
Computational topology with
Gudhi library.

Paweł Dłotko with Jean-Daniel Boissonat, Marc Glisse, François

Godi, Clément Jamin, Siargey Kachanovich, Clément Maria,

Vincent Rouvreau and David Salinas

Swansea University and DataShape, Inria

What does Gudhi mean?

What does Gudhi should mean (to us)?

What is Gudhi project?

I GUDHI – project supported by ERC and hosted by INRIA.
I We aim in:

I developing new data structures in computational topology and
geometry and

I developing associated statistical, geometrical and topological
algorithms.

Standard computational topology pipeline.

Standard computational topology pipeline, redo 1.

Extended computational topology pipeline.

I Input: Topological space / point cloud / grid–based data.
I Discretization: Simplicial complex (Rips, alpha, witness),

cubical complex (all with or without filtration).
I Topological summary: (co)homology, persistent homology,

zig-zag persistence.
I Later statistical and machine learning processing of

topological information.
I All in C++ of Python (via cython).

The data structures

I General containers:
I Simplex tree.
I Simplex array list.
I Simplicial complex via skeleton blockers.
I Cubical complexes.

I Specific implementations:
I Rips complexes
I Alpha complexes.
I Witness complexes.
I Cubical complexes.

Simplicial complexes, simplex tree.

I Memory and time–efficient data structure to store simplicial
complexes.

I Every simplex is a word stored in the tree.
I Nodes at each level corresponds to simplices of the same

dimension.
I It is a base of all algorithms to compute persistence of

weighted simplicial complexes in Gudhi.

by Clément Maria

Simpliex array list.

1. We store a list of 0 dimensional vertices.

2. And link them to the list of maximal/critical simplices.

3. The complexity of basic operations is comparable to the ones
in Simplex Tree.

4. The space complexity of the structure is way superior to ST.

5. Most algorithms are currently being translated to SAL.

Simplicial complexes, skeleton blockers.

I A data structure for very large simplicial complexes.
I We store the 1−skeleton and the minimal simplices which are

not present in the complex.
I The rest is generated from cliques in the 1−skeleton.
I Used in edge contraction toolbox (details later).

by David Salinas

Specific simplicial complexes.

I So far we have seen the general containers to keep simplicial
complexes.

I Now we will discuss specific simplicial complexes that can be
stored in those containers.

The Rips complex.

I Rips complex from point cloud.
I Rips complex from distance / similarity matrix.

Weighted Alpha complexes.

I Constructed from point-clouds, based on CGAL data
structures.

I Filtered alpha complexes in any dimension.
I Periodic alpha complexes in dimension 3.
I Weighted alpha complexes coming up soon.

by Vincent Rouvreau

Witness complexes.

I For large point clouds, select small, representative collection
of points L called landmarks.

I Build a complex on landmark points. Add a simplex if a
witness exists.

I Version with and without filtration.

by Siargey Kachanovich

Cubical complexes, bitmaps.

I Represented as a vector of filtration values.
I (Co)boundary computed based on the position in this vector.
I Used in analysis of grid-type data.

by Paweł Dłotko

(Persistent) (co)homology.

I Standard persistence cohomology computations by using
compressed annotation matrix (by Clément Maria).

I Multi–field persistence (detection of torsion coefficients) (by
Clément Maria).

I Computing persistence with Phat (Phat by Ulrich Bauer,
Michael Kerber, Jan Reininghaus and Hubert Wagner) –
coming in the next release.

I Zig-zag persistence (coming soon).

Standard metrics.

I Bottleneck distances.
I The geometric algorithm (Efart et al).
I At the moment we do not have p-th Wasserstein distances.
I Nice alternative Hera: bitbucket.org/grey_narn/hera.

by Francois Godi

bitbucket.org/grey_narn/hera

Manifold reconstruction with tangential complexes.

I Suppose we have a set of points sampled from a manifold.
I For every point construct tangent space at that every p ∈ L.
I For every p ∈ L, construct its star and glue the stars of

neighbouring points if they agree.
I Based on Jean-Daniel Boissonnat and Arijit Ghosh Manifold
reconstruction using Tangential Delaunay Complexes.

by Clément Jamin

Simplicial complex simplification with edge contraction.

by David Salinas

Finally.

Let us have some goodies!

Diagrams, diagrams, what next?

1. So, we have this whole machinery to compute diagrams.

2. What shall we do next once have them?

3. How can we make a statistics or machine learning on
diagrams?

4. Wait... did you said diagrams?

The Gudhi Stat

1. Statistical toolbox for Gudhi.

2. Pre-available as a set of executables.

3. Link standard operations in statistics and machine learning
with persistence.

4. Uses various representations of persistence. Not only
diagrams.

Why persistence diagrams are not sufficient?

Why persistence diagrams are not sufficient?

