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I. Introduction	
	
Our	workshop	took	place	as	planned,	involving	ultimately	a	group	of	13	scientists,	
ranging	from	modelers	to	the	“consumers”	of	models.		Our	special	focus	was	on	the	
modeling	of	terrestrial	climate,	from	the	relatively	short-term	(viz.,	weather	to	
seasonal	forecasting)	to	the	long-term	(e.g.,	decadal	and	climate	forecasting);	and	
our	particular	emphasis	was	on	reaching	a	better	understanding	of	what	current	
models	of	terrestrial	climate	are	capable	of	doing,	how	their	present	capabilities	
match	with	the	needs	of	the	“climate	model	consumers”,	and	what	will	need	to	be	
done	to	accomplish	a	more	satisfactory	match	between	what	can	be	done	–	even	in	
principle	–	and	what	is	desirable	from	the	public	policy	perspectives.	
	
The	participants	of	our	workshop	are	listed	in	the	table	immediately	below.	
	
Name Affiliation 
Berger, Jim Duke University 
Bogdan, Tom N/A 
Du, Hailiang Univ. of Chicago (Computation Institute) 
Mason, Simon The Earth Institute of Columbia University 
Nissan, Hannah Columbia University 
Oberkampf, William WLO Consulting 
Petersen, Arthur University College London (UCL) 

Rosner, Robert University of Chicago (Dept. of Physics and Energy 
Policy Institute at Chicago) 

Smith, Leonard London School of Economics (and Pembroke 
College Oxford) 

Stainforth, Dave London School of Economics and Political Science 
Tribbia, Joe National Center for Atmospheric Research 

von Hardenberg, Jost Institute of Atmospheric Sciences and Climate – 
National Research Council 

Wehner, Michael DOE Lawrence Berkeley Laboratory-Scientific 
Computing Group 

	
The	discussions	focused	on	two	distinct	areas	of	climate	modeling:	first,	gaining	a	
better	understanding	of	model	weaknesses;	second,	identifying	specific	areas	that	
can	lead	to	enhanced	predictive	capabilities	of	climate	models.		We	provide	a	short	
glossary	of	key	terms	in	an	appendix.	
	 	



II. Diagnostics	of	model	weaknesses		
	
1. Assessing	model	failure	
	
The	question	of	how	to	assess	model	failure	entails	a	number	of	separate	issues	that	
are	best	discussed	individually.	
	

• Current	practice	is	to	run	models	to	provide	predictions	for	the	end	of	the	
Century.		This	is	not	scientifically	sensible:	It	would	make	scientific	sense	to	
run	the	forecasts	out	as	far	as	the	models	can	produce	some	meaningful	
information.		Thus,	model	forecasts	may	have	drifted	off	on	highly	unrealistic	
trajectories	as	a	result	of	structural	model	errors	after	a	relatively	short	
period	(only	a	few	months	or	years);	it	makes	no	sense	to	apply	simplistic	
bias	corrections	to	these	forecasts.	
	

• Quantifying	the	timescales	on	which	different	climatic	variables	are	captured	
by	an	ensemble	is	a	key	desirable.		The	above	begs	the	question	of	how	one	is	
to	discover	how	far	out	forecasts	can	be	run	before	they	stop	being	sensible.			
One	possible	solution	is	to	look	at	model	ensembles,	which	can	provide	a	
collection	of	trajectories	of	the	future.		The	key	is	to	identify	the	drivers,	and	
to	get	them	correct	–	this	task	is	thus	about	assessing	the	timescale	(Tau)	on	
which	the	range	of	the	ensemble	fails	to	capture	behavior	in	reality,	and	in	
particular	the	behavior	of	the	drivers	(example:	El	Nino).	This	could	be	as	a	
function	of	some	independent	variable,	for	example,	location	x,	e.g.,	Tau(x).			
Note	that	this	does	require	us	to	distinguish	between	driving	phenomena	and	
target	phenomena.		For	example,	not	being	able	to	forecast	a	target	
phenomenon	at	time	t*	need	not	imply	we	cannot	forecast	it	at	2t*,	but	rather	
reveals	our	inability	to	forecast	the	drivers	of	the	target	phenomena.		Multi-
model	(MM)	ensembles	can	help	us	understand	these	connections,	and	the	
model	properties	that	enable	them,	e.g.,	fidelity	of	the	driver(s).	

