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Short Story

Neural variability plays an important role in gauging controllability of cortical circuits and
remains a real challenge for brain stimulation;

How can we compensate for this variability to guide oscillatory brain activity for therapeutic
interventions? (assuming oscillations have a functional role!)

Our results reveal that in presence of rhythmic stimulation, non-linear noise-induced effects
combine to resonance and entrainment to shape synchronous activity in cortical networks;

When such networks are embedded within a thalamo-cortical loop, “state-dependence” of
stimulation corresponds to fluctuations in cortical susceptibility to entrainment, mediated by
sub-cortical populations

These results open new perspectives on the optimal control of brain oscillations for basic
and clinical research.



Variability across scales
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Response variability of a neuron recorded from
area MT of an alert monkey. Raster plot
depicting response for 210 presentations of an
identical random dot motion stimulus.
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Two individual responses (a and b) to a
repeated visual stimulus. The images (1a,b)
show the activity in a 2 mm by 2 mm area of
cortex, taken at different times from
response onset.



Variability in oscillatory activity (in time)

Statistics of oscillatory regimes are NOT stationary.
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Variability in oscillatory activity (between subjects

power (normalized)
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How do we control such systems?

Variability in dynamics put severe constraints on “controllability”



Manipulating oscillatory dynamics

We are interested in understanding the different mechanisms by which oscillatory
activity can be controlled/altered:

1.

Internal sources: changes in oscillatory features (power, frequency) as a function of
changes in internal “state” (attention, etc)

Pharmaceutical sources: Changes in oscillatory features induced by a drug
(anesthesia, etc)

External  sources: Oscillatory  fluctuations  triggered by  stimulation
(“neuromodulation”).
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Internal sources

Using mean-field analysis, we have used a large-scale network to understand the effect
of internal fluctuations (change in noise statistics) on alpha (10Hz) activity.
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Hutt et al. 2016, Lefebvre et al. 2015



Internal sources

Using mean-field analysis, we have used a large-scale network to understand the effect
of internal fluctuations (change in noise statistics) on alpha (10Hz) activity.
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Manipulating oscillatory dynamics

We are interested in understanding the different mechanisms by which oscillatory
activity can be controlled/altered:

2. Pharmaceutical sources: changes in oscillatory features induced by a drug
(anesthesia, etc)



Pharmaceutical sources

Using a thalamocortical system, we have used mean-field and stochastic approaches to

understand the peculiar spectral signatures observed at the onset of loss of
consciousness in Propofol-induced anesthesia...

Full story on Friday!
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Manipulating oscillatory dynamics

We are interested in understanding the different mechanisms by which
oscillatory activity can be controlled/altered:

3. External sources: Oscillatory fluctuations triggered by stimulation
(“neuromodulation”).



Variability is a challenge for brain stimulation

Common stimulation patterns
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Questions : What is the impact of stimulation on EEG?
What is the optimal signal to use?
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Effects on functional connectivity are variable
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Effects on neural oscillations are variable

Many studies have shown that stimulation efficacy is state-dependent i.e. outcomes
depend on ongoing neural activity.
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Case study: Human periodic DCS

In this experiment, we tried to quantify this state dependence by trying to entrain

endogenous resting state “alpha” oscillations in different conditions.

ECOG |‘ |‘ || |‘ I‘ Biphasic pulse stimulus
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Case study: Human periodic DCS

Entrainment of neural activity was only possible in the task-engaged state.
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Case study: Human periodic DCS

Using a conceptual model with feedback we could qualitatively reproduce the observed
state-dependent responses.
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Case study: Human periodic DCS

Using a conceptual model with feedback we could qualitatively reproduce the observed
state-dependent responses.
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Main Goal

We want understand the underpinnings of this phenomenon by looking at a neural
oscillator model of the cortex. The goal is to study both intrinsic oscillatory features of
this network but also how emerging synchronous oscillations interact with external
perturbations (stimulation) in a state-dependent way*.

Step 1: characterize response of cortical networks to stimulation of various amplitudes
and frequencies

Step 2: See how the results change as a function of state
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Thalamocortical network /

Network of Poisson neurons XJ?1 — Poisson (f[ujn (t)])

n = {e,i, LGN, RTN }
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Thalamocortical network

Network of Poisson neurons o X]n — Poisson (f[u]n (t)])
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1. Resonance Peaks and Arnold Tongues
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Main Goal

We want understand the underpinnings of this stimulation-induced variability by
investigating a neural oscillator model of the cortex. The goal is to study both intrinsic
oscillatory features of this network but also how emerging synchronous oscillations
interact with external perturbations (stimulation) in a state-dependent way*.

