
Tutorial on the R package TDA

Jisu Kim
Brittany T. Fasy, Jisu Kim, Fabrizio Lecci, Clément Maria, Vincent Rouvreau

Abstract

This tutorial gives an introduction to the R package TDA, which provides some tools for
Topological Data Analysis. The salient topological features of data can be quantified with
persistent homology. The R package TDA provide an R interface for the efficient algorithms
of the C++ libraries GUDHI, Dionysus, and PHAT. Specifically, The R package TDA in-
cludes functions for computing the persistent homology of the Rips complex, alpha complex,
and alpha shape complex, and a function for the persistent homology of sublevel sets (or
superlevel sets) of arbitrary functions evaluated over a grid of points. The R package TDA
also provides a function for computing the confidence band that determines the significance
of the features in the resulting persistence diagrams.

Keywords: Topological Data Analysis, Persistent Homology.

1. Introduction

R(http://cran.r-project.org/) is a programming language for statistical computing and
graphics.

R has several good properties: R has many packages for statistical computing. Also, R is easy
to make (interactive) plots. R is a script language, and it is easy to use. But, R is slow. C or
C++ stands on the opposite end: C or C++ also has many packages(or libraries). But, C or
C++ is difficult to make plots. C or C++ is a compiler language, and is difficult to use. But, C
or C++ is fast. In short, R has short development time but long execution time, and C or C++
has long development time but short execution time.

Several libraries are developed for Topological Data Analysis: for example, GUDHI(https://
project.inria.fr/gudhi/software/), Dionysus(http://www.mrzv.org/software/dionysus/),
and PHAT(https://code.google.com/p/phat/). They are all written in C++, since Topo-
logical Data Analysis is computationally heavy and R is not fast enough.

R package TDA(http://cran.r-project.org/web/packages/TDA/index.html) bridges be-
tween C++ libraries(GUDHI, Dionysus, PHAT) and R. TDA package provides an R interface
for the efficient algorithms of the C++ libraries GUDHI, Dionysus and PHAT. So by using
TDA package, short development time and short execution time can be both achieved.

R package TDA provides tools for Topological Data Analysis. You can compute several different
things with TDA package: you can compute common distance functions and density estimators,
the persistent homology of the Rips filtration, the persistent homology of sublevel sets of a
function over a grid, the confidence band for the persistence diagram, and the cluster density
trees for density clustering.

2. Installation

First, you should download R. R of version at least 3.1.0 is required:

http://cran.r-project.org/
https://project.inria.fr/gudhi/software/
https://project.inria.fr/gudhi/software/
http://www.mrzv.org/software/dionysus/
https://code.google.com/p/phat/
http://cran.r-project.org/web/packages/TDA/index.html

2 Tutorial on the R package TDA

http://cran.r-project.org/bin/windows/base/ (for Windows)

http://cran.r-project.org/bin/macosx/ (for (Mac) OS X)

R is part of many Linux distributions, so you should check with your Linux package management
system.

You can use whatever IDE that you would like to use(Rstudio, Eclipse, Emacs, Vim...). R itself
also provides basic GUI or CUI. I personally use Rstudio:

http://www.rstudio.com/products/rstudio/download/

For Windows and Mac, you can install R package TDA as in the following code (or pushing
’Install R packages’ button if you use Rstudio).

##

installing R package TDA

##

if (!require(package = "TDA")) {

install.packages(pkgs = "TDA")

}

Loading required package: TDA

If you are using Linux, you should install R package TDA from the source. To do this, you need
to install two libraries in advance: gmp (https://gmplib.org/) and mpfr (http://www.mpfr.
org/). Installation of these packages may differ by your Linux distributions. Once those libraries
are installed, you need to install four R packages: parallel, FNN, igraph, and scales. parallel is
included when you install R, so you need to install FNN, igraph, and scales by yourself. You
can install them by following code (or pushing ’Install R packages’ button if you use Rstudio).