	
o Example,	in	long-term	simulations:	When	does	bias	correction	(or	

projection	of	results	from	model	space	to	reality)	start	to	fail?	Even	if	
we	bias-correct	the	models	locally	so	that	their	climatology	locally	
looks	right,	this	will	fail	after	some	time.		We	could	measure	this,	and	
define	a	local	Tau(x).	

o Example	in	seasonal	prediction:	We	typically	initialize	an	ensemble	of	
initial	conditions	with	the	observed	state	–	and	then	we	can	ask,	when	
does	some	model	solution(s)/ensemble	diverge	clearly	from	reality	
(unable	to	shadow)?		This	would	define	Tau(x).	

	
• An	important	issue	is	the	ability	to	identify	where/when	model	failures	occur	

today,	e.g.,	using	today’s	models.		One	way	to	proceed	is	to	identify	geographic	
locations	(viz.,	x	=	S.	Africa/strong	El	Ninos;	El	Nino	2014)	where	Tau(x)	is	
relatively	short,	e.g.,	where	seasonal	forecasts	are	known	to	fail.	



		
Identifying	regional	failures,	i.e.	times	and	locations	where	a	climate	
prediction	ensemble	fails	in	the	sense	that	the	model	is	unable	to	produce	
any	ensemble	members	that	represent	the	observed	state,	is	an	important	
example	of	what	we	aim	for.		Similarly,	one	could	ask	–	alternatively,	for	
multi-model	ensembles	(MMEs)	–	if	some	model	members	do	get	certain	
phenomena	right,	and	others	don’t?	In	fact	each	model	might	outperform	
every	other	model	robustly	on	some	set	of	phenomena	(in	the	short	term),	
given	the	number	of	targets:	Perhaps	that	can	be	used	to	identify	the	physical	
mechanisms	for	the	model	failures?		This	affords	the	opportunity	for	case	
studies	on	short-term	climate	that	examine	individual	members	of	each	
ensemble	in	detail.	Tracking	the	subsequent	temporal	evolution	of	such	
“local	in	time	and	space”	failures	also	permits	the	determination	how	the	
forecast	loses	utility	at	longer	times	and	distant	regions.	
	

2. Optimal	use	of	multi-model	ensembles	
	
An	important	issue	is	relates	to	better	ways	to	use	multi-model	ensembles	(MMEs)	
in	the	extrapolatory	range.		Thus,	in-sample	comparison	with	past	measurements	
(which	have	been	used	to	guide	model	development)	is	potentially	misleading	–	
unless,	of	course,	the	model	fails	in	such	comparisons.	
	

• Consider	a	multi-model	ensemble	where	each	model	contributes	an	initial	
condition	(IC)	ensemble.	As	time	passes,	each	IC	ensemble	tends	to	separate	
into	distinct	future	distributions.		Does	this	separation	indicate	(a)	different	
initializations	(i.e.,	the	models	would	shadow	each	other	given	slightly	
different	initial	conditions),	or	(b)	different	emphasis	in	the	physics	of	each	
model,	or	(c)	physical	inconsistencies	between	the	models,	or	(d)	identifiable	
loss	of	fidelity	in	some	subset	of	models?	

	
Surely	one	aim	of	a	MME	is	to	yield	distributions	of	trajectories	("tubes")	that	
disagree	in	the	fine	details	but	agree	on	the	big	picture.		When	a	coherent	
"big	picture"	ceases	to	exist,	do	we	have	any	confidence	in	any	of	the	
individual	models	(as	we	know	the	details	matter	in	order	one	phenomena)?		

