
Every genus 1 algebraically slice knot is 1-solvable.

Christopher William Davis (The University of Wisconsin at Eau Calire)
Joint with Carolyn Otto (UWEC), Taylor Martin (Sam Houston State)

and Jung Hwan Park (Rice University)

February 25, 2016

Christopher William Davis (The University of Wisconsin at Eau Calire)Joint with Carolyn Otto (UWEC), Taylor Martin (Sam Houston State) and Jung Hwan Park (Rice University) ()F0.5 = F1? February 25, 2016 1 / 23



Outline

1 Setting: Concordance and the solvable filtration

2 The solvable filtration and surgery curves

3 A modification lemma and counterexamples to a conjecture of
Kauffman.

4 An example of Litherland of a slice whitehead double.

5 Every genus 1 algebraically slice knot is 1-solvable.

6 String link infection and higher genus results

Christopher William Davis (The University of Wisconsin at Eau Calire)Joint with Carolyn Otto (UWEC), Taylor Martin (Sam Houston State) and Jung Hwan Park (Rice University) ()F0.5 = F1? February 25, 2016 2 / 23



Concordance and the solvable filtration

A knot (link) is called slice if it bounds a smooth disk
∆ (union of disks) in a copy of B4.

In 2001 Cochran-Orr-Teichner defined a filtration of
knot concordance. A knot (link) is called n-solvable
if it bounds a smooth disk (union of disks) ∆ in an
H1-ball W such that

H2(W ) = Z2k has a basis consisting of surfaces L1,D1, . . . , Lk ,Dk disjoint
from ∆ and each other except that Li ∩ Di = {pt.} and such that π1(Li )
and π1(Di ) sit in π1(W −∆)(n). The knot is n.5-solvable if additionally
π1(Li ) sits in π1(W −∆)(n+1).

Fk = {k solvable knots}.

{topologically slice knots} ⊆ . . .Fn.5 ⊆ Fn ⊆ . . .F1 ⊆ F0.5 ⊆ F0
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Some facts about the solvable filtration

{slice knots} ⊆ . . .Fn+1 ⊆ Fn.5 ⊆ Fn ⊆ . . .F1.5 ⊆ F1 ⊆ F0.5 ⊆ F0

COT: For knots K is 0-solvable ⇐⇒ Arf(K)=0 (in Z/2)

COT: For knots K 0.5-solvable ⇐⇒ algebraically slice

COT: For knots K ∈ F1.5 =⇒ Casson-Gordon-invariants vanish

COT: Fn 6= Fn.5.

Cochran-Harvey-Leidy: For knots and Fn/Fn.5 contains a Z∞
subgroup.

Open Question (for knots) For n ≥ 0, Fn.5
?
= Fn+1.

Otto: For links, Fn.5 6= Fn+1

Our results suggest that for knots F0.5 might be equal to F1.

Theorem (D.-Martin-Otto-Park)

If a knot K is 0.5-solvable, and K bounds a genus 1 Seifert surface, then
K is 1-solvable.
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I found this application surprising

Theorem (D.-Martin-Otto-Park)

If a knot K is 0.5-solvable, and K bounds a genus 1 Seifert surface, then
K is 1-solvable.

(CHL) Provided that J is 0-solvable and has sufficiently
big Levine-Tristram signature, R1 is in F1 but not in F1.5.
These (and similar) examples even generate a Z∞.

This knot is 1-solvable, regardless of J. You can drop the
0-solvable assumption

J

R1

Rn

Rn+1

Iterating this (and similar) constructions gives a Z∞ in Fn/Fn.5. Since R1

is automatically 1-solvable you can drop the 0-solvability assumption from
the CHL examples.
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Solvability via surgery curves and Kauffmann’s conjecture

COT: For knots K is 0.5-solvable ⇐⇒ algebraically slice

K is Algebraically slice if and only if

on a genus g Seifert surface F for K there ex-
ists a nonseperating g -component link called
a set of surgery curves (or derivative) J for
which the Seifert form vanishes: lk(Ji , J

+
k ) =

0.

If J is slice, then you can perform amient surgery to replace F with a slice
disk for K .

COT: If J is n-solvable then K is n + 1-solvable.

