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Short Story

• Neural variability plays an important role in gauging controllability of cortical circuits and

remains a real challenge for brain stimulation;

• How can we compensate for this variability to guide oscillatory brain activity for therapeutic

interventions? (assuming oscillations have a functional role!)

• Our results reveal that in presence of rhythmic stimulation, non-linear noise-induced effects

combine to resonance and entrainment to shape synchronous activity in cortical networks;

• When such networks are embedded within a thalamo-cortical loop, “state-dependence” of

stimulation corresponds to fluctuations in cortical susceptibility to entrainment, mediated by

sub-cortical populations

• These results open new perspectives on the optimal control of brain oscillations for basic

and clinical research.



Variability across scales

Response variability of a neuron recorded from

area MT of an alert monkey. Raster plot

depicting response for 210 presentations of an

identical random dot motion stimulus.

Shadlen & Newsome 1998

Two individual responses (a and b) to a

repeated visual stimulus. The images (1a,b)

show the activity in a 2 mm by 2 mm area of

cortex, taken at different times from

response onset.

Arieli et al. 1996



Variability in oscillatory activity (in time)
S

h
o
rt

 t
im

e
 s

c
a
le

Ray & Maunsell 2010𝛼 𝛾
Statistics of oscillatory regimes are NOT stationary.

Clark et al. 2003𝛼
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Lorincz et al. 2008
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Variability in oscillatory activity (between subjects)

Heagens et al. 2014

𝛼



How do we control such systems?

Variability in dynamics put severe constraints on “controllability”



Manipulating oscillatory dynamics

We are interested in understanding the different mechanisms by which oscillatory

activity can be controlled/altered:

1. Internal sources: changes in oscillatory features (power, frequency) as a function of

changes in internal “state” (attention, etc)

2. Pharmaceutical sources: Changes in oscillatory features induced by a drug

(anesthesia, etc)

3. External sources: Oscillatory fluctuations triggered by stimulation

(“neuromodulation”).
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Internal sources

Using mean-field analysis, we have used a large-scale network to understand the effect

of internal fluctuations (change in noise statistics) on alpha (10Hz) activity.

Hutt et al. 2016, Lefebvre et al. 2015
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We are interested in understanding the different mechanisms by which oscillatory

activity can be controlled/altered:

1. Internal sources: changes in oscillatory features (power, frequency) as a function of
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Pharmaceutical sources

Using a thalamocortical system, we have used mean-field and stochastic approaches to

understand the peculiar spectral signatures observed at the onset of loss of

consciousness in Propofol-induced anesthesia…

Full story on Friday! 

Hutt & Lefebvre, submitted

Axel Hutt



Manipulating oscillatory dynamics

We are interested in understanding the different mechanisms by which

oscillatory activity can be controlled/altered:

1. Internal sources: changes in oscillatory features (power, frequency) as a

function of changes in internal “state” (attention, etc)

2. Pharmaceutical sources: changes in oscillatory features induced by a drug

(anesthesia, Parkinson, epilepsy)

3. External sources: Oscillatory fluctuations triggered by stimulation

(“neuromodulation”).



Variability is a challenge for brain stimulation

(Dayan et al. 2013 , Thut & Minuissi 2009,  Huesta & Volpe 2009)

tDCS/TACS TMS

Common stimulation patterns 

Questions : What is the impact of stimulation on EEG?

What is the optimal signal to use?



Effects on functional connectivity are variable

Maeda et al 2000 Eldaief et al. 2011



Effects on neural oscillations are variable

Many studies have shown that stimulation efficacy is state-dependent i.e. outcomes

depend on ongoing neural activity.

Neuling et al. 2013



Case study: Human periodic DCS 

ECOG

Alagapan et al. 2016

Biphasic pulse stimulus

2 mA ; 200 µs in duration at 10Hz 

In this experiment, we tried to quantify this state dependence by trying to entrain  

endogenous resting state “alpha” oscillations in different conditions. 

Flavio 
Frohlich



Case study: Human periodic DCS 

Alagapan et al. 2016

Entrainment of neural activity was only possible in the task-engaged state. 



Case study: Human periodic DCS 

Rest – 7.5Hz

Alagapan et al. 2016

Using a conceptual model with feedback we could qualitatively reproduce the observed

state-dependent responses.



Case study: Human periodic DCS 

Task – 10.0Hz 

Alagapan et al. 2016

Using a conceptual model with feedback we could qualitatively reproduce the observed

state-dependent responses.