	
• How	do	we	interpret	the	results	of	a	multi-model	ensemble?		What	types	of	

conclusions	might	we	draw,	other	than	subsets	of	models	are	“obviously	
erroneous”	or	“obviously	consistent”?		

o When	different	MM	ensembles	offer	very	different	outcome	worlds,	
and	we	agree	that	the	detail	of	implementation	(things	we	know	
about)	have	a	first	order	impact,	we	are	faced	with	(at	least)	two	
options:	(1)	the	outputs	are	at	best	mis-informative;	or	(2)	we	find	a	
method	of	using	“fuzzy”	probabilities	under	the	claim/hope	that	each	
ensemble	under	each	model	has	some	hope	in	Hades	of	saying	
something	warm	and	fuzzy.		



o Note	that	on	the	time	scales	over	which	very	different	model	
structures	yield	similar	future	distributions,	we	then	know	that	the	
(implementation	of)	details	(we	know	of)	do	not	matter.		

• We	suggest	that	we	can	identify	erroneous	(unreliable)	predictions	by	
examining	a	set	of	output	quantities	from	each	of	the	models	to	determine	if	
any	of	the	set	of	output	quantities	(from	any	given	model)	is	physically	
unreasonable,	and	so	obviously	erroneous.	(This	would	be	an	example	of	the	
use	of	expert	judgment.)		Since	we	have	no	data	about	the	future,	this	could	
be	used	as	a	surrogate	for	observational	data,	and	could	be	a	possible	way	to	
quantify	a	value	of	Tau,	i.e.,	a	minimum	length	of	time	for	which	we	do	not	
have	evidence	that		the	model	is	unreliable.	

	
3.	Using	dynamics	to	improve	model	trajectories.	
	
When	model	trajectories	are	not	matching	reality,	one	can	explore	model	
	inadequacy	by	finding	ways	to	“nudge”	the	model	trajectory,	to	be	close	to	reality.	
The	needed	nudges	(which	may	also	be	large,	e.g.,	“bashes”)	might	indicate	features	
of	the	model	that	could	be	problematic.	
	
As	another	possibility,	one	can	use	the	existence	of	shadowing	orbits	to	find	better	
initialization	procedures	which	in	turn		produce	better	distributions	of	trajectories.		
If	this	cannot	be	done,	or	if	the	suggested		initializations	are	unreasonable,	this	
indicates	a	limitation	of	the	model.	
		
We	note	that	the	notions	of	“shadowing”	and	“nudging”	need	to	be	clearly	
differentiated.		A	model	can	shadow	if	a	trajectory	exists	that	stays	“close”	to	the	
target	time	series	of	states.		(N.b.:	there	are	three	definitions	of	“close”,	leading	to	
epsilon-shadows,	iota-shadows	and	phi-shadows).			A	forecast	system	can	fail	to	be	
informative	even	when	the	model	can	shadow,	simply	because,	say,	the	ensemble	
generation	scheme	failed	to	locate	initial	conditions	which	shadow.		Alternatively,	
there	may	be	no	trajectory	of	the	model		(with	probability	one)	that	shadows.		In	
this	case,	there	may	be	pseudo-orbits	that	stay	close	to	the	targets.		(Pseudo-orbits	
are	not	trajectories	of	the	model,	but	segments	of	trajectory	that	are	periodically	
“nudged”	(thus,	violating	the	dynamics	of	the	model)	so	as	to	stay	on/near	track.)	
	
III. 	Enhancing	Predictive	Aspects	of	Climate	Modeling		
	
The	question	we	address	here	is	how	one	might	go	about	identifying	aspects	of	
climate	change	that	are	both	of	interest	to	the	“users”	of	models,	and	are	plausibly	
forecast	with	some	“skill”	by	the	models.	
		
