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While proving that every planar graph G with no cycles of lengths
4, . . . , 8 is 3-choosable, Dvǒrák and Postle introduced a
generalization of list coloring that they called correspondence
coloring. We will call it DP-coloring.

The goals of this talk are
(1) to advertise and promote this notion,
(2) to show interesting properties and features of this parameter,
(3) mention some unsolved problems.

Recall that Vizing introduced list coloring trying to prove an
approximation to the Behzad-Vizing Conjecture that the total
chromatic number of any graph with maximum degree ∆ is at
most ∆ + 2.

The plan was: given a set D of ∆ + 3 colors, color from D the
vertices of G , and then every edge will have a list of ∆ + 1
available colors.
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The plan did not work as planned, but the new notion (introduced
also by Erdős, Rubin and Taylor) turned out to be valuable and
interesting. Some properties of it are very close to those of the
ordinary coloring, and some are quite different.

One well-known application of list coloring is the Fleischner-Stiebitz
proof of the cycle-plus-triangles problem by Erdős.

A Gallai forest is a graph in which every block is either a complete
graph or an odd cycle.

Theorem 1 [Gallai, 1963] If k ≥ 3 and G is a k-critical graph,
then the subgraph of G induced by the vertices of degree k − 1 is a
Gallai forest.
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also by Erdős, Rubin and Taylor) turned out to be valuable and
interesting. Some properties of it are very close to those of the
ordinary coloring, and some are quite different.

One well-known application of list coloring is the Fleischner-Stiebitz
proof of the cycle-plus-triangles problem by Erdős.
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A list L for a graph G is a degree list if |L(v)| ≥ degG (v) for all
v ∈ V (G ).

Theorem 2 [Borodin, 1976; Erdős–Rubin–Taylor, 1979] Let G be
a connected graph and let L be a degree list assignment for G . If
G is not L-colorable, then G is a Gallai tree; furthermore,
|L(u)| = degG (u) for all u ∈ V (G ) and if u, v ∈ V (G ) are two
adjacent non-cut vertices, then L(u) = L(v).

An interesing thing is that DP-coloring is not a coloring, it is an
independent set in an auxiliary graph. A result of a similar flavor
for ordinary coloring is known for a long time:

Theorem 3 [Plesnevič and Vizing, 1965] A graph G has a
k-coloring if and only if the Cartesian product G�Kk contains an
independent set of size |V (G )|, i.e., α(G�Kk) = |V (G )|.
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Pre-definition

Given a list L for G , the vertex set of the auxiliary graph
H = H(G , L) is {(v , c) : v ∈ V (G ) and c ∈ L(v)}, and two
distinct vertices (v , c) and (v ′, c ′) are adjacent in H if and only if
either c = c ′ and vv ′ ∈ E (G ), or v = v ′.

Since V (H) is covered by |V (G )| cliques, α(H) ≤ |V (G )|. If H has
an independent set I with |I | = |V (G )|, then, for each v ∈ V (G ),
there is a unique c ∈ L(v) such that (v , c) ∈ I . And the same
color c is not chosen for any two adjacent vertices. So the map
f : V (G )→ Z>0 defined by (v , f (v)) ∈ I is an L-coloring of G .

Also, if G has an L-coloring f , then the set
{(v , f (v)) : v ∈ V (G )} is an independent set of size |V (G )| in H.
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Figure: A graph G with a list L and a cover for (G , L).



Definition

Let G be a graph. A cover of G is a pair (L,H), where L is an
assignment of pairwise disjoint sets to the vertices of G and H is a
graph with vertex set

⋃
v∈V (G) L(v), satisfying the following:

1. For each v ∈ V (G ), H[L(v)] is a complete graph.

2. For each uv ∈ E (G ), the edges between L(u) and L(v) form a
matching (possibly empty).

3. For each distinct u, v ∈ V (G ) with uv 6∈ E (G ), no edges of H
connect L(u) and L(v).

Let G be a graph and (L,H) be a cover of G . An (L,H)-coloring
of G is an independent set I ⊆ V (H) of size |V (G )|. G is
(L,H)-colorable if it admits an (L,H)-coloring.
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Figure: Graph C4 and two covers of it such that C4 is (L,H1)-colorable but not
(L,H2)-colorable.

The DP-chromatic number, χDP(G ), is the minimum k such that
G is (L,H)-colorable for each choice of (L,H) with |L(v)| ≥ k for
all v ∈ V (G ).