Step 1: characterize the responses of cortical networks to stimulation in presence of
stationary oscillatory properties

Step 2: See how the results change as a function of state
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2. Transition from synchronous to irregular activity
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2. State-Dependent Entrainment (See Poster)
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Theoretical questions

In this model, susceptibility to entrainment (and stimulation in general) is gated by the proximity to an
instability. Consider the non-linear delayed oscillator corrected for additive noise effects

%ﬁ(t) = —a(t) + g Flu(t — O] + I, + S(t)

With F = (1 + erf [ﬁf/g) ) (*), bias I, and stimulation signal S(t). If we linearize this system about its

fixed point we can calculate its (linear) power spectrum. For S(t) = S¢timcos(wgtimt), We can also
compute the resonance curves and investigate the effect of « state » (proximity to an instability) on the
power/amplitude found at the stimulation frequency.
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Summary

Neural variability plays an important role in gauging controllability of cortical circuits and
remains a real challenge for brain stimulation;

How can we compensate for this variability to guide oscillatory brain activity for therapeutic
interventions?

Our results reveal that in presence of rhythmic stimulation, non-linear noise-induced effects
combine to resonance and entrainment to shape synchronous activity in cortical networks;

When such networks are embedded within a thalamo-cortical loop, “state-dependence” of
stimulation corresponds to fluctuations in cortical susceptibility to entrainment, mediated by
sub-cortical populations

These results open new perspectives on the optimal control of brain oscillations for basic
and clinical research.



Application: Closed-loop control of seizures

Diagnostics

Wireless monitoring e.g., preoperative epileptic seizure localization
Treatment

Automated (closed-loop) control e.g., intractable epilepsy, seizure abortion

-

/_/-T" - NUMBER OF r;mnoxvsm:s PER PHASE

Uty o o * e eone | e [ T [ Taufik Roman
Valiante  Genov




(Non-local) Collaborators

Lausanne, Switzerland (EEG, TMS, fMRI) Frankfurt, Germany (Theory)
Micah Murray(UNIL, CHUV) Axel Hutt

Silvio lonta (UNIL-Ambizione)

Jean-Francois Knebel (CHUV) Chapel Hill, USA (Ecog, EEG)

Flavio Frohlich (UNC)
Sherbrooke, Canada (EEG, fMRI)

Kevin Whittingstall (CHUS, USherbrooke) KéIn, Germany(EEG)

Andreas Mierau (DSK)
Oldenburg, Germany (EEG, TACS)

Christoph Herrmann (Oldenburg University)

A
0SS KY
universitat
OLDENBURG

: E
UNIVERSITE DE
21 SHERBROOKE | = Hi

V4

[}

informariques,mathe’matiques

2,244 —

THE UNIVERSITY
of NORTH CAROLINA
at CHAPEL HILL




Manipulating oscillatory dynamics in chaotic
systems

Rossler
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Why control brain oscillations?

Anomalies in brain oscillations are closely linked to many neurological
: 13 : : ”
dysfunctions (“oscillopathies™)
Table 1. Selected Neurobiological Elements of Cognitive Dysfunction
Disorder Neural synchrony Cognitive dysfunctions Anatomical connectivity Neurotransmitters
Schizophrenia consistent evidence for perception, executive evidence for reduced glutamate, GABA,
a reduction of local- and processes, memory, anatomical connectivity dopamine

Epilepsy

Autism

Alzheimer’s disease

Parkinson’s disease

long-range
synchronization

increase in local synchrony;
evidence for a reductionin
long-range
synchronization

reduced functional
connectivity; preliminary
evidence for impaired
neural synchrony

reduced neural synchrony
during resting state;
evidence for reduced
functional connectivity

increase in neural synchrony
in the basal ganglia, but
also between subcortical-
cortial structures

attention, social cognition

specific cognitive deficits in
relationship to seizure focus

perception, executive
functions, social cognition,
attention, memory

working memory, perception,
attention, executive
processes

especially motor functioning,
but also perception, working
memory, attention,
executive functions

reduced connectivity
between seizure focusand
surrounding cortical areas

increased connectivity during
early development, but
possibly hypoconnectivity
in mature cortex

reduction in anatomical
connectivity

unknown

GABA, glutamate

GABA, glutamate,
serotonin

acetylcholine,
glutamate

dopamine

Uhlaas & Singer, 2006



Why control brain oscillations?

Double-flash illusion: when two flashes are presented within 100 ms together with one flash, a
second illusory flash is often perceived. The hypothesis is that alpha activity sets the frames and

timing of sensory perception.

Fast Alpha “Two flashes”
~11 Hz
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Cecere et al. 2015, Samaha et al. 2015



Why control brain oscillations?

Double-flash illusion: when two flashes are presented within 100 ms together with one flash, a
second illusory flash is often perceived. The hypothesis is that alpha activity sets the frames and

timing of sensory perception.
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