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When analyzing data, we prefer robust features where
features of the underlying manifold can be inferred from
features of finite samples.
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Homology of finite sample is different from homology of
underlying manifold, hence it cannot be directly used for the

inference.
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Persistent homology computes homologies on collection of
sets, and tracks when topological features are born and

when they die.
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Persistent homology of the underlying manifold can be

inferred from persistent homology of finite samples.
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Bottleneck distance gives a metric on the space of persistent
homology.
Definition

Let Dy, Dy be multiset of points. Bottleneck distance is defined as

Woo (D1, D2) = inf sup [[x — v(x) ||
Y xeD,

where ~ ranges over all bijections from D; to Ds.
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Bottleneck distance gives a metric on the space of persistent
homology.

Definition

Let Dy, Dy be multiset of points. Bottleneck distance is defined as

Woo (D1, Do) = inf sup || x — y(x)]| oo,
Y xeD,

where « ranges over all bijections from D; to D;.
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Confidence band for persistent homology separates

homological signal from homological noise.

Let M be a compact manifold, and X = {Xy,---, X,} be n samples. Let
fi and fx be corresponding functions whose persistent homology is of
interest. Given the significance level « € (0,1), (1 — «) confidence band
¢n = ¢n(X) is a random variable satisfying

P (Woo(Dgm(fm), Dgm(fx)) < c,) >1-—«a.
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Confidence band for the persistent homology can be
computed using the bootstrap algorithm.

1. Given a sample X = {x1,...,Xx,}, compute the kernel density
estimator pp,.
2. Draw X* = {x{,...,x¢} from X = {x1,...,x,} (with replacement),

and compute 6* = /n||p;(x) — Pn(x)||co, Where pj is the density
estimator computed using X*.

3. Repeat the previous step B times to obtain 07,...,0%

4. Compute g, = inf {q : %Zle 107 > q) < a}

5. The (1 — ) confidence band for E[fp] is [ﬁh - %, Pn + \q/g} and

Yo A
we use J% as &,.
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Computing a confidence band for the persistent homology
incurs computing on a grid of points, which is infeasible in
high dimensional space.
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Computing the persistent homology of density function on
data points reduces computational complexity.
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Confidence band for persistent homology separates
homological signal from homological noise.

Theorem _

Let Xy,..., X, i p and let p, be the kernel density estimator. Let
XL = {X;: pn(X;) > L}, and let {R.(n, r,h)}Lcr be the Rips complex
defined as Ri(n,r,h) = {0 c XL diam(c) < 2r}. Let &, be from
bootstrap a/gorlthm and let & := max; sup,cp(x;,r) |Pr(x) — Pn(Xi)!-
Then given o € (0,1),

P(Wao(Dgm(pp), Dgm(Ri(n, r, h)) < & + &,) > 1 —a+ o(1).
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Thank youl
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