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Installation

R Package TDA: Statistical Tools for Topological Data Analysis

Sample on manifolds, Distance Functions, and Density Estimators

Persistent Homology and Landscape

Statistical Inference on Persistence Homology and Landscape
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For Windows and Mac, TDA can be easily installed.

if (!require(package = "TDA")) {
install.packages(pkgs = "TDA")
}
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For Linux, you need to install several libraries first, and then
install TDA.

» You need to install libraries gmp and mpfr.
» Then you need to install required R package FNN, igraph, and scales.
» Then you can install R package TDA.

if (!require(package = "FNN")) {
install.packages(pkgs = "FNN")

}

if (!require(package = "igraph")) {
install.packages(pkgs = "igraph")

}

if (!require(package = "scales")) {
install.packages(pkgs = "scales")

}

if (!require(package = "TDA")) {
install.packages(pkgs = "TDA")

}

4 /390



R Package TDA: Statistical Tools for Topological Data Analysis
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When analyzing data, we prefer robust features where
features of the underlying manifold can be inferred from
features of finite samples.
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Homology of finite sample is different from homology of
underlying manifold, hence it cannot be directly used for the

inference.

Underlying circle: Bp=1,3:=1 100 samples: By =100, ;=0
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Persistent homology computes homologies on collection of
sets, and tracks when topological features are born and

when they die.

Sample, r=0.5
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Persistent homology of the underlying manifold can be

inferred from persistent homology of finite samples.
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Confidence band for persistent homology separates
homological signal from homological noise.
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Landscape is a functional summary of the persistent
homology.
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Landscape of the underlying manifold can be inferred from
landscape of finite samples.
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R Package TDA provides an R interface for C++ libraries
for Topological Data Analysis.

website:
https://cran.r-project.org/web/packages/TDA/index.html

v

v

Author: Brittany Terese Fasy, Jisu Kim, Fabrizio Lecci, Clément
Maria, and Vincent Rouvreau.

v

R is a programming language for statistical computing and graphics.

v

R has short development time, while C/C++ has short execution
time.

v

R package TDA provides an R interface for C++ library
GUDHI/Dionysus/PHAT, which are for Topological Data Analysis.
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https://cran.r-project.org/web/packages/TDA/index.html

Sample on manifolds, Distance Functions, and Density Estimators
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R Package TDA provides a function to sample on a circle.

The function circleUnif() generates n sample from the uniform
distribution on the circle in R? with radius r.

circleSample <- circleUnif(n = 20, r = 1)

plot(circleSample, xlab = "", ylab = "", pch = 20)
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R Package TDA provides distance functions over a grid.

Suppose n points are generated from the unit circle, and grid of points
are generated.

X <- circleUnif(n = 400, r = 1)
lim <- c(-1.7, 1.7)
by <- 0.05

margin <- seq(from = 1im[1], to = 1im[2], by = by)
Grid <- expand.grid(margin, margin)
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R Package TDA provides distance functions over a grid.

The distance function A : RY — [0, 00) is defined as

A(y) = inf ||x — y]2-

() = inf 1x — vl

The function distFct() computes the distance function A on a grid of
points.
distance <- distFct(X = X, Grid = Grid)
par(mfrow = c(1,2))
plot(X, xlab = "", ylab = "", main = "Sample X", pch = 20)

persp(x = margin, y = margin,
z = matrix(distance, nrow = length(margin), ncol = length(margin)),

xlab = "", ylab = "", zlab = "", theta = -20, phi = 35, scale = FALSE,
expand = 3, col = "red", border = NA, ltheta = 50, shade = 0.5,
main = "Distance Function")
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R Package TDA provides distance functions over a grid.
The distance function A : RY — [0, 00) is defined as
Aly) = inf lIx =yl

The function distFct() computes the distance function A on a grid of

points.
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R Package TDA provides density functions over a grid.