Why persistence diagrams are not sufficient?

Persistence landscapes.

I Idea by Peter Bubenik.
I Lift persistence diagrams to Banach space of functions.
I This space is large enough to have well defined averages and

scalar products.

Persistence landscapes.

Persistence landscapes.

Persistence landscapes.

Persistence landscapes.

Persistence landscapes.

Persistence landscapes.

Persistence landscapes.

Persistence landscapes.

Persistence landscapes.

Persistence landscapes.

Persistence landscapes.

Persistence landscapes.

I Bottleneck stability.
I Averages.
I Lp distances.
I Scalar products.
I Various ways to vectorize.
I My ”adventure” with persistence landscapes begin with

persistence landscape toolbox, more than 3 years ago.

Persistence landscape toolbox.

I Computations of distance matrix.
I Computation of averages landscapes.
I Standard deviation.
I Computations of integrals.
I Moments computations.
I Permutation test.
I T-test, anova.
I Classifiers.
I Warning: this software is barely maintained at the moment.

What do we need to do statistics?

I In almost all the cases, we used only a few property of the
landscapes.

I And it was not important at all that we use landscapes.
I What I needed:

I Distances.
I Averages.
I Scalar product.
I Vectorization.
I Confidence bounds (?)

Other representations of persistence.

I Persistence landscapes on a grid (simplified representation
used in TDA R-package).

I Persistence vectors (by M. Cariere, S. Oudot and M.
Ovsjanikov).

I Various types based on summing distributions centered at
diagram points:

I Persistence Weighted Gaussian Kernel by G. Kusano, K.
Fukumizu, Y. Hiraoka.

I Persistence Stable Space Kernel, by J. Reininghaus, U. Bauer,
R. Kwitt.

I Persistence Images by Chepushtanova, Emerson, Hanson,
Kirby, Motta, Neville, Peterson, Shipman, Ziegelmeier.

Persistence vectors.

3
4.2

4

2
2.5

a b

c

1

(3,1,1)

Persistence vectors, statistical operations.

1. Point-wise averages.

2. Max, lp distances.

3. Various projections to R are possible.

4. Scalar products of vectors well defined.

5. Vectorization is for free.

6. Confidence bounds (?).

Distributions on diagrams.

Distributions on diagrams.

1. Distances and averages.

2. W-1 stable.

3. Vectorization possible.

4. Real-valued function possible to define.

5. Confidence bounds (?).

Topological infomation

Distances Averages Inner products Vectorization

Landscapes Grid-landscapes Vectors Heat mapsDiagramsDiagrams ...

C++
Code

on
Gudhi

...

Permutation test statistical
tests, p-values

Kernel methods

SVM's

Decision trees

Deep learningClustering

Genetic algorithms Metric learning

….

Python,
based

on
existing
implem
entatio

ns

Coming soon.

1. Bootstraps.

2. Subsampling.

3. Confidence bounds.

4. Extrapolation.

5. etc...

Some more goodies!

The code.

1. Python bindings (not all functionalities yet available).

2. Source code (boost, gmp, eigen, cgal, tbb and you are good
to go).

3. Statically compiled sources (windows and osx), links on the
wordpress workshop webpage.

4. Some exercises for you are also there!

Looking ahead.

Time varying data.

I Quite often our data are time–varying.
I In each time step we are given a scalar value function.
I But filtration is changing (in a smooth way).
I Multi dimensional persistence not feasible at the moment.
I Methods for time varying data.
I Note that we cannot go back in time.

Time varying data.

I Suppose we know only the data from the constitutive time
steps.

I We do not know how they were transformed to each other.

Distances and averages.

d()= Av(, , ,)= ,

Distances and averages.

d(,)=

d
6

d
5

d
4

d
3

d
2

d
1

= Ʃd
i

Av(, , ,)=

Spinodal decomposition in alloys.

50/50 60/40 75/25

Topological signal processing.

I f : R→ R.
I Time series (x1, t1), (x2, t2), . . . , (xn, tn).
I Aim: Turn time series/ function into point cloud.

Topological signal processing.

Topological signal processing.

Topological signal processing.

Topological signal processing.

Topological signal processing.

Topological signal processing.

Topological signal processing.

Topological signal processing.

Topological signal processing.

Topological signal processing.

Sliding window embedding.

1. This toolbox will provide a collection of tests for
periodicity/circularity of function or time series.

2. It will not provide guarantee unless restricted to specific types
of functions.

3. It will allow comparison of time series by comparing their
sliding window embeddings.

Current applications of Gudhi library.

I TDA package.
I Surface reconstruction with Tangential Complex.
I Mesh simplification by edge contractions.
I Zeolites.
I ...

Subscribe!

http://gudhi.gforge.inria.fr/getinvolved/

http://gudhi.gforge.inria.fr/getinvolved/

Thank you for your time!

