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Hypoelliptic FHN

The hypoelliptic Fitzhugh-Nagumo model

[Lindner et al 1999, Gerstner and Kistler, 2002, Lindner et al 2004, Berglund and Gentz, 2006]
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dVe = Z(Vi— V2 — G —s)dt, I
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@ V; membrane potential of a single
neuron

o C; recovery variable / channel
kinetics .
@ ¢ time scale separation -

@ s stimulus input, 8 position of the N s
fixed point, v duration of excitation

@ B; Brownian motion, ¢ diffusion
coefficient st s
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Hypoelliptic FHN

Where do hypoelliptic models come from 7

They appear as limit of Objectives of the models

@ Extra-cellular records modeling o Prediction of spike emission
@ Intra-cellular records modeling o Estimation/identification

Intra-cellular records
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Hypoelliptic FHN

Extracellular stochastic models

Hawkes intensity [Ditlevsen, Locherbach, 2016]

@ Population of n neurons
@ N;(t) number of spikes emitted by neuron i during [0, t], for i=1,...
@ N;(t) follows a nonlinear Hawkes process with intensity

MO =730 [ he = s)ans)

=1 10,t]

> \i(t) is a stochastic process, depending on the whole history before time t
> f is the spiking rate function
> hj; is a synaptic weight function describing the influence of neuron j on neuron i

jio q s)dN;(s) membrane potential
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Hypoelliptic FHN

Systems of interacting neurons

e All neurons behave in the same way: h; = 1h

» Intensity of neuron |
=f E / h(t — s)dN;(s
o ( /i(s)

» All neurons have an influence on neuron |

@ Mean field limit

» Total number of neurons n — oo
1o -
- > " dNj(s) — dE(N(s))
j=1

where N is the counting process of a typical neuron
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Hypoelliptic FHN

I\/Iemory of the system [Ditlevsen, Locherbach, 2016]

@ Hawkes processes are truly infinite memory processes

@ Developing the memory
» Erlang kernel with short memory

vt

h(t)=cte”

K (t) = —vh(t) + ce " = —vh(t) + h(t)
with

hi(t) = —vh(t)
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Hypoelliptic FHN

@ In terms of the intensity process: A(t) = f(V;) with (V;) the membrane
potential:

V(t) ::/]Ot] h(t — s)dN(s)

and

U(t) = /m = 9)di)

o Associated Piecewise Deterministic Markov Process (PDMP):

d\/t = —Z/tht—f—dCt
dCt = —VCtdt+Cdl\_/(t)
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Hypoelliptic FHN

Diffusion approximation

o Diffusion approximation of the jump process N(t) = L5 L Ni(t) gives

th = (7VVt+ Cl’) dt
dCt (—VCt +c f( Vt dt + — \/ Vt dBt

o Diffusion of dimension 2 driven by only one Brownian motion

Hypoellitic diffusion
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Hypoelliptic FHN
Another hypoelliptic model for intracellular neuronal data

Deterministic Morris-Lecar neuronal model

o Calcium, potassium, leakage ionic currents

. Ch‘la?]%els ons |

® gca, &k, gL maximal conductances '
® Vca, Vi, Vi reversal potential sensn, L GRIREER AL (HATER
o / input current B
@ C; proportion of opened potassium channels X
@ Functions e and 3: opening and closing

rates

dV;

ar = —gcamoo(Vt)(Vt - VCa) - gKCt(Vt - VK) - gL(Vt - VL) +/

dC

T; = Oé( Vt)(]- — Ct) — 5( Vf)Ct
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Hypoelliptic FHN

Stochastic Morris-Lecar model

@ N potassium gates
o Cp(t) proportion of open gates among N gates at time ¢
@ stochastic opening and closing at random times

a (V)

C —
closed open

B8 (V)

Between jumps of Cy, the trajectory of the continuous component V; follows

dV;