The Gaussian Kernel Density Estimator (KDE) py, : RY — [0, 00) is
defined as

s 1 - —lly = %3
Pn(y) = W ZeXP (2/12> )

i=1

where h is a smoothing parameter.
The function kde() computes the KDE function pj, on a grid of points.

h <- 0.3
KDE <- kde(X = X, Grid = Grid, h = h)

par (mfrow = c(1,2))
plot(X, xlab = "", ylab = "", main = "Sample X", pch = 20)
persp(x = margin, y = margin,
z = matrix(KDE, nrow = length(margin), ncol = length(margin)),
xlab = "", ylab = "", zlab = "", theta = -20, phi = 35, scale = FALSE,
expand = 3, col = "red", border = NA, ltheta = 50, shade = 0.5,
main = "KDE")
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R Package TDA provides density functions over a grid.

The Gaussian Kernel Density Estimator (KDE) g : RY — [0, 00) is
defined as

. 1 . —|ly —x,-|§>
=——— ) exp| ———52],
pn(y) (V) ; p ( T

where h is a smoothing parameter.
The function kde() computes the KDE function pj, on a grid of points.
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Persistent Homology and Landscape
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R Package TDA computes Persistent Homology over a grid.

» The function gridDiag() computes the persistent homology of
sublevel (and superlevel) sets of the input function.

> gridDiag() evaluates the real valued input function over a grid.

> gridDiag() constructs a filtration of simplices using the values of the
input function.

» gridDiag() computes the persistent homology of the filtration.

» The user can choose to compute persistent homology using either
Dionysus library or PHAT library.

Diag <- gridDiag(X = X, FUN kde, lim = cbind(lim, lim), by = by,
sublevel = FALSE, library = "Dionysus", printProgress = FALSE, h = 0.3)

par (mfrow = c(1,3))
plot(X, xlab = "", ylab = "", main = "Sample X", pch = 20)
persp(x = margin, y = margin,
z = matrix(KDE, nrow = length(margin), ncol = length(margin)),
xlab = "", ylab = "", zlab = "", theta = -20, phi = 35, scale = FALSE,
expand = 3, col = "red", border = NA, ltheta = 50, shade = 0.9,
main = "KDE")
plot(x = Diag[["diagram"]], main = "KDE Diagram")
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R Package TDA computes Persistent Homology over a grid.

» The function gridDiag() computes the persistent homology of
sublevel (and superlevel) sets of the input function.

» gridDiag() evaluates the real valued input function over a grid.
> gridDiag() constructs a filtration of simplices using the values of the

input function.

> gridDiag() computes the persistent homology of the filtration.

» The user can choose to compute persistent homology using either
Dionysus library or PHAT library.
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R Package TDA computes Landscape.

> Let A, be created by tenting each point p = (x,y) = (254, 452)

representing a birth-death pair (b, d) in the persistence diagram D.
» The persistence landscape of D is the collection of functions

M(t) = km;;:)x/\p(t)7 te[0,T],k €N,

where k max is the kth largest value in the set.

» The function landscape() evaluates the landscape function A,(t).

tseq <- seq(0, 0.2, length = 1000)
Land <- landscape(Diag[["diagram"]], dimension = 1, KK = 1, tseq = tseq)

par(mfrow = c(1,2))
plot(x = Diag[["diagram"]], main = "KDE Diagram")
plot(tseq, Land, type = "1", xlab = "(Birth+Death)/2",
ylab = "(Death-Birth)/2", asp = 1, axes = FALSE, main = "Landscape")
axis(1); axis(2)
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R Package TDA computes Landscape.

> Let A, be created by tenting each point p = (x,y) = (%, %)
representing a birth-death pair (b, d) in the persistence diagram D.

» The persistence landscape of D is the collection of functions

Ak(t) = kmgx/\p(t), te[0,T], k €N,

where k max is the kth largest value in the set.

» The function landscape() evaluates the landscape function Ak(t).
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Statistical Inference on Persistence Homology and Landscape
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Bottleneck distance gives a metric on the space of persistent
homology.
Definition

Let Dy, Dy be multiset of points. Bottleneck distance is defined as

Woo (D1, D2) = inf sup [[x — v(x) ||
Y xeD,

where ~ ranges over all bijections from D; to Ds.
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Bottleneck distance gives a metric on the space of persistent
homology.