Conjecture (Kauffman) If K is slice then on every Seifert surface
some surgery curve J is slice.

This conjecture is false (Cochran-D.) I will recall the counterexample,
since it uses a technique which we generalize.
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Infection as a means to Kauffman conjecture
counterexamples

Conjecture (Kauffman) If K is slice then on every Seifert surface
some surgery curve J is slice.

(Cochran-D.) This knot is slice, and yet on
a genus 1 Seifert surface, it does not even
have 0-solvable surgery curve.

The technique we use is infection.
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Tool: Infection and the modification lemma

We make use of a construction of knots called infection. Start with a
knot K in S3 and an unknotted curve η in the complement of K and an
infecting knot J.

Cut out a neighborhood of η and glue back in the complement of a
neighborhood of J (meridian-to-longitude, longitude-to-meridian.)

The resulting manifold is still S3. Kη(J) is the resulting knot.

This operation can be done iteratively: Fη1,η2(J1, J2).

J J1 J2
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Tool: The modification lemma

Theorem (Cochran-D.)

Let η1 and η2 be unknotted, unlinked curves in the complement of the
knot R.

Suppose that in the complement of a concordance from R to S
η1 and η2 cobound an annulus. Then for any knot J Rη1,η2(J,−J) is
concordant to S

Cut out a neighborhood of the annulus bounded by η1 and
η2. Glue in (S3 − J)× [0, 1] (a homology annulus.)
The resulting 4-manifold is still a homology S3 × [0, 1].

The knot at the top of the concordance been replaced with Rη1,η2(J,−J).
The knot at the bottom is unchanged.
Since the annulus was disjoint from the initial concordance, we still have a
concordance.
The hardest part is verifying that the ambient 4-manifold is still B4.

(Park) There is a similar theorem for surgery.
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Modifying surgery curves: The Kauffman counterexample

(Cochran-D.) There exists a slice knot with a genus
1 Seifert surface on which no surgery curve is even
0-solvable.

To see that Rη1,η2(K ,−K ) is slice, it suffices to find
a concordance from R to the unknot (a slice disk)
disjoint from an annulus bounded by η1 and η2.

−K

K

+2

+2

η1

η2+3+3+3+3

+3+3

The surgery curves are now:
d1 = (U)η1,η2

(K ,−K ) and

d2 = (T)η1,η2
(K ,−K )

(U for unknot. )
Since the total linking between T and the η-curves is even
Arf(d2) = Arf(T )+lk(T , η1) ·Arf(K )+lk(T , η2) ·Arf(−K ) = Arf(T ) = 1.
Since the total linking between U and the η-curves is odd
Arf(d1) = Arf(U) + lk(U, η1) · Arf(K ) + lk(U, η2) · Arf(−K ) = Arf(K ).
As long as Arf(K ) 6= 0, neither d1 nor d2 is even 0-solvable.

We have a counterexample to Kauffman’s slice conjecture.
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A modification to the modification lemma

Kη(J) is given by cutting out a neighborhood of η and gluing in the
complement of J.

Still makes sense if η is knotted.

If we make sure to glue the meridian of η to the 0-framed longitude
of J then we still have a homology sphere. The meridian of J can
now go to any framed longitude of η.

The modification lemma still holds, as long as one is OK with knots in
homology spheres and concordances in homology cobordisms.

Theorem

Let η1 and η2 be framed curves in the complement of the knot R.
Suppose that in the complement of a concordance from R to S η1 and η2

cobound a framed annulus. Then for any knot J Rη1,η2(J,−J) is
concordant to S (in a homology coordism)

The proof is the exact same, only now we don’t even try to prove that the
new 4-manifold is S3 × [0, 1].
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Application: recovering an example of Litherland from the
70’s

In 1979 Litherland produced a slice whitehead double (of a knot in a
homology sphere)
It turns out you can recover exactly this example by modifying derivatives.