P —gcamoo(Ve)(Ve — Vi) — gk Cn(t) (Ve — Vi) — g (Ve — Vi) + 1

= Piecewise Deterministic Markov Process
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Hypoelliptic FHN

o Diffusion approximation [Wainrib, Thieullen, Pakdaman, EJP 2012]

> (V4 Cn(t)) is approximated by

av, = (7gCam00(Vt)(Vt - VCS) - gKCt(V: - VK) - gL(Vt — VL) + /) dt
dé: = (o(Ve)(1 - G) — B(Ve)G) dt + o( Ve, C)dB:

@ Diffusion of dimension 2 driven by only one Brownian motion

Hypoellitic diffusion
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Hypoelliptic FHN

Hypoelliptic Morris-Lecar model
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Morris-Lecar is highly non-linear = Difficult to study
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Hypoelliptic FHN

Fitzhugh-Nagumo model: a simplest model !

1
dv, = g(vt — V32— C —5s)dt,
dCt = (’thf Ct+ﬂ) dt+5’d5t7
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Hypoelliptic FHN

Objectives of the talk

[Ledn and Samson, work in progress]

1. Probabilist properties of the system
» hypoellipticity
» stationary distribution
» [-mixing
2. Neuronal properties
» spiking rate
» distribution of the length of
inter-spike interval (ISI)
3. Estimation
» stationary distribution
> spiking rate
> parameters
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1. Probabilist properties

1. Probabilist properties
Hypoellipticity of the system

e Condition: drift of the first coordinate depends on C
@ Noise of the second coordinate propagates to the first one

No noise Noise on V Noise on C Noise on V, C

= Hypoellipticity has consequences on the generation of spikes
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1. Probabilist properties

Other probabilist properties
A difficult task
@ Main results assume a non null noise

@ A class of well studied hypoelliptic systems is

th = Utdt,
dUt = 7(C(Vt) Ut +8VP(Vt))dt+UdBt,

with P(v) a potential, ¢(v) a damping force.

» Stochastic Damping Hamiltonian system [Wu 2001]
» Langevin Equation [Wu 2001]
» Hypocoercif model [Villani, 2009]

Good news !

@ We enter the previous class by setting Uy = %(Vt — V,_b3 — G —s):
th == Utdt,
1 -
dUs = — (U1 —e=3V2) = Vi(y 1) = VP — (s + B3)) dt - gdBt,
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1. Probabilist properties

Stationary distribution

e Existence of Lyapounov function W(v, u) = eF(v:)=infe2 F with explicit F

o Existence and uniqueness of the stationary density [wu, 2001]
» FHN process generates spikes for ever

i s FIT AR

> Inter-Spikes Intervals (ISI) have a random
length

» Distribution of ISI does not depend on time
when s is constant 8 %
’—‘—V—\
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1. Probabilist properties

B-mixing
@ Process Z; = (V;, U;) is B-mixing [wu, 2001]
@ What does that mean ?

» Memory of the process decreases exponentially with time
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2. Neuronal properties

2. Neuronal properties
Spiking regime
[Lindner, Schimansky-Geier, 1999]

(Back to the original system)

Spike = long excursion in the phase space

Fixed point on the left bottom

Excited state: V increases, C : : : : : :
remains constant

V stays at the top, C increases

Refractory phase: V decreases, C
stays high 3
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2. Neuronal properties

Spiking rate

@ N; number of spikes during time interval [0, t]: random process
@ Spike rate

Mean length of Inter-Spikes Intervals (ISI)

@ T; time between spikes / and / + 1
@ Mean length of ISI

N— oo

N
. 1
< T>= lim N;Ti a.s.
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2. Neuronal properties

Spiking rate = inverse of the mean length of ISI

@ But "limit in t = limit in N" is not easy to prove mathematically
@ True for a Poisson process (N, t > 0)

o Difficulty with FHN
» How to define (N, t > 0) from the stochastic process (V;, C;) ?
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2. Neuronal properties

Back to the definition of spikes

A. Samson Revisiting hypoelliptic FHN model Banff, 2017/02/27 22 / 46



2. Neuronal properties

Back to the definition of spikes

x
08 08 04 02 00 02 04

08 05 04 02 00 02 04
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2. Neuronal properties

Back to the definition of spikes

c
08 06 -04 02 00 02 04

How decide what is an excursion ?
How define precisely (T;) ?

