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1 Overview of the Field
Many ecosystems experience drastic changes: species go extinct, non-native species invade, climatic condi-
tions change, human activities disrupt habitat and dispersal pathways. Some ecosystems are closely managed
for the benefit of humans: forestry provides essential material, and fisheries are indispensable for food se-
curity. Ecologists focus on understanding causes and mechanisms for current change to understand future
impact of development and climate change. Ecosystem managers need solid scientific bases to reach de-
cisions about land use and conservation. The spatial and temporal scales involved in these processes are
typically too large to conduct detailed empirical work. Mathematical modeling of individual and population
processes is essential to understand ecosystem function and predict ecosystem response to change. Ecosys-
tem complexity, in turn, poses considerable challenges to mathematical theory and analysis of the resulting
models. Novel quantitative tools are needed to meet these challenges.

Integrodifference equations (IDEs) are a class of spatially explicit, dynamical systems models that closely
reflect the strongly seasonally synchronized life stages of many ecological species. In the simplest case, a
generation consists of a growth phase and a temporally distinct dispersal phase. Particular examples include
some invasive insects causing great damage in North America and elsewhere (e.g., Emerald Ash borer), and
native species on the verge of extinction worldwide (e.g., Fender’s blue butterfly).

IDEs project the density of a population forward from one generation to the next by considering the
stationary growth phase and the dispersal phase in sequence. In the simplest case, denoting Nt(x) as the
density of a population in (discrete) generation t at (continuous) spatial location x, we write the IDE to
obtain Nt+1 as

Nt+1(x) =

∫
K(x− y)F (Nt(y))dy. (1)

Function F represents the growth phase of the life cycle, and dispersal kernel K is the probability density
function of offspring location. Thus, IDEs constitute discrete, non-local, infinite-dimensional dynamical
systems. They are a discrete-time analogue of reaction-diffusion equations (RDEs), and some of the mathe-
matical theory for IDEs parallels that for RDEs. The non-local nature of the equations and the discrete-time
setting makes some of this work considerably more challenging than for RDEs.

In 1986, Kot and Schaffer introduced IDEs as models for spatial ecological processes and laid the foun-
dation for their analytical investigation and application [12]. Building also on previous analysis of IDEs in
genetics [24], several pioneering papers then explored the qualitative behavior of IDEs, in particular stability
properties, stochastic and chaotic dynamics, spreading speeds, traveling wave theory and pattern formation
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[1, 2, 7, 9, 19]. In 1996, the discovery that IDEs can support accelerating waves of species invasions (a
property that classical RDEs do not have) caught the attention of theoretical and empirical ecologists and
immediately publicized IDEs in the ecological community [10].

Since then, a growing number of empiricists and theoreticians have worked to understand the qualitative
behavior of these equations, and to connect the theory with observations [15]. IDEs were extended to include
structured and interacting populations, stochasticity, spatial heterogeneity, genetic aspects and evolutionary
processes. The purpose of the BIRS workshop was to review of the tremendous work being done worldwide
and to bring together researchers in all related fields (analysts, modellers, theoretical and empirical ecolo-
gists) for a preview of developments and challenges to come. Specifically, the mathematical theory of IDEs
has much to learn from and to offer to other areas of dynamical systems with non-local operators, such as in-
tegrodifferential equations, the emerging fields of integral projection models and impulsive reaction-diffusion
equations, as well as spatial stochastic processes. Close interaction between analysts, modellers, and ecol-
ogist at the workshop ensured that model development remained relevant to empiricists and that empirical
research focuses on required model input.

2 Recent Developments and Open Problems
Multispecies models: Most theory on IDEs considers single-species models, but realistic ecosystem de-

scriptions need to include several species and their interactions. Such models are relatively simple
to formulate but their analysis poses great challenges. Simple two-species competition models have
monotonicity properties, so that comparison theorems allow analytical results. Yet, even those models
show some surprisingly anomalous spreading speeds [14]. Three-species competition or predator-prey
relationships generally do not allow comparison theorems, and little is known about spreading speeds
and travelling waves in these models. Novel phenomena arise, such as the formation of spatial stable
patterns [19] or cyclic and chaotic behaviour in the wake of an invasion [9]. Some of these emergent
patterns are well understood in reaction-diffusion equations but they are only starting to be developed
IDEs and many phenomena remain unexplored.

Movement behaviour: When multiple life stages are included in the model, there are often sessile stages,
during which individuals do not move. The resulting next generation operator in the IDE model fails
to be compact, and classical existence theorems for travelling waves fail. There is much recent interest
in travelling wave theory for non-compact and non-monotone operators [3]. A completely new chal-
lenge from a modelling and analysis perspective is to include movement behaviour that depends on the
presence of other species. In reaction-diffusion systems, such questions lead to cross-diffusion models
that are notoriously difficult to analyze. For IDEs only a single numerical study exists that poses more
questions than it answers. A potential new way to study questions of cross-diffusion in IDEs is to
connect them to impulsive reaction-diffusion equations by modelling seasonal movement explicitly.