##

installing required packages

##

if (!require(package = "FNN")) {

install.packages(pkgs = "FNN")

}

Loading required package: FNN

if (!require(package = "igraph")) {

install.packages(pkgs = "igraph")

}

Loading required package: igraph

##

Attaching package: ’igraph’

The following object is masked from ’package:FNN’:

##

knn

The following objects are masked from ’package:stats’:

##

decompose, spectrum

The following object is masked from ’package:base’:

##

union

http://cran.r-project.org/bin/windows/base/
http://cran.r-project.org/bin/macosx/
http://www.rstudio.com/products/rstudio/download/
https://gmplib.org/
http://www.mpfr.org/
http://www.mpfr.org/

Jisu Kim 3

if (!require(package = "scales")) {

install.packages(pkgs = "scales")

}

Loading required package: scales

Then you can install the R package TDA as in Windows or Mac:

##

installing R package TDA

##

if (!require(package = "TDA")) {

install.packages(pkgs = "TDA")

}

Once installation is done, R package TDA should be loaded as in the following code, before
using the package functions.

##

loading R package TDA

##

library(package = "TDA")

3. Sample on manifolds, Distance Functions, and Density Estimators

3.1. Uniform Sample on manifolds

A set of n points X = {x1, . . . , xn} ⊂ Rd has been sampled from some distribution P .

• n sample from the uniform distribution on the circle in R2 with radius r.

##

uniform sample on the circle

##

circleSample <- circleUnif(n = 20, r = 1)

plot(circleSample, xlab = "", ylab = "", pch = 20)

4 Tutorial on the R package TDA

●●

●

●

●
●

●
●

●

●

●

●

●

●

●
●●

●

●

●

−1.0 0.0 0.5 1.0
−

1.
0

0.
0

1.
0

3.2. Distance Functions, and Density Estimators

We compute distance functions and density estimators over a grid of points. Suppose a set of
points X = {x1, . . . , xn} ⊂ Rd has been sampled from some distribution P . The following code
generates a sample of 400 points from the unit circle and constructs a grid of points over which
we will evaluate the functions.

##

uniform sample on the circle, and grid of points

##

X <- circleUnif(n = 400, r = 1)

lim <- c(-1.7, 1.7)

by <- 0.05

margin <- seq(from = lim[1], to = lim[2], by = by)

Grid <- expand.grid(margin, margin)

• The distance function is defined for each y ∈ Rd as ∆(y) = infx∈X ‖x− y‖2.

##

distance function

##

distance <- distFct(X = X, Grid = Grid)

par(mfrow = c(1,2))

plot(X, xlab = "", ylab = "", main = "Sample X", pch = 20)

persp(x = margin, y = margin,

z = matrix(distance, nrow = length(margin), ncol = length(margin)),

xlab = "", ylab = "", zlab = "", theta = -20, phi = 35, scale = FALSE,

expand = 3, col = "red", border = NA, ltheta = 50, shade = 0.5,

main = "Distance Function")

Jisu Kim 5

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

● ●● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

●●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

● ●

●

●

●

●
●

●
● ●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

−1.0 0.0 0.5 1.0

−
1.

0
0.

0
1.

0

Sample X Distance Function

• The Gaussian Kernel Density Estimator (KDE), for each y ∈ Rd, is defined as

p̂h(y) =
1

n(
√

2πh)d

n∑
i=1

exp

(
−‖y − xi‖22

2h2

)
.

where h is a smoothing parameter.

##

kernel density estimator

##

h <- 0.3

KDE <- kde(X = X, Grid = Grid, h = h)

par(mfrow = c(1,2))

plot(X, xlab = "", ylab = "", main = "Sample X", pch = 20)

persp(x = margin, y = margin,

z = matrix(KDE, nrow = length(margin), ncol = length(margin)),

xlab = "", ylab = "", zlab = "", theta = -20, phi = 35, scale = FALSE,

expand = 3, col = "red", border = NA, ltheta = 50, shade = 0.5,

main = "KDE")

6 Tutorial on the R package TDA

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

● ●● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

●●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

● ●

●

●

●

●
●

●
● ●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

−1.0 0.0 0.5 1.0

−
1.