Here is the Whitehead double of K , R = WH(K )

together with a
derivative.
Let δ be an intersection dual to that derivative.
Push δ off of the Seifert surface in the positive
and negative directions: δ+, δ−. Use the Seifert
framings.
Rδ+,δ−(J,−J) is (homology) concordant to
WH(K ), for any knot J (even a knot in a ho-
mology sphere.)
Here is the surgery curve, Kδ+,δ−(J,−J)

K K K+1

If Kδ+,δ−(J,−J) is slice then WH(K ) is (homology) concordant to a
(homology) slice knot.
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and negative directions: δ+, δ−. Use the Seifert
framings.
Rδ+,δ−(J,−J) is (homology) concordant to
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mology sphere.)
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Application: recovering an example of Litherland from the
70’s

If Kδ+,δ−(J,−J) is slice then WH(K ) is (homol-
ogy) concordant to a (homology) slice knot.

This is a connected sum
If K ∼= −Uδ+,δ−(J,−J) then WH(K ) is slice.
(U for unknot)
Isotope this around.

K+1

-1

-1

J -J

Corollary (Litherland, 1979)

The Whitehead double of (the concordance inverse of) this knot is slice in
a homology ball.

Remark: This knot has exactly the algebraic concordance class of J.
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Application: Modifying surgery curves.

Theorem (D.-Martin-Otto-Park)

If a knot K is 0.5-solvable, and K bounds a genus 1
Seifert surface, then K is 1-solvable.

3

Let K be a genus one algebraically slice knot with Seifert surface F .

Let J be a surgery curve. If Arf(J) ≡ 0 (mod 2) then J is 0-solvable so
K is 1-solvable and then we are already done.
Otherwise let δ be an intersection dual to J in F .
δ+ and δ− cobound an annulus in the complement of R (and so also in
the complement of a concordance from K to K .)
So, for any knot T , Kδ+,δ−(T ,−T ) is concordant to K .
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Theorem (D.-Martin-Otto-Park)

If a knot K is 0.5-solvable, and K bounds a genus 1
Seifert surface, then K is 1-solvable.

3

So, for any knot T , Kδ+,δ−(T ,−T ) is concordant to K .
Recall that lk(J, δ+)− lk(J, δ−) = J · δ = 1.

Kδ+,δ−(T ,−T ) has a surgery curve, Jδ+,δ−(T ,−T ). If Arf(T ) = Arf(J)
then
Arf(Jδ+,δ−(T ,−T )) = Arf(J) + lk(J, δ+) Arf(T )− lk(J, δ−) Arf(T )

= Arf(J) + Arf(T ) = 0
Kδ+,δ−(T ,−T ) has a 0-solvable surgery curve and so is 1-solvable. Since
K is concordant to Kδ+,δ−(T ,−T ), K is also 1-solvable

What if K has genus ≥ 2?
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A genus 2 version of the theorem

Theorem

Let K be a genus g algebraically slice knot with surgery curves J, If J is a
boundary link (or even just has µiijj(J) even and µijk(J) = 0) then K is
1-solvable.

The techniques of the genus 1 case apply and we can assume that
Arf(J1) = Arf(J2) = · · · = 0.
(Martin) J is 0 solvable if and only if for all 1 ≤ i < j < k ≤ g
Arf(Ji ) = 0, µiijj(J) is even and µijk(J) = 0
What if we cannot find a derivative which is a boundary link? How can we
modify the Sato-Levine and triply linking invariants of a surgery curve?
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A string link modification lemma
Let α be wedge of circles embedded the comple-
ment of a knot (or link) R. Let T be a pure string
link (with zero linking number).

Cut out α and glue in the complement of T so that
meridians of α are glued to the longitudes of T .
Rα(T ) is the image of R in the resulting homology
sphere. (If α was unknotted and the longitudes of
α were glued to the meridians of T then this is S3)

Let V be an abstract wedge of circles

Theorem (The modification lemma)

Let η1
∼= V and η2

∼= V be wedges of circles in the complement of the
knot R.

Suppose that in the complement of a concordance from R to S
η1 and η2 cobound a V × [0, 1]. Then for any pure string link T with
zero linking numbers Rη1,η2(T ,−T ) is concordant to S (in a homology
cobordism)
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How string link infection changes µ1122

Let K be a genus 2 algebraically slice knot with surgery
curves J = J1, J2.

Extend to a basis {J1, J2, δ1, δ2} for H1(F ).
Let δ = δ1 ∧ δ2 be the wedge of two circles.