Spatial Heterogeneity: Travelling wave solutions often serve as descriptions of species invasion and range
expansion processes. To study spreading speeds one typically assumes that the habitat is spatially ho-
mogeneous. In reality, most landscapes are heterogeneous on many scales. Organisms often have clear
habitat preferences and adjust their movement according to resource availability, landscape features
or conspecific density. Prevention programs against invasive species might create additional hetero-
geneity through targeted removal of resources (e.g., host plants of forest invasive insects) or localized
application of pesticides. How then does one model dispersal in such environments? And what are the
effects of landscape variation and spatially localized intervention on the spread of an organism?
Few papers have dealt with IDEs in heterogeneous landscapes. They all assume temporally static,
spatially periodic heterogeneity, employ relatively simple dispersal kernels and assume spatially con-
tinuous solutions of the IDE [4, 8, 22, 25]. Recently, novel dispersal kernels were derived from random
walk models in patchy landscapes. These kernels are discontinuous, as are the resulting solutions of the
corresponding IDE [17, 18]. A novel analytical framework is needed to study discontinuous solutions,
emergent travelling waves and related spreading speeds.

Temporal variation: Temporally varying landscapes are models for global change of climatic conditions.
Initial research for IDEs with moving habitat patches unveils how dispersal may facilitate or hinder a
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species’ ability to keep up with climate change [26]. Several talks at the workshop elaborated on this
topic and presented new results that include stochasticity and stage structure (see Section 3.3 below).

Stochasticity and data: Although deterministic models were successful in predicting the speed of invad-
ing populations, they do not capture the patchy spread and variation in invasion speeds observed in
real systems. Stochastic models are crucial for quantifying the variability in spread rates, yet despite
their importance, there is relatively little work on stochastic IDEs. Extrinsic stochasticity (caused by
environmental factors) and intrinsic variability (based on demographic processes) affect spread rates
in different ways: the latter typically reduces invasion speed while the former may increase spread
[6, 11, 16].

Great efforts are underway to collect more data on individual movement and population abundance, for
example with respect to climate change scenarios, in conservation settings, and in model microcosms.
To link these data with models in a meaningful way, models need to incorporate the stochasticity inher-
ent in the data. Therefore, we need to extend the analysis and tools above and developed new techniques
to better understand the behaviour of stochastic IDEs and to quantify the variation in spreading speed
and other ecologically significant quantities.

Non-local operators: Several other mathematical modelling frameworks are closely related to IDEs, yet
researchers from these fields only recently started to interact with one another.

Reaction-diffusion equations with non-local terms appear in various places in the literature. The non-
local operator may describe non-local interaction or movement, depending on the ecological question.
No systematic theory of these equations is currently available, however, there is much recent interest
in studying the qualitative dynamics of these equations, for example, the study of accelerating waves
through tracking of level sets or the generalization of the theory of λ-ω-systems from reaction-diffusion
systems.

Integral projection models (IPMs) project the density of a population forward in discrete generations,
while individuals are continuously structured by state (e.g., size) [5]. IPMs are formulated very simi-
larly to IDEs but details (e.g., typical shapes of the kernels) and research questions are quite different.
In a spatial setting, when individuals are structured by continuous state and location, IPMs and IDEs
are merged, and the resulting model has both aspects, e.g., kernels that represent progression through
states and kernels that represent movement in space.

Impulsive reaction-diffusion equations were only recently studied in an ecological context [13]. In their
simplest linear form, these equations can be equivalent to linear IDEs, but their nonlinear extensions
typically are not. The study of impulsive reaction-diffusion equations in ecology is only in its infancy,
but it is clear that many questions and challenges are closely related to those for IDEs.

3 Presentation Highlights

3.1 Mathematical theory of population dynamics of invasion in a static environment:
Analytical advances

Since the pioneering results of Weinberger (1982) much of the analytical advancements in IDEs focused on
establishing results pertaining to travelling wave solutions of IDEs. This is still an active area of research
and new analytical approaches to tackle the emergent challenges were presented in the meeting. Maximum
principles are at the heart of proofs for many wave speed results and as such a one of the biggest challenges
in this area is establishing travelling wave results for non-monotone systems where a maximum principle can
not be applied. New analytical approaches are required and we saw the emergence of some of these in the
meeting.

Bingtuan Li (Multiple invasion speeds in IDE competition models) proved the existence of multiple prop-
agation speeds in his study of competition models. Consequently, the order of invading species in competitive
systems can change with the lead invader being replaced by its competitor later in the invasion process.

Xiaoqiang Zhao (Bistable travelling waves for monotone discrete time recursive systems) established the
general theory for their existence waves in bistable systems and then took a dynamical systems approach to
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establish global stability results of these waves. He illustrated these results with a two species competition
model and pointed out that an open problem in these systems is to determine the sign of the wave speed.
Crucially, the sign of the wave speed determines which species is the winner of the competitive interaction.
It is therefore one of the most important quantities for our understanding of species invasions.

Lenhart (Optimal control of integrodifference equations) developed the basic theory for applying spatio-
temporal control to integrodifference equations. The underlying ideas were based on the Pontryagin Maxi-
mum Principle (distinct from the classical maximum principle for IDEs), best known in the context of con-
trolling systems of ordinary differential equations. Although such optimal control theory was previously
extended to spatio-temporal models such as partial differential equations, the development and application of
optimal control theory to integrodifference equations is new. Applications were made to optimal harvesting
and to the management of gypsy moth invasive insects.

Weinberger (Spread in a two-allele genetic system) presented developments in the new mathematical
theory for spatial spread of a genotype with a two-allele genetic system. Classical theory, going all the way
back to R.A. Fisher, has focused on one-allele systems. Weinberger showed very recent work on extending
the theory and developing it further for the two-allele case. Although Weinberger was unable to travel to the
meeting due to health reasons, it was a great honour to have him participate via Skype as one of the founders
of the field of mathematical analysis of integrodifference equations.

3.2 Mathematical theory of population dynamics of invasion in a static environment:
New phenomenon and methods

The modeling of biological invasions was one of the earliest uses of integrodifference equations. Indeed, this
was the application that first caught the attention of ecologists and that put integrodifference equations on the
modeling map.

At this point, the basic theory of biological invasions in a static environment is well established: We
know how to predict invasion speeds for a variety of dispersal kernels, in both one and two dimensions, for
simple unstructured populations with compensatory growth and for age- and stage-structured populations.
In addition, although open questions remain, we have made substantial progress in understanding invasions
with depensatory growth (Allee effects) and/or with population interactions, such as competition. In addition,
integrodifference equations have now been applied to a large number invasive species ranging from weeds to
trees and from birds to butterflies.

Given this background, one might think there would be little new mathematical theory about invasions
in a static environment presented at this meeting. Nothing could be further from the truth. Six speakers pre-
sented stimulating talks that either offered new tools for old problems or that offered new insights regarding
previously unstudied or understudied phenomena. In this section, we briefly summarize each of these talks,
in the order that they were presented.

Mark Kot (Models for the spread of white pine blister rust) started the meeting by describing models for
the spread of white pine blister rust. This is a fungal pathogen that is threatening a large number of valuable
conifers. The pathogen has a complicated life cycle: It has two obligate hosts and numerous (spore) dispersal
stages. All of the dispersal stages have different length scales. Kot showed how moment generating functions,
used as integral transforms, and the method of steepest descent could be used to streamline the analysis of
the complicated set of governing plant-host and pathogen equations. The resulting methods for predicting
invasion speeds can be easily extended to other important systems such as host-parsitoid systems.

Many simple integrodifference equations generate invasions with constant asymptotic invasion speeds.
And yet, many field studies and laboratory experiments show tremendous variability in invasion speeds.
It is natural to assume that this variability is due to either demographic or environmental stochasticity.
Michael Neubert (Invasion variability in “simple” integrodifference equation models) began his talk by ask-
ing whether this is necessarily the case. In particular, he asked whether it is possible to construct simple,
deterministic IDEs with variable invasion speeds. He answered this question by considering three ways in
which persistent variability in invasion speed can arise in scalar, deterministic, spatially homogeneous, and
temporally constant models. In his most notable example, Neubert showed how overcompensation in back of
an invasion can interact with the pushed waves associated with a strong Allee effect to generate variability in
wave speed.



5

Tom Miller (Ecological dynamics of colliding populations at habitat ecotones) started his talk by telling
us about ecotones. Ecotones are transition zones between adjacent ecological communities. These zones
occur, for example, between forests and tundra and between shrublands and grasslands. In simple invasions,
exotic species invade open space, but in ecotones, we often see the collision of invasion waves for foun-
dational species from different communities. Miller described a system of integrodifference equations with
intraspecific competition, interspecific competition, and dispersal, and he showed how this system provides
insight into the dynamics of ecotones. He then connected his model back to empirical data from an ecotone
involving creosote bush and black grama grass from the Chihuahuan desert of New Mexico.

Nathan Marculis (Neutral genetic patterns for expanding populations) asked “How do growth and disper-
sal affect genetic diversity in expanding populations?” He then showed that one can study the inside dynamics
of an integrodifference equation and track the fate of neutral genetics fractions as the population expands. For
pulled waves arising from compensatory growth and mesokurtic kernels, the neutral fraction at the front of
the wave dominates the solution for all time. This leads to a strong founder effect. In contrast, pushed waves
arising from strong Allee effects lead to slower spread but higher genetic diversity. Finally, fat-tailed dispersal
kernels give rise to complicated patterns of genetic diversity that are still poorly understood.

In working with age- and stage-structured IDEs, we often calculate annual spreading speeds for invasive
organisms. Mark Lewis (Generational spreading speeds for integrodifference equations) argued that we
may, in fact, find it easier and more useful to calculate generational spreading speeds. In particular, Lewis
showed how the next-generation operator of demography can be generalized to spatiodemographic models
by separating the spatial fecundity and survival operators. This procedure can dramatically reduce the degree
of the dispersion relation that one must then solve for the spreading speed. Lewis illustrated these ideas using
spatiodemographic data for the weed teasel.

Finally, Frithjof Lutscher (Spreading phenomena in integrodifference equations with overcompensatory
growth function) reported on his detailed studies and analyses of the complicated invasion dynamics that
occur with overcompensatory growth. He showed that one can observe several traveling wave profiles with
differing speeds. For example, one can observe a metastable solution for invasion into open habitat that is
followed by stable traveling two-cycle. Lutscher focused his attention on the second-iterate operator for the
integrodifference equation. He showed that this operator has a pair of stacked fronts. He generalized the
concept of spreading speed to this operator, and he related his observations to the phenomenon of dynamic
stabilization.

Although the basic theory of invasions in a static environment is indeed well understood, the above talks
illustrate that there is still much work to be done. The presence of differing growth dynamics (compensation,
overcompensation, and depensation), age and stage structure, genetic diversity, population interactions, and
short and long-distance dispersal all leave us with many challenges.

3.3 Mathematical theory of population dynamics of invasion in a dynamic environ-
ment

A growing body of literature, empirical and theoretical, studies spreading phenomena as necessary adapta-
tions for populations to keep track of their preferred climate zones under global change scenarios. Current
estimates predict a global mean shift in the location of a population’s suitable habitat by 0.42 km/yr. The
mathematical modelling of invasions in dynamic habitats is a rapidly emerging area of IDE research, with
significant results being reported at the meeting.

Ying (Joy) Zhou (Integrodifference equation models for populations in dynamic habitats) pioneered some
of the initial work in this area and presented her most recent advances covering two scenarios: 1) habitat
location shifting with climate change and 2) a seasonally expanding and contracting habitat as associated
with, for example, dry and wet seasons. In both cases the problems can be formulated as an IDE of the
following type

nt+1 =

∫ ∞
−∞

k(x, y)︸ ︷︷ ︸
dispersal kernel

Qt(y)︸ ︷︷ ︸
habitat suitability

f(nt(y))︸ ︷︷ ︸
population dynamics

dy (2)

This equation can be transformed into a time-autonomous system in both cases, allowing for population per-
sistence conditions to be determined. Moreover, the presenter demonstrated that these persistence results,
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which apply to compact operators on a bounded domain (fixed habitat range) can now be extended to un-
bounded domains allowing for more realistic habitat suitability models to be considered. Importantly, these
results also extend to ‘fat’ tailed dispersal kernels provided Qt(y) decays fast enough. Analytical results for
IDEs in which dispersal kernels are not exponentially bounded are still quite sparse, so progress in this area
is an important advancement.

Juliette Bouhours (Climate change and integrodifference equations in variable environments) extended
the framework given by equation (2) to the stochastic case in which habitat suitability depends on a ran-
dom variable, as does population growth rate. The random variable describes the uncertainty associated
to the speed of climate change. The theorem she presented stated the dichotomy that a population in such a
stochastically varying environment would go extinct with probability either 0 or 1. The condition determining
extinction depended on the geometric average of the local population growth rate and dispersal kernel.

In contrast to Zhou and Bouhours, who focus on long-time asymptotic behaviour of equation (2) Austin
Phillips (Will transient dynamics help or hurt species during climate change?) instead focussed on the short-
term transient dynamics. In doing so, Austin presented four metrics for quantifying transient dynamics.
Importantly, he demonstrated that long transients can be associated with critical slowing down in invasion
speeds, which has important implications for species ability to keep pace with a moving environment.

Complementing the approaches of Zhou, Bouhours and Phillips, James Bullock (Population spread and
the velocity of climate change) constructed virtual species from a statistical model of life-history and dispersal
data. This new approach tackles the challenge of sparse population data. The synthesised life-history and
dispersal parameters for the virtual species enabled the presenter to estimate invasion speeds from IDE models
enabling him to broadly identify classes organism that would struggle to keep pace with climate change.

Taken together, these results suggest IDE research in there area is able to offer many important ecological
insights regarding the vulnerability of species to climate change. Moreover, the talks demonstrated that there
are number of key mathematical challenges that emerge from looking at this particular ecological problem.

3.4 Integrodifference equations: heterogeneity, data and numerics
The focus of sections 3.1-3.3 has been on IDEs which are solved on spatially homogeneous domains. Real
spatial domains are typically a long way from this idealised homogeneous view. Moving away from this
abstraction one has to decide how much detail to then include. Alan Hastings (Ecosystem engineering and
IDEs) and Elizabeth Crone (Combining models and data to set guidelines for butterfly conservation) both
advocated for the value of including the ’key features’ of the landscape and biology and discussed periodic
landscapes of alternating habitat types to address questions of species persistence in such landscapes. Both
gave examples where the IDE theory was used to successfully inform conservation policy. In the case of
Hastings this was in the design of marine reserves and in the case of Crone this was to quantify the minimum
size of protected habitat areas for an endangered butterfly species. These talks illustrate that there are many
questions beyond those related to spread that can be usefully addressed using IDEs.

With the increasing availability of fine resolution satellite data detailing the location of habitat types
and GPS data of movement at large spatial scales we would also like to be able to understand population
dynamics at a landscape level and move away from the idealised heterogeneous landscape. Two of the
speakers specifically addressed the challenges associated to studying IDEs on such large spatial scales (of the
order of 100s of kilometres). James Powell (Invasion speed in highly variable landscapes: multiple scales,
homogenization and the migration of trees) presented a seed dispersal problem whereby seeds were dispersed
by animals that made movement choices on the scale of the local habitat changes (10s metres), but moved
distances of 10s kilometres. At the landscape scale the heterogeneous habitat resulted in an IDE describing
seed and tree distribution which contained an anisotropic dispersal kernel. Analytical results for IDEs with
anisotropic kernels are limited and many proofs rely heavily on the kernel symmetry. Powell addressed this
challenge by using the technique of homogenisation to ”average” out the effects of the local scale and produce
an IDE description of the landscape scale dynamics. The resulting homogenised IDE contained an isotropic
dispersal kernel allowing classical travelling wave solution results to be employed in the study of the tree
invasion speeds.

The homogenisation approach offers a powerful method of including crucial biological detail while main-
taining analytical tractability. However, one would still like to numerically simulate the dynamics of move-
ment over landscapes and this challenge was picked up by Steven White in his talk on Predicting species
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spread in heterogeneous landscapes with IDEs. The usual approach to numerically solve an IDE on a 2D het-
erogeneous landscape is to define a fixed spatial grid and to use either fast Fourier transforms or quadrature to
carry out the integration in equation (1). The problem with this approach is that it places heavy demands on
RAM and CPU time. and to overcome this the presenter illustrated a new adaptive algorithm. The adaptive
algorithm used a coarse spatial grid at the far front or far rear of an travelling wave solution where the solution
will shows little spatial variation and so can be be accurately solved with only a few grid points, but at the
wave front where the solution changes rapidly a fine spatial grid is used. As time is updated the location
of the fine spatial grid is also updated. Similar ideas are used to solve PDEs, but this is the first time an
adaptive approach has been developed for IDEs. The technique leads to an order of magnitude improvement
in computational efficiency.

White also presented the results of a recent IDE literature search which demonstrated an exponential
increase in the number of IDE publications over the last 30 years. Still a relative small number of these
papers specially addressed applications. White posited that the poor uptake of IDEs by ecologists may be due
to the difficulties in numerically solving IDEs, and unlike working with ODEs or PDES the availability of
off the shelf code is very limited. Harsch (Increased applicability and engagement through interactive web
application) presented an ‘Rstudio’ and ‘Shiny’ interactive web application to allow and encourage users to
solve IDESs and gain a greater appreciation of their potential use. The idea of developing web resources for
people interested in working IDEs was met with a lot of interest at the meeting and became the topic of one
the breakout discussion sessions (see section 5).

3.5 Relationships to other model types
A number of different modelling approaches are closely related to IDEs, and their analysis poses similar
problems. One of the goals of this workshop was to bring the various communities closer together and make
them aware of ideas and results available in related fields.

Nonlocal reaction-diffusion equations are similar to IDEs in that (long-distance) dispersal is modelled
by an integral operator instead of (or in addition to) the diffusion operator. Jérôme Coville (Propagation
phenomena in nonlocal reaction-diffusion equations: An overview of the recent developments) gave a much
appreciated overview presentation of the state of the art of analyzing spreading phenomena with these equa-
tions. His presentation began with an exercise in model selection that demonstrated that these nonlocal
equations may provide a better fit to observed data than diffusion equations. Then he presented past and
recent theory on spreading speeds in homogeneous and periodic environments.

Integral projection models formally look like the IDE in (1) but instead of spatial location (x) consider the
‘location’ of an individual in state space, i.e., x can denote size of an individual. In contrast to IDEs, the state
space is typically compact and the ‘kernels’ that arise have qualitatively different properties. Stephen Ellner
(IDEs as models for individuals: who gets into the 1%, and why?) was instrumental in developing the theory
and applications of integral projection models and recently published the first book on the subject. In his talk,
he used several long-term data sets and demonstrated how these models can yield much more information
that is currently obtained from them. His results show that ‘success’ in many plant and bird populations is
more a matter of luck than of individual traits.