0
0.

0
1.

0

Sample X KDE

4. Persistent Homology and Landscape

4.1. Persistent Homology Over a Grid

gridDiag function computes the persistent homology of sublevel (and superlevel) sets of the
functions. The function gridDiag evaluates a given real valued function over a triangulated
grid (in arbitrary dimension), constructs a filtration of simplices using the values of the func-
tion, and computes the persistent homology of the filtration. The user can choose to compute
persistence diagrams using either the Dionysus library (library = "Dionysus") or the PHAT
library (library = "PHAT") .

The following code computes the persistent homology of the superlevel sets
(sublevel = FALSE) of the kernel density estimator (FUN = kde, h = 0.3) using the point
cloud stored in the matrix X from the previous example. The other inputs are the features of
the grid over which the kde is evaluated (lim and by), and a logical variable that indicates
whether a progress bar should be printed (printProgress).

##

persistent homology of a function over a grid

##

Diag <- gridDiag(X = X, FUN = kde, lim = cbind(lim, lim), by = by,

sublevel = FALSE, library = "Dionysus", printProgress = FALSE, h = 0.3)

The function plot plots persistence diagram for objects of the class "diagram".

##

plotting persistence diagram

##

par(mfrow = c(1,3))

plot(X, main = "Sample X", pch = 20)

persp(x = margin, y = margin,

z = matrix(KDE, nrow = length(margin), ncol = length(margin)),

Jisu Kim 7

xlab = "", ylab = "", zlab = "", theta = -20, phi = 35, scale = FALSE,

expand = 3, col = "red", border = NA, ltheta = 50, shade = 0.9,

main = "KDE")

plot(x = Diag[["diagram"]], main = "KDE Diagram")

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Sample X

x1

x2

KDE KDE Diagram

● ●●●
●

●

●

0.00 0.05 0.10 0.15 0.20 0.25

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Death

B
ir

th

4.2. Landscape

The persistence landscape is a collection of continuous, piecewise linear functions λ : Z+ × R→ R
that summarizes a persistence diagram. Consider the set of functions created by tenting each
point p = (x, y) =

(
b+d
2 , d−b2

)
representing a birth-death pair (b, d) in the persistence diagram

D as follows:

Λp(t) =


t− x+ y t ∈ [x− y, x]

x+ y − t t ∈ (x, x+ y]

0 otherwise

=


t− b t ∈ [b, b+d2]

d− t t ∈ (b+d2 , d]

0 otherwise.

(1)

We obtain an arrangement of piecewise linear curves by overlaying the graphs of the func-
tions {Λp}p; see Figure 1 (left). The persistence landscape of D is the collection of functions

λ(k, t) = kmax
p

Λp(t), t ∈ [0, T], k ∈ N, (2)

where kmax is the kth largest value in the set. see Figure 1 (middle).

Triangles

0 2 4 6 8

0.0
0.5

1.0
1.5

2.0

(Birth+Death)/2

(D
ea

th−
Bi

rth
)/2

●

●

●

●

●

●

●

●

●

●

1st Landscape

0 2 4 6 8

0.0
0.5

1.0
1.5

2.0

Figure 1: Left: we use the rotated axes to represent a persistence diagram D. A feature
(b, d) ∈ D is represented by the point (b+d

2 , d−b
2) (pink). Right: the blue curve is the landscape

λ(1, ·).

landscape evaluates the landscape function over a one-dimensional grid of points tseq. In
the following code, we use the rips persistence diagram in previous example to construct the

8 Tutorial on the R package TDA

corresponding landscape for one-dimensional features (dimension = 1). The option KK = 1

specifies that we are interested in the 1st landscape function. landscape return a real valued
vector, which can be simply plotted with plot(tseq, Land, type = "l").