1. We	identified	a	potentially	productive	approach:		Define	a	set	of	events	that	

historically	have	had	very	low	probability,	but	whose	probability	is	increased	
significantly	as	a	result	of	climate	change.	
	



The	aim	is	to	avoid	post	hoc	attribution	of	events	by	recasting	the	prediction	
problem	for	climate	change.		This	could	be	done	by	a	priori	identifying	a	set	of	
events	that	would	not	be	expected	to	be	observed	without	climate	change.		The	
observation	of	a	sufficient	number	of	such	events	would	therefore	be	evidence	for	
climate	change.	What	we	want	to	do	is	to	define	a	set	of	events	taking	into	account	
variables	for	which	we	can	detect	significant	change	(and	we	expect	significant	
change	on	a	physical	basis);	furthermore,	we	will	need	to	determine	what	that	
“sufficient	number”	ought	to	be.		The	key	element	here	is	that	we	define	ahead	of	
time	what	might	change,	instead	of	doing	attribution	of	events	that	have	been	
observed,	after	the	fact.	
	
All	this	will	involve	completing	the	following	tasks:	

	
a. Use	our	physics	knowledge	to	define	rare	events	that	may	be	unprecedented,	

and	might	occur	more	frequently	because	of	climate	change.	Physics	will	also	
help	to	identify	what	would	be	the	mechanisms	(teleconnections,	changes	in	
blocking	etc.,	changes	in	ocean	circulation)	
	

b. Identify	variables	that	are	most	useful	to	users	and	to	the	general	public.	We	
may	wish	to	construct	different	baskets	based	on	different	user	groups.	

	
c. Use	statistics	to	define	how	many	samples	would	be	needed	in	order	to	

characterize	significant	change.	Exploit	the	fact	that	one	could	operate	at	
different	spatial	and	temporal	scales	to	get	more	samples.	Exclude	variables	
where	this	is	not	possible.	Empirical	sampling	from	model	simulations	can	
also	help	to	assess	statistical	significance.	

	
d. Construct	proof-of-concept	analyses/experiments	using	model	simulations.	

	
e. An	additional	idea	is	that	for	each	basket	we	could	build	one	single	index	of	

change	(possibly	similar	to	the	idea	of	climate	hot-spots	indices).	This	could	
be	tracked	historically.	See	for	example	the	HY-INT	index	of	hydroclimatic	
change	by	Giorgi	et	al.	2011	(doi:10.1175/2011JCLI3979.1.)	

	
The	goal	articulated	above	can	also	be	addressed	by	examining	changes	in	the	
distributions,	such	as	changes	in	the	tails	of	the	distributions	(e.g.,	changes	in	
extreme	precipitation),	or	changes	in,	viz.,	the	position	of	quartile	distributions.		The	
idea	would	be	to	predict	expected	changes	in	distribution	functions	for	some	
particular	observable,	based	on	our	physics/model	understanding	of	climate	
change,	and	then	to	ask	whether	historical	comparison	of	distributions	for	such	
observables	show	significant	differences.		It	will	be	important	to	identify	such	
observables	for	which	such	comparisons	have	NOT	already	been	made,	since	the	
strength	of	this	approach	is	to	make	a	priori	predictions	(not	post-dictions)	of	
expected	climate	change-driven	distribution	function	evolution.		
	
2. “Packaging”	



	
The	idea	is	to	make	information	usable	for	the	greatest	number	of	customers	
through	a	nested	binary	system.		The	core	message	is	a	binary	one:		
	

(a) I	need	to	pay	attention,	
or	

(b) Not	to	worry.	
	
If	(a),	then	there	are	two	options:	
	

(i) Our	capacity	to	predict	the	future	is	severely	compromised	
and	

(ii) We	have	reason	for	concern	–	at	best,	we	may	know	that	the	chance	of	
exceeding	a	user-defined	threshold	is	greater	than	a	certain	level	of	interest.	

	
This	leads	to	a	traditional	stoplight	(“tercile	“)	chart	partitioning:	Green	(no	worries)	
Yellow	(pay	attention:	I	have	lost	forecast	capability),	and	Red	(I	have	evidence	that	
thresholds	will	likely	be	exceeded).	
	
Events	might	include	specific	local	events	such	as	floods	or	intense	precipitation,	or	
might	be	regional	impacts	such	as	drought	in	South	Africa	or,	more	than	x	stations	
experiencing	some	climatic	phenomena.		

	
It	is	critical	that	the	structure	and	flow	of	these	decision	trees	be	transparent,	and	
may	prove	critical	that	information	structures	beyond	those	of	probability	be	
considered	(non-probabilistic	odds,	for	example).	
	
3. Studying	and	comparing	ensembles	from	a	range	of	existing	models	
		
The	idea	here	is	to	take	advantage	of	existing	(and	possibly	additionally	computed)	
ensembles,	based	on	existing	models,	to	extract	information	that	can	inform	risk	
assessments.		For	example:	
	

o Diagnose	model	errors.		Substantial	differences	in	model	results	likely	point	
to	model	inadequacies	in	at	least	one	of	the	models.		Diagnosing	why	the	
models		diverge	should	provide	useful	insight	into	limitations	of	specific	
models	and	provide	indications	of	what	physical	processes	need	to	be	
modeled	more	accurately.		Once	these	inadequacies	have	been	identified,	the	
relevant	sub-	models	could	be	identified	and	modified	to	improve	the	sub-
model’s	representation	of	the	real	world.		

	
o Identify	model	limitations.		These	diagnostics	of	specific	model	weaknesses	

could	be	used	as	guidance	to	forecasters	on	the	limits	of	a	model’s	usability.	
For	example,	if	a	model	tends	to	persist	El	Nino	features	too	long	into	the	
boreal	spring,	we	may	decide	to	only	use	this	model	for	seasonal	forecasts	
out	to	late	summer.	



		
o Inform	forecasters.		How	can	we	use	our	understanding	of	the	observed	

climate	dynamics	of	a	region,	combined	with	a	diagnostics	of	the	model	
climate	to	produce	forecasts?		For	example,	imagine	we	are	trying	to	make	a	
prediction	at	climate	change	timescales	for	South	Asia.		We	would	start	with	
identifying	the	important	controls	on	climate	variability	in	the	real	world,	
such	as	the	monsoon	trough.	We	would	then	examine	how	the	monsoon	
trough	changes	in	the	model	climate.		This	approach	would	be	more	useful	
than	downscaling,	especially	in	areas	with	minimal	global	model	accuracy.			

	
4. Will	there	be	“changes”	in	predictability,	in	the	future,	on	short	time	scales	(say	

days	to	weeks)	due	to	changes	in	the	climate	system	over	long	time	scales	(decades	
to	centuries)?		

	
To	answer	this	question,	we’re	led	to	ask	the	following:	
	
a. How	would	we	design	experiments	to	shed	light	on	this	question?	
	

b. What	are	the	diagnostics	(both	observational	and	ensemble-based)	we	would	
use	in	order	to	answer	this	question?	

	
c. Which	(if	any)	changes	would	have	the	greatest	consequence?	Be	easiest	to	
	address?			

	
IV.	Final	Discussion	
	
Our	final	discussion	led	us	to	identify	four	distinct	activities	that	appear	to	be	
feasible	at	this	point	in	time:	
	
1. In	order	to	progress,	it	is	evident	that	we’ll	have	to	show	progress	on	at	least	one	

seasonal	test	case	–	such	as,	for	example,	the	El	Nino/S.	Africa	connection.		The	
key	will	then	be	to	see	whether	one	can	actually	demonstrate	that	something	
useful	can	be	learned.	
	