Main Goal

We want understand the underpinnings of this phenomenon by looking at a neural

oscillator model of the cortex. The goal is to study both intrinsic oscillatory features of

this network but also how emerging synchronous oscillations interact with external

perturbations (stimulation) in a state-dependent way*.

Step 1: characterize response of cortical networks to stimulation of various amplitudes

and frequencies

Step 2: See how the results change as a function of state



Thalamocortical network

Frohllich, Lefebvre (In Preparation)



Thalamocortical network

𝑋𝑗
𝑛 → 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝑓 𝑢𝑗
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Thalamocortical network

𝑋𝑗
𝑛 → 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝑓 𝑢𝑗
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with post-synaptic potentials 𝐸𝑘
𝑚 𝑡 = 𝜂 ∘ 𝑋𝑘

𝑚. 

Neuroelectric (“EEG”) output:
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1. Responses of cortical networks

Herrmann et al. 2016



1. Resonance Peaks and Arnold Tongues

Herrmann et al. 2016



Main Goal

We want understand the underpinnings of this stimulation-induced variability by

investigating a neural oscillator model of the cortex. The goal is to study both intrinsic

oscillatory features of this network but also how emerging synchronous oscillations

interact with external perturbations (stimulation) in a state-dependent way*.

Step 1: characterize the responses of cortical networks to stimulation in presence of

stationary oscillatory properties

Step 2: See how the results change as a function of state



Main Goal

We want understand the underpinnings of this stimulation-induced variability by

investigating a neural oscillator model of the cortex. The goal is to study both intrinsic

oscillatory features of this network but also how emerging synchronous oscillations

interact with external perturbations (stimulation) in a state-dependent way*.

Step 1: characterize the responses of cortical networks to stimulation in presence of

stationary oscillatory properties

Step 2: See how the results change as a function of state

Task

rest



2. Transition from synchronous to irregular activity

TaskRest

Frohllich, Lefebvre (In Preparation)



2. State-Dependent Entrainment (See Poster!)

Frohllich, Lefebvre (In Preparation)



Theoretical questions

In this model, susceptibility to entrainment (and stimulation in general) is gated by the proximity to an

instability. Consider the non-linear delayed oscillator corrected for additive noise effects

𝑑

𝑑𝑡
 𝑢 𝑡 = − 𝑢 𝑡 + 𝑔 𝐹 𝑢 𝑡 − 𝜏 + 𝐼𝑜 + 𝑆(𝑡)

With 𝐹 = 1 + erf
 𝑢 𝑡−𝜏

2𝐷
(*), bias 𝐼𝑜 and stimulation signal 𝑆(𝑡). If we linearize this system about its

fixed point we can calculate its (linear) power spectrum. For 𝑆 𝑡 = 𝑆𝑠𝑡𝑖𝑚cos(𝜔𝑠𝑡𝑖𝑚𝑡), we can also

compute the resonance curves and investigate the effect of « state » (proximity to an instability) on the

power/amplitude found at the stimulation frequency.

(*) :Lefebvre et al. 2016, Hutt et al. 2016



Summary

• Neural variability plays an important role in gauging controllability of cortical circuits and

remains a real challenge for brain stimulation;

• How can we compensate for this variability to guide oscillatory brain activity for therapeutic

interventions?

• Our results reveal that in presence of rhythmic stimulation, non-linear noise-induced effects

combine to resonance and entrainment to shape synchronous activity in cortical networks;

• When such networks are embedded within a thalamo-cortical loop, “state-dependence” of

stimulation corresponds to fluctuations in cortical susceptibility to entrainment, mediated by

sub-cortical populations

• These results open new perspectives on the optimal control of brain oscillations for basic

and clinical research.



Application: Closed-loop control of seizures

Roman 
Genov

10 mm

● Diagnostics

● Wireless monitoring  e.g., preoperative epileptic seizure localization

● Treatment

● Automated (closed-loop) control e.g., intractable epilepsy, seizure abortion

Taufik 
Valiante
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Manipulating oscillatory dynamics in chaotic 
systems

Rossler

attractor



Why control brain oscillations?

Uhlaas & Singer,  2006

Anomalies in brain oscillations are closely linked to many neurological

dysfunctions (“oscillopathies”)



Cecere et al. 2015, Samaha et al. 2015 

Double-flash illusion: when two flashes are presented within 100 ms together with one flash, a

second illusory flash is often perceived. The hypothesis is that alpha activity sets the frames and

timing of sensory perception.

Why control brain oscillations?
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