Definition

Let Dy, Dy be multiset of points. Bottleneck distance is defined as

Woo (D1, Do) = inf sup || x — y(x)]| oo,
Y xeD,

where « ranges over all bijections from D; to D;.
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Confidence band for the persistent homology is a random

quantity containing the persistent homology with high
probability.
Let M be a compact manifold, and X = {Xy,---, X,} be n samples. Let
fi and fx be corresponding functions whose persistent homology is of

interest. Given the significance level « € (0,1), (1 — «) confidence band
¢n = ¢y(X) is a random variable satisfying

P (W (Dgm(fum), Dgm(fx)) < c,) >1— a.
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Confidence band for the persistent homology is a random

quantity containing the persistent homology with high
probability.
Let M be a compact manifold, and X = {Xy,---, X,} be n samples. Let
fi and fx be corresponding functions whose persistent homology is of

interest. Given the significance level « € (0,1), (1 — «) confidence band
¢n = ¢y(X) is a random variable satisfying

P (W (Dgm(fum), Dgm(fx)) < c,) >1— a.
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Confidence band for the persistent homology can be
computed using the bootstrap algorithm.

1. Given a sample X = {xq,..., Xy}, compute the kernel density
estimator py,.

2. Draw X* = {x7,...,x¥} from X = {x1,...,x,} (with replacement),
and compute 6* = \/n||p;(x) — pn(x)||oc, where pj; is the density
estimator computed using X*.

3. Repeat the previous step B times to obtain 07, ...,0%
4. Compute g, = inf {q : %stzl 107 > q) < oz}
5. The (1 — ) confidence band for E[pp] is [ph — L by + q\/%}

31/39



R Package TDA computes the bootstrap confidence band
for a function.

The function bootstrapBand() computes (1 — ) bootstrap confidence
band for E[ps].

bandKDE <- bootstrapBand(X = X, FUN = kde, Grid = Grid, B
parallel = FALSE, alpha = 0.1, h
print (bandKDE[["width"]])

20,
h)

## 90%
## 0.05576625
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The bootstrap confidence band for a function is used as the

confidence band for the persistent homology.

The (1 — «) bootstrap confidence band for E[py] is used as the
confidence band for the persistent homology.

par (mfrow = c(1,2))

plot(X, xlab = "", ylab = "", main = "Sample X", pch = 20)
plot(x = Diag[["diagram"]], band = 2 * bandKDE[["width"]],
main = "KDE Diagram")
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oo-landscape distance gives a metric on the space of
landscapes.

Definition
Let Dy, Dy be multiset of points, and A; , A» be corresponding
landscapes. co-landscape distance is defined as

Noo(Dr1, D2) = [[A1 = Az|oo-
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oo-landscape distance can be controlled by the
corresponding distance on functions: Stability Theorem.

Theorem
Let f,g : X = R be two functions, and let Dgm(f) and Dgm(g) be
corresponding persistent homologies. Then

Noo(Dgm(f), Dgm(g)) < |If — gllco-
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Confidence band for the landscape can be computed using
the bootstrap algorithm.

» Let Ay and A\x be landscapes of the manifold M and samples X.
From Stability Theorem, P (||fy — fx|| < ¢n) > 1 — o implies

P (Ax(t) — o < Am(t) < Ax(t) + a¥t) = P(|[fur — || < ) > 1—a,

so the confidence band of corresponding functions fyy can be used
for confidene band of the landscape Ay .
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The bootstrap confidence band for a function is used as the
confidence band for the landscape.

The (1 — &) bootstrap confidence band for E[p,] is used as the
confidence band for the landscape.

par (mfrow = c(1,2))
plot(X, xlab = "", ylab = "", main = "Sample X", pch = 20)
plot(tseq, Land, type = "1", xlab = "(Birth+Death)/2",
ylab = "(Death-Birth)/2", asp = 1, axes = FALSE, main = "200 samples")

axis(1); axis(2)
polygon(c(tseq, rev(tseq)), c(Land - bandKDE[["width"]],

rev(Land + bandKDE[["width"]])), col = "pink", lwd = 1.5,

border = NA)
lines(tseq, Land)
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The bootstrap confidence band for a function is used as the
confidence band for the landscape.

The (1 — a) bootstrap confidence band for E[5j] is used as the
confidence band for the landscape.
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Thank youl
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