J

J

Let T be a string link with µ1122 = 1. By the modification Lemma, K is
concordant to Kδ+,δ−(T ,−T ).
Kδ+,δ−(T ,−T ) has set of surgery curves J ′ = Jδ+,δ−(T ,−T ).
If µ1122(J ′) is even then J ′ is 0-solvable and K is 1-solvable.

Proposition (D.-Otto-Martin-Park)

If J = J1 ∪ J2 is a link and α = α1 ∧ α2 is a wedge of circles in the
complement of J, then µ1122(Jα(T )) = µ1122(J) + det(A)µ1122(T ) Where
A = (aij) is the 2× 2 matrix aij = lk(Ji , αj).

F has Seifert matrix

[
0 A
B C

]
. Let µ1122(T ) = 1

µ1122(Jδ+,δ−(T ,−T )) = µ1122(J) + det(A)− det(B) = even
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A genus 2 algebraically slice link which might not be
1-solvable.
Let J and L be (pure linking number zero) string links.
Here is an algebraically slice knot K with set of surgery curves J and
Seifert matrix

0 0 a b
0 0 c d

a− 1 c β γ
b d − 1 γ α


If µiijj(J) is even then K is 1 solvable.

If

∣∣∣∣ a b
c d

∣∣∣∣ − ∣∣∣∣ a− 1 b
c d − 1

∣∣∣∣ = a + d − 1

is odd then K is 1 solvable.

J L

a b c d

βα

γ

odd b c even

βα

γ

If there is a genus 2 knot which is not 1-solvable then this is a candidate
(J is the Whitehead link.)
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A high genus example.
There is nothing stopping us from trying this same strategy on a high
genus knot. Martin gives a complete description of 0-solvability for links.
(Arf, µiijj , µijk ∈ Z )

Start with an algebraically slice knot and get a set of surgey curves J..
Kill the Arf-invariants of the components of J.
Infection by a three-component string link changes triple linking number in
an easy to understand way:

Proposition (D.-Otto-Martin-Park)

If J = J1 ∪ J2 ∪ J3 is a link and α = α1 ∧ α2 ∧ α3 is a wedge of circles in
the complement of J, then µ123(Jα(T )) = µ123(J) + det(A)µ123(T )
Where A = (aij) is the 3× 3 matrix aij = lk(Ji , αj).

Infection by a three component string link (even one with zero µiijj) can
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A surprising genus 3 algebraically slice knot.

Here is an algebraically slice knot genus 3,

with surgery curves J and
duals, δ

J L

a b c

Infection along δ+ and δ− changes
µ123(J) by q := ab+bc+ac−a−b−1.
As long as µ123(J) is a multiple of q
this can be used to kill µ123(J)

Unfortunately, µiijj has now changes
in some mysterious way.

As long as a, b, and c are all even or are all odd we can undo µ1122(J)
using δ1 ∧ δ2, µ1133(J) using δ1 ∧ δ3, and µ2233(J) using δ2 ∧ δ3

Christopher William Davis (The University of Wisconsin at Eau Calire)Joint with Carolyn Otto (UWEC), Taylor Martin (Sam Houston State) and Jung Hwan Park (Rice University) ()F0.5 = F1? February 25, 2016 22 / 23



A surprising genus 3 algebraically slice knot.

Here is an algebraically slice knot genus 3, with surgery curves J and

duals, δ

J L

a b c

Infection along δ+ and δ− changes
µ123(J) by q := ab+bc+ac−a−b−1.
As long as µ123(J) is a multiple of q
this can be used to kill µ123(J)

Unfortunately, µiijj has now changes
in some mysterious way.

As long as a, b, and c are all even or are all odd we can undo µ1122(J)
using δ1 ∧ δ2, µ1133(J) using δ1 ∧ δ3, and µ2233(J) using δ2 ∧ δ3

Christopher William Davis (The University of Wisconsin at Eau Calire)Joint with Carolyn Otto (UWEC), Taylor Martin (Sam Houston State) and Jung Hwan Park (Rice University) ()F0.5 = F1? February 25, 2016 22 / 23



A surprising genus 3 algebraically slice knot.

Here is an algebraically slice knot genus 3, with surgery curves J and
duals, δ

J L

a b c

Infection along δ+ and δ− changes
µ123(J) by q := ab+bc+ac−a−b−1.
As long as µ123(J) is a multiple of q
this can be used to kill µ123(J)

Unfortunately, µiijj has now changes
in some mysterious way.