Swansea University and DataShape Team, INRIA,
contact: pawel.dlotko, vincent.rouvreau @ inria.fr,

p.t.dlotko @ swansea.ac.uk

	General motivation.

	0.0:
	0.1:
	0.2:
	0.3:
	0.4:
	0.5:
	0.6:
	0.7:
	0.8:
	0.9:
	0.10:
	0.11:
	0.12:
	0.13:
	0.14:
	0.15:
	0.16:
	0.17:
	0.18:
	0.19:
	0.20:
	0.21:
	0.22:
	0.23:
	0.24:
	0.25:
	0.26:
	0.27:
	0.28:
	0.29:
	0.30:
	0.31:
	0.32:
	0.33:
	0.34:
	0.35:
	0.36:
	0.37:
	0.38:
	0.39:
	0.40:
	0.41:
	0.42:
	0.43:
	0.44:
	0.45:
	0.46:
	0.47:
	0.48:
	0.49:
	0.50:
	0.51:
	0.52:
	0.53:
	0.54:
	0.55:
	0.56:
	0.57:
	0.58:
	0.59:
	0.60:
	0.61:
	0.62:
	0.63:
	0.64:
	0.65:
	0.66:
	0.67:
	0.68:
	0.69:
	0.70:
	0.71:
	0.72:
	0.73:
	0.74:
	0.75:
	0.76:
	0.77:
	0.78:
	0.79:
	0.80:
	0.81:
	0.82:
	0.83:
	0.84:
	0.85:
	0.86:
	0.87:
	0.88:
	0.89:
	0.90:
	0.91:
	0.92:
	0.93:
	0.94:
	0.95:
	0.96:
	0.97:
	0.98:
	0.99:
	anm0:
	1.0:
	1.1:
	1.2:
	1.3:
	1.4:
	1.5:
	1.6:
	1.7:
	1.8:
	1.9:
	1.10:
	1.11:
	1.12:
	1.13:
	1.14:
	1.15:
	1.16:
	1.17:
	1.18:
	1.19:
	1.20:
	1.21:
	1.22:
	1.23:
	1.24:
	1.25:
	1.26:
	1.27:
	1.28:
	1.29:
	1.30:
	1.31:
	1.32:
	1.33:
	1.34:
	1.35:
	1.36:
	1.37:
	1.38:
	1.39:
	1.40:
	1.41:
	1.42:
	1.43:
	1.44:
	1.45:
	1.46:
	1.47:
	1.48:
	1.49:
	1.50:
	1.51:
	1.52:
	1.53:
	1.54:
	1.55:
	1.56:
	1.57:
	1.58:
	1.59:
	1.60:
	1.61:
	1.62:
	1.63:
	1.64:
	1.65:
	1.66:
	1.67:
	1.68:
	1.69:
	1.70:
	1.71:
	1.72:
	1.73:
	1.74:
	1.75:
	1.76:
	1.77:
	1.78:
	1.79:
	1.80:
	1.81:
	1.82:
	1.83:
	1.84:
	1.85:
	1.86:
	1.87:
	1.88:
	1.89:
	1.90:
	1.91:
	1.92:
	1.93:
	1.94:
	1.95:
	1.96:
	1.97:
	1.98:
	1.99:
	anm1:
	2.0:
	2.1:
	2.2:
	2.3:
	2.4:
	2.5:
	2.6:
	2.7:
	2.8:
	2.9:
	2.10:
	2.11:
	2.12:
	2.13:
	2.14:
	2.15:
	2.16:
	2.17:
	2.18:
	2.19:
	2.20:
	2.21:
	2.22:
	2.23:
	2.24:
	2.25:
	2.26:
	2.27:
	2.28:
	2.29:
	2.30:
	2.31:
	2.32:
	2.33:
	2.34:
	2.35:
	2.36:
	2.37:
	2.38:
	2.39:
	2.40:
	2.41:
	2.42:
	2.43:
	2.44:
	2.45:
	2.46:
	2.47:
	2.48:
	2.49:
	2.50:
	2.51:
	2.52:
	2.53:
	2.54:
	2.55:
	2.56:
	2.57:
	2.58:
	2.59:
	2.60:
	2.61:
	2.62:
	2.63:
	2.64:
	2.65:
	2.66:
	2.67:
	2.68:
	2.69:
	2.70:
	2.71:
	2.72:
	2.73:
	2.74:
	2.75:
	2.76:
	2.77:
	2.78:
	2.79:
	2.80:
	2.81:
	2.82:
	2.83:
	2.84:
	2.85:
	2.86:
	2.87:
	2.88:
	2.89:
	2.90:
	2.91:
	2.92:
	2.93:
	2.94:
	2.95:
	2.96:
	2.97:
	2.98:
	2.99:
	anm2:

