theory and its applications”

p(x) = Do g2 (x) x (14 Hs(x/)) + o(1/v/n)



The CLT and the Edgeworth expansion (dependent version)

The Central Limit Theorem
Assume X; are stationary random variables

n

1
Z X /'L —d (0702)
n =
where p1 = E[X] and 0? = E[X§] + 23, E[X1X14]

For finite n, there are deviations to the CLT

These deviations are described by the

Palx) = Bg 014 /,,<x>x<1+\; Hs(x/)) + o(1//)

where Hs is the third Hermite polynomial and % and dk are sums over

correlation functions of X;
Gotze and Hipp (1983) Z Wahrscheinlichkeit, 64, 211



Edgeworth expansion in action: deterministic processes

Example:; deterministic mod process
X, = i A(y-) with Yi+1 = py; mod 1
= E j
= AV) =y +V'+y +y +y—c

We can calculate o2, §o% and dk explicitly
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Edgeworth expansion for slow/fast systems

For slow-fast systems

x = %fO(XU/) +f1(xyy)

y = 290(y) + ta1(x,y)

(e)—x(0)
NG

we have that * converges to a Gaussian as € — 0.

pc(0(0) = x0) = [ eye s, (e
where £ = E—lzﬁo + %L] + Ly with Lop = —09,(g(y)p),
Lip = —0k(fo(x,y)p) and L2p = —0y(f1(x, y)p) are generators

Edgeworth corrections to p; can be calculated from a Dyson series for the

transfer operator

t
eﬁt — eﬁot/gz + / ds e[:g(t—s)/gz(lﬁl + ﬁo)eﬁos/az + o
0 &



Stochastic parameterization using the Edgeworth expansion

Given a slow-fast dynamical system

X =1f(y) + filxy)
y = 24(y)

1. determine the Edgeworth expansion coefficients O‘éK, dk associated

with fO(Xv y)
2. model x of the multi-scale system by X of a surrogate stochastic

process
X = 1a(n) +F(x)
__ 1
dn = —Zdt+ 2 dW
with A(n) = anz + bn + ¢, where a, b, ¢, 7y are determined such that

the Edgeworth expansion coefficients of A(77) match those of fy in the

true system.



Application: parameterization of a discrete-time multiscale system

, (€)
K =X £ ey) + e ()
Yir1 =py; mod 1
homogenization: converges for € — 0 to a diffusion (Gottwald &

Melbourne (2013))

dX = fi(X) dt + o dW

Edgeworth: replace fast mod map y by an AR1 process 7)
& (5 &
X% =X + efosm) + E(67)
Nt = ¢n+ N

with f075(77) = 03773 + 02772 + ai1m + ap and parameters a; tuned to match

Edgeworth corrections
10
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Parameterization of a continuous-time multiscale system

X =2h(y) +AK)

y =24y
where fi (x) = —VV(x), with V(X) an assymetric double well potential and
¥ = g(y) is the standard Lorenz '63 system.

Edgeworth: replace fast Lorenz system y by an Ornstein-Uhlenbeck process
n

X = 2fos(n) +£(X)
dn = —a%fyndt—i- %dW

with f075(77) = 03773 + 02772 + ai1m + ag and parameters a; tuned to match
Edgeworth corrections
12
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¢ We have used the Edgeworth expansion to extend the range of time

scale separation over which slow-fast sytems can be approximated

e The fast variables are replaced by a stochastic surrogate process, the

parameters of which are tuned to match the Edgeworth expansion

e We have shown good agreement when reducing deterministic discrete

and continuous time systems

e To do: Apply Edgeworth based reduction to the barotropic vorticity

equation

14



¢ We have used the Edgeworth expansion to extend the range of time

scale separation over which slow-fast sytems can be approximated

e The fast variables are replaced by a stochastic surrogate process, the

parameters of which are tuned to match the Edgeworth expansion

e We have shown good agreement when reducing deterministic discrete

and continuous time systems

e To do: Apply Edgeworth based reduction to the barotropic vorticity

equation

Thank you for your attention!
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homogenization extends the Central Limit Theorem

dx(®) = o y©)) dr resolved/slow

dyle) = %g(y(‘s)) dt + %O‘ dw unresolved/fast

The slow variable x integrates the fast variable y

X () = xE)(0) = é /0 tfo(y(g) (s)) ds

Invoking the CLT, x(t) converges weakly to dX = o dW where

0’ =2 [ Elf(/ (0)o(yM(s))] ds



homogenization

dx = %fo (x,y) dt + fi(x,y) dt resolved/slow

dy = %g(x, y) dt + %O‘(X’ y) dw unresolvedy/fast
Assumptions:

« fast y-process is ergodic with measure /i,
o« [folxy)dpux =0

In the limit € — 0, the slow x-dynamics is approximated by

dX = F(X) dt + X(X) dW

where

¥ =2 / " [fo(x, Y)fo(x, ¥(s))] ds

F(X) = / j’l(x, y) dpix + /0 h / Vifo(x, ¥(5))fo(x,y) dpu ds

stochastic: Khasminsky ‘66, Kurtz °73, Papanicolaou 76

deterministic: Melbourne & Stuart "11, Gottwald & Melbourne °13, Melbourne & Kelly '15



“Proof” of the Edgeworth expansion

Expand the characteristic function of X/ﬁ (@assuming p = 0,0 = 1):

wX/\/n] __ ()Z (Zt)ZXE
Ele /f]fE[1+\/E+ T - ]
= —)+6(\>[ ]+

The characteristic function of >, X;/\/n

2 t2 3
uX/\/mn 4 L n PN (Zt) g
B = (1= 1)+ (1= )0

ik (1 - ?\;) + 0(%)




Application: stochastic approximation of a deterministic map

X = X; + €A y
O AY) =y +y+y +y +y—c
Yir1 =py; mod 1
by a surrogate AR1 process
X1 = X+ eB(my)
Mt = on+ N

such that O'éK (homogenization), as well as d 3 (1st Edgeworth term) match

with B(y) = asn? + bsn + ¢s
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sion in action: stochastic processes

Example 1: AR1 process
Xp1 =x+EAM)  with

N1 = oN+N;

An) = an* +bn+c
N~ N(0,1)

We can calculate 02, §o% and dk explicitly (everything is Gaussian)
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Triad system Majda et al (2001)

X = 1By,
L1 1 i
yio= 2Buyox— gy — oy
V2 = 1Buxyi — Zay2 — oW
Edgeworth:
v
X = ZA(n)

7 :%ax—e%n—%aw

with A(n) = an? + by + ¢
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	Appendix