As long as a, b, and c are all even or are all odd we can undo µ1122(J)
using δ1 ∧ δ2, µ1133(J) using δ1 ∧ δ3, and µ2233(J) using δ2 ∧ δ3

Christopher William Davis (The University of Wisconsin at Eau Calire)Joint with Carolyn Otto (UWEC), Taylor Martin (Sam Houston State) and Jung Hwan Park (Rice University) ()F0.5 = F1? February 25, 2016 22 / 23



A surprising genus 3 algebraically slice knot.

Here is an algebraically slice knot genus 3, with surgery curves J and
duals, δ

J L

a b c

Infection along δ+ and δ− changes
µ123(J) by q := ab+bc+ac−a−b−1.
As long as µ123(J) is a multiple of q
this can be used to kill µ123(J)

Unfortunately, µiijj has now changes
in some mysterious way.

As long as a, b, and c are all even or are all odd we can undo µ1122(J)
using δ1 ∧ δ2, µ1133(J) using δ1 ∧ δ3, and µ2233(J) using δ2 ∧ δ3

Christopher William Davis (The University of Wisconsin at Eau Calire)Joint with Carolyn Otto (UWEC), Taylor Martin (Sam Houston State) and Jung Hwan Park (Rice University) ()F0.5 = F1? February 25, 2016 22 / 23



A surprising genus 3 algebraically slice knot.

Here is an algebraically slice knot genus 3, with surgery curves J and
duals, δ

J L

a b c

Infection along δ+ and δ− changes
µ123(J) by q := ab+bc+ac−a−b−1.

As long as µ123(J) is a multiple of q
this can be used to kill µ123(J)

Unfortunately, µiijj has now changes
in some mysterious way.

As long as a, b, and c are all even or are all odd we can undo µ1122(J)
using δ1 ∧ δ2, µ1133(J) using δ1 ∧ δ3, and µ2233(J) using δ2 ∧ δ3

Christopher William Davis (The University of Wisconsin at Eau Calire)Joint with Carolyn Otto (UWEC), Taylor Martin (Sam Houston State) and Jung Hwan Park (Rice University) ()F0.5 = F1? February 25, 2016 22 / 23



A surprising genus 3 algebraically slice knot.

Here is an algebraically slice knot genus 3, with surgery curves J and
duals, δ

J L

a b c

Infection along δ+ and δ− changes
µ123(J) by q := ab+bc+ac−a−b−1.
As long as µ123(J) is a multiple of q
this can be used to kill µ123(J)
Unfortunately, µiijj has now changes
in some mysterious way.

As long as a, b, and c are all even or are all odd we can undo µ1122(J)
using δ1 ∧ δ2, µ1133(J) using δ1 ∧ δ3, and µ2233(J) using δ2 ∧ δ3

Christopher William Davis (The University of Wisconsin at Eau Calire)Joint with Carolyn Otto (UWEC), Taylor Martin (Sam Houston State) and Jung Hwan Park (Rice University) ()F0.5 = F1? February 25, 2016 22 / 23



A surprising genus 3 algebraically slice knot.

Here is an algebraically slice knot genus 3, with surgery curves J and
duals, δ

J L

a b c

Infection along δ+ and δ− changes
µ123(J) by q := ab+bc+ac−a−b−1.
As long as µ123(J) is a multiple of q
this can be used to kill µ123(J)
Unfortunately, µiijj has now changes
in some mysterious way.

As long as a, b, and c are all even or are all odd we can undo µ1122(J)
using δ1 ∧ δ2, µ1133(J) using δ1 ∧ δ3, and µ2233(J) using δ2 ∧ δ3

Christopher William Davis (The University of Wisconsin at Eau Calire)Joint with Carolyn Otto (UWEC), Taylor Martin (Sam Houston State) and Jung Hwan Park (Rice University) ()F0.5 = F1? February 25, 2016 22 / 23



genus 3 example

Corollary

Let q := ab + bc + ac − a− b − 1. If µ123(J) is a multiple of q and a, b,
and c are all even or are all odd then K is 1-solvable.

J L

a b c

Thanks for your attention!
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