A. Samson Revisiting hypoelliptic FHN model Banff, 2017/02/27 22 / 46



2. Neuronal properties

Alternative definition: up-crossing process

@ For a level v, M,(v): number of up-crossings of V during interval [0, t]

Gme (m=>
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2. Neuronal properties

Alternative definition: up-crossing process

@ For a level v, M,(v): number of up-crossings of V during interval [0, t]
@ To ease the definition, work with the transform system (dV; = U,dt):

Mi(v) ={s<t:Vs=v,U >0}

LM

v=0.2
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2. Neuronal properties
Alternative definition: up-crossing process

@ For a level v, M,(v): number of up-crossings of V during interval [0, t]
When v is too large, M;(v) =0

Mk

v=1.1
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2. Neuronal properties

Link with "spiking process”
@ When v is large (not too large), Ny = M;(v)

tme (m=>

ao

v=0
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2. Neuronal properties
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2. Neuronal properties

Link with "spiking process”
@ When v is large (not too large), Ny = M;(v)

20 ao

tme (m=>

v=0.2
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2. Neuronal properties

Link with "spiking process”
@ When v is large (not too large), Ny = M;(v)

.

tme (m=>

v=20.3

Advantage from a mathematical point of view
Up-crossing process is a stochastic process that can be theoretically studied
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2. Neuronal properties

Rice's formula

@ Theoretical mean of the number of up-crossings in interval [0, ] :

00

E M,(v) = t/o up(v, u)du

with p the stationary density

@ What does that mean ?

» Explicit expression for the mean number of "spikes” for certain values of v
» Formula depends on the stationary distribution
» — Can be estimated non-parametrically
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2. Neuronal properties

Up-crossing rate

@ Existence of the limit of the expected number of up-crossings by unit of time

(ergodic theorem)
—>/ (v,u)du as.

A. Samson Revisiting hypoelliptic FHN model Banff, 2017/02/27 26 / 46



2. Neuronal properties

Up-crossing rate

@ Existence of the limit of the expected number of up-crossings by unit of time

(ergodic theorem)
Me(v)
t

%/ up(v,u)du a.s.
0

@ Allows to define the up-crossing rate for level v

A(v) :== lim Mt(v).

t—00 t
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2. Neuronal properties

Up-crossing rate

o Existence of the limit of the expected number of up-crossings by unit of time

(ergodic theorem)

M o
# — / up(v,u)du a.s.
0

@ Allows to define the up-crossing rate for level v

A(v) :== lim Mt(v).

t— 00 t

> v large, A\(v) =0
> For a set of values v, "A(v) =p "
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2. Neuronal properties

Distribution of up-crossings
@ Recall that "length of Inter Up-Crossing Interval (IUCI)" is a random process
o Conditional probability of no up-crossing occurs in interval [0, t], given that an

up-crossing occurred at time zero

P(1 up-crossing in[—7, 0] and no up crossing in [0, t])

o, (t —
(t) 70 P(1 up-crossing in [—,0])

I
§

P(M[,T’O](V) Z ]., Cr[o’t](v) S 1)
=0 (1 up-crossing in [—7,0])

@ Distribution function of length of IUCI
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2. Neuronal properties

Main result

@ Expectation of length between two successive up-crossings ("ISI") is the
inverse of the up-crossing rate

o0 1
/0 tdF,(t) = )

This gives a proof to the previous formula

1
<T>=-
P

@ Explicit expression for the variance of the length between two successive
up-crossings
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2. Neuronal properties