##

computing landscape

##

tseq <- seq(from = 0, to = 0.2, length = 1000) #domain

Land <- landscape(Diag = Diag[["diagram"]], dimension = 1, KK = 1, tseq = tseq)

par(mfrow=c(1,2))

plot(x = Diag[["diagram"]], main = "KDE Diagram")

plot(tseq, Land, type = "l", xlab = "(Birth+Death)/2",

ylab = "(Death-Birth)/2", asp = 1, axes = FALSE, main = "Landscape")

axis(1); axis(2)

KDE Diagram

● ●●● ●
●

●

0.00 0.10 0.20

0.
00

0.
15

Death

B
ir

th

Landscape

(Birth+Death)/2

(D
ea

th
−

B
ir

th
)/

2

0.00 0.10 0.20

−
0.

02
0.

06

5. Statistical Inference on Persistent Homology and Landscape

(1 − α) confidence band can be computed for a function using the bootstrap algorithm, which
we briefly describe using the kernel density estimator:

1. Given a sample X = {x1, . . . , xn}, compute the kernel density estimator p̂h;

2. Draw X∗ = {x∗1, . . . , x∗n} from X = {x1, . . . , xn} (with replacement), and compute θ∗ =√
n‖p̂∗h(x)− p̂h(x)‖∞, where p̂∗h is the density estimator computed using X∗;

3. Repeat the previous step B times to obtain θ∗1, . . . , θ
∗
B;

4. Compute qα = inf
{
q : 1

B

∑B
j=1 I(θ∗j ≥ q) ≤ α

}
;

5. The (1− α) confidence band for E[p̂h] is
[
p̂h − qα√

n
, p̂h + qα√

n

]
.

bootstrapBand computes (1 − α) bootstrap confidence band, with the option of parallelizing
the algorithm (parallel=TRUE). The following code computes a 90% confidence band for E[p̂h].

Jisu Kim 9

##

bootstrap confidence band for kde function

##

bandKDE <- bootstrapBand(X = X, FUN = kde, Grid = Grid, B = 100,

parallel = FALSE, alpha = 0.1, h = h)

print(bandKDE[["width"]])

90%

0.06526216

Then such confidence band for E[p̂h] can be used as the confidence band for the persistent
homology.

##

bootstrap confidence band for persistent homology over a grid

##

par(mfrow = c(1,2))

plot(X, xlab = "", ylab = "", main = "Sample X", pch = 20)

plot(x = Diag[["diagram"]], band = 2 * bandKDE[["width"]],

main = "KDE Diagram")

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

● ●● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

●●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

● ●

●

●

●

●
●

●
● ●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
0.

0
1.

0

Sample X KDE Diagram

● ●●● ●
●

●

0.00 0.10 0.20

0.
00

0.
15

Death

B
ir

th

Such confidence band for E[p̂h] can also be used as the confidence band for the landscape.

##

bootstrap confidence band for persistent homology over a grid

##

par(mfrow = c(1,2))

plot(X, xlab = "", ylab = "", main = "Sample X", pch = 20)

plot(tseq, Land, type = "l", xlab = "(Birth+Death)/2",

ylab = "(Death-Birth)/2", asp = 1, axes = FALSE, main = "200 samples")

axis(1); axis(2)

polygon(c(tseq, rev(tseq)), c(Land - bandKDE[["width"]],

rev(Land + bandKDE[["width"]])), col = "pink", lwd = 1.5,

border = NA)

lines(tseq, Land)

10 Tutorial on the R package TDA

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

● ●● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Sample X 200 samples

(Birth+Death)/2
(D

ea
th

−
B

ir
th

)/
2

0.00 0.05 0.10 0.15 0.20

−
0.

05
0.

00
0.

05
0.

10

Affiliation:

Firstname Lastname
Affiliation
Address, Country
E-mail: name@address
URL: http://link/to/webpage/

mailto:name@address
http://link/to/webpage/

	Introduction
	Installation
	Sample on manifolds, Distance Functions, and Density Estimators
	Uniform Sample on manifolds
	Distance Functions, and Density Estimators

	Persistent Homology and Landscape
	Persistent Homology Over a Grid
	Landscape

	Statistical Inference on Persistent Homology and Landscape