Properties

1. χDP(G ) ≤ d + 1 for every d-degenerate graph G . (D-P)

2. A version of Brooks’ Theorem holds for χDP(G ). (D-P)

3. χDP(G ) ≤ 5 for each planar G and χDP(G ) ≤ 3 for each planar
G of girth 5. (D-P)

4. χDP(Cn) = 3 for each n ≥ 3. This means orientation theorems
of Alon–Tarsi and the Bondy–Boppana–Siegel Lemma on list
coloring do not extend to DP-coloring.

5. χDP(G ) > d/2
ln(d/2) for every G with average degree d . (A.

Bernshteyn)

6. χDP(G ) ≤ C d
ln d for every triangle-free G with maximum degree

d . (A. B.)
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Multigraphs

Let G be a multigraph. A cover of G is a pair (L,H), where L is
an assignment of pairwise disjoint sets to the vertices of G and H
is a graph with vertex set

⋃
v∈V (G) L(v) such that

1. For each v ∈ V (G ), H[L(v)] is a complete graph.

2. For each distinct u, v ∈ V (G ), the set of edges between L(u)
and L(v) is the union of eG (u, v) (possibly empty) matchings.

The other definitions are as for graphs.

For k ∈ N and a multigraph G , let G k be the multigraph obtained
from G by replacing each edge in G with a set of k parallel edges.

Figure: χDP(K 3
2 ) = 4.
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Figure: χDP(C k
4 ) = 2k + 1.



Theorem 4 [Bernshteyn-Pron-A.K., 2016] Let G be a connected
multigraph. Then G is not DP-degree-colorable if and only if each
block of G is one of the graphs K k

n , C k
n for some n and k .

Corollary 5 [B-P-K] Let k ≥ 4 and let G be a DP-k-critical graph
distinct from Kk . Then

2|E (G )| ≥
(
k − 1 +

k − 3

k2 − 3

)
n.

Theorem 6 [Dirac, 1957] Let k ≥ 4 and let G be a k-critical
graph distinct from Kk . Set n := |V (G )| and m := |E (G )|. Then

2m ≥ kn + k − 3.
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For k ≥ 4, a graph G is k-Dirac if V (G ) can be partitioned into
three subsets V1, V2, V3 so that
(a) |V1| = k − 1, |V2| = k − 2, |V3| = 2;
(b) the graphs G [V1] and G [V2] are complete;
(c) each yi ∈ V1 is adjacent to exactly one zj ∈ V3, and each
zj ∈ V3 has a neighbor in V1;
(d) each xi ∈ V2 is adjacent to both zj ∈ V3; and
(e) G has no other edges.
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Figure: A 5-Dirac graph.



Let Dk denote the family of all k-Dirac graphs.

Theorem 7 [Dirac, 1974] Let k ≥ 4 and let G be a k-critical
graph distinct from Kk . Set n := |V (G )| and m := |E (G )|. Then

2m = kn + k − 3 ⇐⇒ G ∈ Dk .

Theorem 8 [A.K.-Stiebitz, 2002] Let k ≥ 4 and let L be a list
assignment for G such that G is L-critical and |L(u)| = k − 1 for
all u ∈ V (G ). Suppose that G does not contain a clique of size k .
Set n := |V (G )| and m := |E (G )|. Then

2m ≥ kn + k − 3.

Question [A.K.-Stiebitz, 2002] Does Theorem 7 hold for list
coloring?
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Theorem 9 [B-K] Let k ≥ 4, G be a graph and let (L,H) be a
cover of G such that G is (L,H)-critical and |L(u)| = k − 1 for all
u ∈ V (G ). Suppose that G does not contain a clique of size k .
Set n := |V (G )| and m := |E (G )|. If G 6∈ Dk , then

2m > kn + k − 3.

Figure: A DP-7-critical multigraph.
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Questions

1. What is fDP(n, k) — the minimum number of edges in an
n-vertex DP-k-critical graph?

2. Is it true that every n-vertex DP-k-critical multigraph

containing neither C
(k−1)/2
s nor K

(k−1)/r
r has at least

k − 1

2
n +

k − 1

3
edges?

3. Gallai proved that if k ≥ 4 and n ≤ 2k − 2 then every k-critical
n-vertex graph G has a spanning complete bipartite subgraph; in
other words, the complement of G is disconnected. For
list-k-critical graphs the same claim follows from the theorem by
Noel, Reed and Wu that for every k > n/2− 1, if G is an n-vertex
graph with χ(G ) = k , then χ`(G ) = k .

Does there exist 0 < α < 1 such that for every n and every
k > αn, each n-vertex DP-k-critical graph G has a spanning
complete bipartite subgraph.
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