3. Estimation

Quantities to be estimated
1. Stationary density p
2. Spiking rate A(v) and mean length of up-crossings interval
3. Variance of the length between two successive up-crossings

4. Parameters ¢, 3,7, 0
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2. Neuronal properties

3. Estimation

Quantities to be estimated
1. Stationary density p
2. Spiking rate \(v) and mean length of up-crossings interval
3. Variance of the length between two successive up-crossings

4. Parameters ¢, 3,7,0
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2. Neuronal properties

3.1. Stationary density

@ No explicit formula for p
@ Solution of the Fokker-Planck equation

0=—p— 2 (b(v,u)p) +

9
ou 87(0 p)

l\)\r—-

» b(v,u) = % (u(1—5—3v2)—v('y—1)— v3—(s+ﬂ))
» Resolution of the PDE by finite difference
» Require the values of the parameters

@ Unstable scheme in spiking regime (¢ small)
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2. Neuronal properties

Alternative: non-parametric estimation of the stationary density

[Cattiaux, Ledn, Prieur, 2014-2015]

o ldea

» Forget the form of the system
» Learning/estimating p only from observations of the process (V;, U;)
» Two cases: complete or partial observations

o Complete observations

» both coordinates (V, U;) at discrete times iA, i=1,...,n
K a kernel function
b = (b1, bs) a bandwidth

v

v

» Estimator of p for any point z = (z1, z):
n

~ 1 V, — 1 U,‘ — 22
Pb(Z) n ( b1 ’ b2 )

i=1
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2. Neuronal properties

e Incomplete observations; only (V;)
» C: not observed but, thanks to dV; = U.dt, can be replaced by

g V= Vi Jia V" Usds

~ .
~ iA

» Estimator of p
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2. Neuronal properties

How choosing the bandwidth b

@ b too small: large variance

b =10.05
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2. Neuronal properties

How choosing the bandwidth b

@ b too small: large variance
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2. Neuronal properties

How choosing the bandwidth b

@ b too large: large bias
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2. Neuronal properties

Ideal bandwidth

o Compromise bias-variance
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2. Neuronal properties

Data-driven procedure [Comte, Prieur, Samson, 2017]

@ Selection criteria [Goldenshluger and Lepski, 2011; Lacour et al, 2016]

b=arg greﬂl?n (A(b) + V(b)) ,

with
> A(b) mimicking the bias (= supy ¢z, ([|Bs,r — Ber||”* = V(b')),)
> V/(b) mimicking the variance (=  IXI1IXIZ Lk S B(id))

nby by

o Final estimator
> pp = Kp * P

log(n)

E(|lp; — pl?) < C inf (Ilp = psll> + V(b)) + C’ =

Same results in the partial case
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2. Neuronal properties

Non-parametric estimation

@ Estimation of p when there is no spike (¢ = 0.5)

@ PDE solver in black, Kernel estimator in red
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2. Neuronal properties

Estimation of p with few spikes (¢ = 0.4)
» Unstability of the PDE solver

12 —o.8 —o.a o6 02 00 02 o4 o6
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2. Neuronal properties

@ Estimation of p with a lot of spikes (¢ = 0.1)
» Unstability of the PDE solver
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2. Neuronal properties

o Estimation of p with a lot of spikes (¢ = 0.1)
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2. Neuronal properties

3.2 Estimation of the up-crossing rate

@ Plug-in estimator

@ Gaussian kernel

@ Comparison with spiking rate

li N
=lm—
P t
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2. Neuronal properties

@ Black: ¢ = 0.1 (a lot of spikes)
@ Red: ¢ = 0.4 (few spikes)
@ Green: ¢ = 0.5 (no spikes)

05
I

kil
I

0%
I
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2. Neuronal properties

@ Black: ¢ = 0.1 (a lot of spikes)
@ Red: ¢ = 0.4 (few spikes)

@ Green: ¢ = 0.5 (no spikes)