Bill Fagan (Perceptual ranges, information gathering, and foraging success in dynamic landscapes) pre-
sented yet another application of integral equations in ecology. He modelled movement of individuals as a
mix of random diffusion and directed movement, where the direction was determined by the amount of re-
sources that an individual perceived in a certain detection radius. He compared the effectiveness of different
strategies in different landscapes of resource distribution.

4 Scientific Progress Made
Scientific progress was made via break-out sessions. Here conferees discussed new results, scientific chal-
lenges and future directions in an informal environment. We kept a record of these discussions with the view
that they can help inform future research. Summaries are given below.
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4.1 Dispersal kernels and inverse problems
Dispersal kernels are central to integrodifference equations. The use of kernels to describe dispersal is the
key feature that makes IDEs attractive to ecologists. The varied shapes of dispersal kernels lead, in turn, to
many interesting phenomena, such as accelerating invasions.

The use of dispersal kernels does, however, entail serious empirical and theoretical challenges. For many
systems, for example, invasion speeds are determined by the tail behavior of the dispersal kernel, and the
tail of the distribution is precisely where data is often missing. We held a break-out session to discuss the
problems, progress, and prospects associated with dispersal kernels. The discussion was wide-ranging. We
briefly summarize some of the highlights of the discussion below.

Everyone quickly agreed that the old approach of fitting a pre-defined curve (e.g., a Gaussian), or even
a pre-defined family of curves to dispersal data is insufficient, because of the importance of tail data. This
led to a discussion of the usefulness of empirical methods, such as empirical moment generating functions
and empirical saddle-point methods, that avoid pre-selecting the dispersal kernel. Several participants then
pointed out, however, these empirical methods do not really solve the problem of tail data.

This led to a free-wheeling discussion regarding available methods for extrapolating kernels to regions
where we don’t have much data. We don’t, after all, want to simply make up the tail. One suggestion that
was emphasized was the usefulness of purposely censoring one’s dispersal data in order to plot the estimated
invasion speed as a function of the sampling radius. Investigators can then make sure that their estimates
are leveling off with sampling radius. If they are, there is then some hope that the estimates can be trusted.
Several people asked whether bootstrapping, Bayesian methods, and information theoretic methods could
help. Others asked if there was some way to weight available tail data more heavily.

This was followed by quick discussion regarding the need for tail data. Everyone agreed that the question
matters. Tails appear to be important for invasion data, but even here, time scales matter. Are we talking
about transient dynamics or asymptotic behavior? In contrast, tails do not appear to matter for critical patch
size problems.

At this point, the discussion shifted to questions regarding the realism of dispersal kernels. Most of the
dispersal kernels that we use are simple and idealized. Can we construct more realistic dispersal kernels
without adding too much complexity? There was great enthusiasm for further work on mechanistic models,
and several people spoke well of the Wald distribution for wind dispersal. Jim Powell then gave us a preview
of his upcoming talk on homogenization methods for highly variable landscapes.

Several people asked about kernels for resource-based dispersal and there was a fair amount of discus-
sion regarding both spatial heterogeneity and two-dimensional kernels and anisotropy. Animal ecologists
expressed some pessimism about the usefulness of fitted dispersal kernels, while plant ecologists expressed a
great deal of optimism. This striking contrast helped highlight the important distinction between goal-directed
movement and passive dispersal.

The discussion then turned to the inverse problem. What can we say about the shape of dispersal kernels
given the shape, for example, of the invasion wave? The slope of the invasion wave does, for example, depend
on the invasion speed, which is controlled, in turn, by the growth rate and the dispersal kernel. A few people
were hopeful regarding the inverse problem but, in ongoing discussions after the session, several people were
more negative. Indeed, one person suggested we can no more determine the shape of dispersal kernel from
the invasions wave then we can determine a Leslie matrix from a stable age distribution.

Finally, we ended with a short discussion on other possible methods for incorporating dispersal data
into integrodifference equations. This discussion included such topics as extreme value statistics, branching
random walks, and gravity models.

4.2 Spatial heterogeneity
Spatial heterogeneity is ubiquitous in nature and often enhanced by human activities. How exactly the many
forms of heterogeneity influence the processes of population growth and individual dispersal is still a source
of many open questions. These ecological questions have spurred several analytical and numerical devel-
opments and much has been learned from reaction-diffusion models and from IDEs (see Section 2). The
participants of the break-out session on spatial heterogeneity discussed where these developments could and
should lead in the future.
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4.2.1 Heterogeneity in local dynamics

The simplest possible scenario to study the effects of spatial heterogeneity is that of a static heterogeneous
environment that affects only the local growth dynamics but not the dispersal of individuals. There is re-
cent work on periodic landscapes (persistence of the population, existence of spreading speed), with special
emphasis on piecewise constant periodic landscapes of two types of habitat (binary) where many explicit
calculations are possible. The analytical tools of homogenization seem particularly helpful to gain ecological
insights.