2. Next,	we	believe	that	“floating”	a	test	set	(=	“basket”)	of	events	that	can	be	used	
to	“detect”	or	“confirm”	our	understanding	of	climatic	change	is	both	possible	
and	will	prove	useful.		Issues	will	include	how	we	chose	such	a	test	set,	and	how	
we	manage	to	stay	away	from	the	bugaboo	of	“full	attribution”.		This	approach	is	
somewhat	risky	because	we	are	not	in	a	position	to	evaluate	the	likelihood	of	
event	classes	occurring	in	the	future	that	have	(on	the	basis	of	what	we	know	
about	the	past)	extremely	low	probability	of	occurrence	(viz.,	have	never	
happened	before).		A	similar	concern	(without	the	risk)	will	plague	attribution	
studies.	

	
3. In	order	to	deal	with	the	potential	limitation	of	#2,	we	might	“float”	a	set	of	event	

distributions	which	we	have	reason	to	believe	(on	the	basis	of,	e.g.,	expert	



judgment)	are	likely	(no	computed	probability!)	to	change	significantly	over	
some	period	into	the	future	–	with	an	aim	similar	to	that	of	#2.		The	choice	of	
event	distributions	should	stay	away	from	event	distributions	for	which	such	
comparisons	have	already	been	made	–	we	want	to	do	the	choice	a	priori	…	

	
4. Position	papers.		We	identified	four	domains	in	which	it	will	be	useful	to	“plant	

our	flag”:	
	

a. The	solicitation	and	presentation	of	expert	judgment	and	potential	use	of	
“fuzzy”	probabilities,	non-probabilistic	odds,	and	so	on.	

b. The	development	of	rigorous	techniques	for	capturing	expert	judgment	
	

c. Provide	examples	of	traceable	accountings	of	uncertainties	for	every	
significant	example	in	the	Summary	for	Policy	Makers	(SPM),	as	suggested	in	
the	current	guidance	notes..	

	
d. When	do	you	pull	the	plug	on	a	model,	i.e.,	what	are	the	diagnostics	that	tell	

us	that	models	are	becoming	inadequate	(n.b.:	“inadequate”	could	refer	to	
general	inadequacy,	i.e.,	a	model	is	basically	useless	for	any	interesting	
forecasting,	or	could	refer	to	inadequacy	in	a	particular	forecasting	domain).		
Perhaps	we	can	also	discuss	diagnostics	that	tell	us	that	a	model	is	adequate	
–	probably	a	much	harder	problem.		Finally,	discussions	of	model	failures	
may	well	be	very	informative	for	further	model	development	and	
improvement,	and	improved	physics	understanding.	

	
	
Appendix:	Vocabulary	
	
Bias:		In	the	context	of	seasonal	prediction,	bias	is	the	temporally	varying	(with	
month	of	the	year)	component		of	the	systematic	error(s).		
	
Ensemble:	A	set	of	model	simulations	(which	may	be	differentiated	by	different	
initial	conditions,	different	underlying	models,	or	different	model	parameters)	
	
MME:		A	Multi-Model	Ensemble	is	a	set	of	simulations	produced	using	different	
climate	models		
	
Nudges:	Small	perturbations	to	a	model	trajectory	designed	to	accomplish	some	
particular	aim	(keeping	the	trajectory	near	a	sequence	of	observations,	for	
example).		
	
Shadow	trajectory:	A	model	trajectory	that	remains	near	(shadows)	a	sequence	of	
observations	to	within	a	given	tolerance.	Iota-shadows,	for	instance,	remain	close	
enough	to	the	target	observations	that	one	could	argue	the	observations	were	in	fact	
generated	by	the	trajectory,	given	the	observational	noise	model.		The	existence	of	a	
shadowing	trajectory	does	not	guarantee	it	would	ever	be	found	in	an	operational	



ensemble,	but	the	time	scales	on	which	no	trajectory	can	shadow	reveals	a	true	limit	
of	predictability	of	that	model..			
	
	
	
	
	
	
	