(]
I

vl
I

015
I

s

0%
I
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2. Neuronal properties

3.3 Estimation of parameters

1
dv, = g(vt — V32— C —s)dt,
dCt = (’thf Ct+ﬂ) dt+5d8t7

Difficult because
o Hypoellipticity
@ No explicit transition density of the SDE
@ Hidden coordinate C

A. Samson Revisiting hypoelliptic FHN model Banff, 2017/02/27

40 / 46



Bibliography
Ideal case of complete observations and noise on both coordinates X; = (V;, G;):

op O
dX: = b,(X:)dt + ¥dB;, ¥ = ( 01 o )

Discretization of the system (Euler-Maruyama) of Xi11 = (Viq1, Uit1):

Xis1 = Xi + Dbu(X:) + VAL, 1 ~ig N(0,1)

Minimum contrast estimator [Genon-Catolot, Jacod, 1993; Kessler 1996]
Set [ =Y'Y.

n—1 n—1
0 = arg min (Z (Xiz1 — Xi = Dby (X)) T™1 (Xip1 — X; — Abu(X)) + > log det r>

i=1 i=1

° I asymptotically normal
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Bibliography

What about hypoelliptic SDE 7
Impossible to apply previous estimator because

0 0 . )
= < 0 a% ) not invertible

Idea: change of variable

e Assume ¢ known, and change the system with Uy = 1(V, — V2 — C; —5)

o Litterature

Martingale estimating functions [Ditlevsen, Sorensen, 2004]
Gibbs sampler [Pokern et al, 2010]

Euler contrast [Gloter 2006, Samson, Thieullen, 2012];
Higher order contrast [Ditlevsen, Samson, work in progress]

v

v

v
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Bibliography

Partial observations

@ U; not observed but can be replaced by

o Vi — Vi f.(i+1)A Usds y
i= A A ~ Uia

o Contrast function with plug-in V/
> w=(8,7,9)

— — — 2
A =1 (Vi = Vi Bbu(Vie1, Viey)) o2t
0= i + log o2

> [i is unbiased, asymptotically normal
>

& is biased (because V; is not Markovian)
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Bibliography

Partial observations

@ U; not observed but can be replaced by

\—/‘ L Vi+1 — V/ o f,'(AiJrl)A Usds ~ U
i = A — A ~ UjA

e Contrast function with plug-in V
> 1= (0:7,9)
v,-—Ab( Vi) e

N 3 — ( i+1 —
0= - log o3

» (i is unbiased, asymptotically normal
> & is unbiased, asymptotically normal
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Bibliography

Parametric estimation assuming € unknown

[Ditlevsen, Samson, work in progress]
What can not be applied
@ Change of variable

@ Euler contrast

Idea
@ Higher order discrete scheme that propagates the noise to the first coordinate

@ Contrast for complete observations as in the "ideal” case of non null

@ Asymptotic results
» Consistency of all parameters
» £ is not asymptotically normal
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Bibliography

Some estimation results obtained from 100 simulated data sets

¢ fixed ¢ fixed ¢ estimated

True New contrast Euler Contrast New contrast

e 0.100 - - 0.105 (0.010)
~ 1500 1.523(0.130) 1.499 (0.196) 1.592 (0.160)
f 0.800 0.821 (0.110) 0.779 (0.107) 0.866 (0.130)
o 0.300 0.293 (0.008) 0.381 (0.038) 0.306 (0.020)
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Conclusion

Conclusion /Perspectives

@ Hypoelliptic FHN system

» Existence of stationary density and non-parametric estimation
> Link between the spiking rate and the mean length of ISI

» Estimation of the "spiking” rate: still some issues with the complete

distribution of ISl
» Parametric estimation: still some issues with ¢

> Particle filter and EM algorithm
» Optimal control theory
» Local linearization of the SDE

@ More complex neuronal systems

» Link between spiking rates and ISI
» Graphe of interaction in neural network for both intra and extra cellular data
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