A first forward step towards a more generally applicable theory would be to extend the calculations to
non-binary landscapes, for example to three habitat types such as “preferred habitat”, “secondary habitat” and
“unsuitable habitat”. Based on previous experience, this step seems doable in a relatively short time period.

A second question is to extend the framework from periodic to random landscapes. This extension would
be very important ecologically to explore questions of how landscape autocorrelation affects population distri-
bution and spread. Non-periodic landscapes pose a huge analytical challenge since, for example, a spreading
speed cannot exist. There is recent progress on this question for reaction-diffusion equations by using level-
set methods. Developing corresponding theory for IDEs would be a great step forwards. For more applied
questions, averaging over a random landscape could provide a reasonably simple theory and give relatively
good answers to ecologically relevant questions. Some work on sparse landscapes has already been done.

A third question that emerged in this context asks how structured populations or multi-species assemblies
respond to environmental heterogeneity. The analytical theory for structured populations often follows the
theory for a single species closely (since the equations are order-preserving). For two competing species,
the order-preserving structure remains so that some theory should be reasonably easy to obtain (one more
applied study exists already). But theory for consumer-resource interactions is an even greater challenge than
in homogeneous habitats, where there are still many open questions.

4.2.2 Heterogeneity in dispersal

The much more challenging aspect of heterogeneity in IDEs is to adequately model how environmental vari-
ation affects individual dispersal as represented by the dispersal kernel. One approach that was explored
recently is closely related to impulsive reaction-diffusion equations (see above). The dispersal phase is mod-
elled by a linear diffusion equation with spatially varying coefficients. From this diffusion equation, a dis-
persal kernel is derived. The kernels that arise this way are typically not convolution kernels. While some
analysis has been carried out, many analytical questions are still open. An alternative approach could see the
individual probing the environment in a number of places before deciding where to settle. This approach was
implemented once, but has since not been used or studied in detail.

Once it is clear how to describe the outcome of dispersal in a heterogeneous landscape, the task is to study
the effects of heterogeneity on population patterns. Can dynamic instabilities be caused by habitat hetero-
geneity? Can travelling waves or pulses or more complicated patterns be induced? How does heterogeneity
affect spreading speeds? Homogenization approaches can be very helpful in the study of these questions.

4.2.3 Understanding the causes of patterns

Once we have a good understanding of which patterns can be created or influenced by heterogeneity and
how, we can try and tackle an old yet every new and crucial question in ecology: How to distinguish between
endogenous and environmentally driven variability? It is a mystery. So what should we actually do?

Typically, we cannot measure processes directly. Focusing on a few cases where the distinction between
endogenous and environmental drivers matters and figuring out – via modelling – what we would need to
know to distinguish, could be a first step. Finding a unique, measurable signature of a generating process
would be the holy grail. In the meantime, one could look at the work on signature patterns in time series and
see whether some of that can be translated into spatial signatures. But even if we cannot distinguish causes
behind patters, there may be value in pointing out that endogenous patterns are possible. More often than not,
it is assumed that environmental variability is the cause of static patchiness.
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4.2.4 The evolution of dispersal

Finally, a question that has garnered great interest in reaction-diffusion equations is that of the evolution
of dispersal. Work on the corresponding question for IDEs has only barely been begun. There are some
insights on the evolution of dispersal kernel shape using function-valued traits and the evolution of dispersal
for persistence on bounded habitats. A yet unanswered question is whether there is an equivalent of the ideal
free distribution for IDEs. Any progress towards this question would be a great achievement. The first step
may be to study corresponding impulsive reaction-diffusion equations as an intermediate step.

4.3 Temporal variation and stochasticity
External temporal variation and stochasticity are crucial elements to any reasonable ecological model. This is
because ecological environments are notoriously variable in time. Therefore it is natural to ask how classical
results regarding spreading speeds and critical domain size might change in temporally variable environments.
Typical forms for the variation are either temporally periodic, or random.

However, these elements make the analysis of integrodifference equations a real challenge because the
dynamics are nonautonomous. The simplest form of the model allows for the dispersal kernel Kt and growth
rate rt to be random variables, indexed by time t, taken from given distributions. Using these, the classical
questions of spreading speeds and critical domain size can then be revisited for such models in the context of
impacts of temporal variation and stochasticity.

Seminal work on the critical domain size problem came from a series of papers by Hardin, Web and
Takac (eg. [7]). This work has been recently rediscovered and extended into new contexts, particularly in
the context of species survival under climate change. Here the stochasticity means that it does not make
sense to analyze eigenvalues of a linearized operator. Rather, calculations give rise to something similar to a
Lyapunov exponent, from which it is possible derive threshold conditions for persistence. Recent there have
been attempts to extend this theory to infinite domains, but this work is ongoing.

Early work on the spatial spread problem for scalar models, concave down growth functions, and un-
correlated spatial variation was developed by Neubert, Kot and Lewis [20]. Here there is no longer a fixed
spreading speed. Rather there is a distribution of spreading speeds, and under certain conditions it is possi-
ble to show that the distribution follows a normal distribution arising from a Central Limit Theorem result.
However, these results assumed that the spreading speed nonlinear system could be characterized by the op-
erator linearized about zero. Although this appears to be the case, there is no rigorous proof. Recent work
has extended these results to stage-structured models and complex correlations in temporal fluctuations [23].
However, rigorous proof for conditions under which the spreading speed for the nonlinear stochastic operator
can be determined by it’s linearization remains an open problem.

An alternate form of variability comes from variability in the behaviour of dispersing individuals. For
example, each individual could disperse via a Gaussian dispersal kernel, with with a different variance. Thus
the population dispersal kernel would no longer be Gaussian, but would require convolution of the Gaussian
with the distribution for the variance. This kind of individual variability can then change the shape of the
overall dispersal kernel from Gaussian to fat-tailed, leading to a dramatic effect on spreading speeds [21].

4.4 New model formulations
One of the main applications of the integrodifference framework has been to describe dispersing populations,
the kernel in equation (1) then describes the probability of dispersal. For such dispersal models we are
frequently interested in travelling wave solutions however integral projection models (IPMs) in which the
kernel describes ageing or stage transitions results in an IDE problem where instead other questions emerge,
such as finding the stable age distribution (equilibrium distribution) of the IDE. We held a break-out session
to discuss other biological problems that might give rise from new types of IDEs and the corresponding new
questions associated to the resulting equations.

Kernel-type functions can be used to represent a range of biological phenomena such as non-local inter-
actions, whereby the kernel may be some description of distance-dependent decay in competition or com-
munication among animals. The spatial influence of individuals can result in a kernel that changes sign as
a function of proximity - this is a new type of dispersal kernel that has not been studied in the context of
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IDEs, although these kernels have been adopted in non-local PDE models of group aggregation, migration,
schooling and flocking. Exactly how many of the results from non-local PDE theory can be transferred across
to the IDE framework remains an open question.

Other examples novel kernels that could generate new classes of IDE model include non-local transmis-
sion of parasites (i.e., representing an unobserved process), perception / information gathering / information
exchange, kernels describing interactions with individuals of remote age / stage classes and kernels describing
non-local but non-global interactions. Indeed in Alan Hastings’ talk he presented a model of ecosystem engi-
neers in which the kernel depended on the amount of occupied habitat which was determined by the density
of the ecosystem engineers this also gave rise to an interesting new class of kernels and IDE problems.

Another area of discussion was formulating models of intermediate complexity to bridge from individual
based models (IBMs) to IDEs and IPMs. IBM are close cousins of IDEs and allow detailed biological
stochastic processes to be described, but lack some of the analytical tractability of an IDE. Bridging between
the two frameworks of IBMs and IDEs could allow us to exploit the strengths of both frameworks. A mean
field model of the IBM with a simple representation of deviations due to finite population size is one way in
which this could be achieved. Another approach is to derive a stochastic difference equation with a Gaussian
approximation to binomial process in IBM. Studies of stochastic IDEs are still in there infancy although there
has been a recent push in the last few years to make progress in this area (see section 4.3).

Finally examining the underlying assumptions of IDEs one can ask how breaking these assumptions can
also offer new classes of models not previously studied. For example, mixing continuous-time dispersal
and population dynamics with discrete-time events gives rise to impulsive reaction-diffusion models, whose
analysis is just in it’s infancy [13]. Also, by including vital rates or dispersal that depends on local conditions
or time and including heterogeneity among individuals that affects rates or kernels lead to IDE models that
are biologically important but are not addressed by the current theory and open up exciting new avenues of
research.

5 Outcome of the Meeting
The most important outcomes from this meeting are most likely those that are currently intangible: the inspi-
ration that occurred in talks and conversations over tea and coffee, between researchers who would otherwise
never have met. Analysts recognized that many ecologists have used (variants of) integrodifference equations
without calling them that. Ecologists recognized that theory is being developed to deal with scenarios that
seemed to be accessible only to simulation before. The fruits of mutual inspiration will be visible only in a
few years when new collaborations yield published results.

We are currently working on two review papers that shall summarize the results and open questions from
this workshop and include the larger community in the quest to solve them. We aim one of the papers at a
mathematical/analytical audience and the other at an ecological audience.

Equally important is the effort to collect current literature and simulation tools online through a mixture
of website and wiki. Several possibilities of implementing such a resource were discussed at the meeting.
Several researchers indicated that they are willing and able to fund some of these efforts.

All in all, we believe that this workshop will soon be viewed as the galvanizing event in the theory and
application of integrodifference equations in spatial ecology. Its effects will be felt in novel collaborations,
exciting research and increased visibility and accessibility of the field.
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