Variational existence and stability theory for hydroelastic solitary waves

Erik Wahlén, Lund University

Joint with Mark Groves and Benedikt Hewer, Saarland University

Banff, November 3, 2016

$$y = -d$$

$$y = -1$$

Equations of motion

(Plotnikov & Toland '11, Blyth, Parau & Vanden-Broeck '11)

$$\Delta \phi = 0 \qquad -1 < y < \eta$$

$$\phi_y = 0 \qquad y = -1$$

$$\eta_t + \phi_x \eta_x - \phi_y = 0 \qquad y = \eta$$

$$\phi_t + \frac{1}{2} |\nabla \phi|^2 + \eta + \gamma H(\eta) = 0 \qquad y = \eta$$

$$H(\eta) = \kappa_{ss} + \frac{1}{2} \kappa^3, \qquad \gamma = \frac{\mathcal{D}}{\rho g d^4}$$

Equations of motion

(Plotnikov & Toland '11, Blyth, Parau & Vanden-Broeck '11)

$$\begin{split} \Delta \phi &= 0 \qquad -1 < y < \eta \\ \phi_y &= 0 \qquad y = -1 \\ \eta_t + \phi_x \eta_x - \phi_y &= 0 \qquad y = \eta \\ \phi_t + \frac{1}{2} |\nabla \phi|^2 + \eta + \gamma H(\eta) = 0 \qquad y = \eta \\ H(\eta) &= \frac{1}{(1 + \eta_x^2)^{\frac{1}{2}}} \left[\frac{1}{(1 + \eta_x^2)^{\frac{1}{2}}} \left(\frac{\eta_{xx}}{(1 + \eta_x^2)^{\frac{3}{2}}} \right)_x \right]_x + \frac{1}{2} \left(\frac{\eta_{xx}}{(1 + \eta_x^2)^{\frac{3}{2}}} \right)^3 \end{split}$$

Equations of motion

(Plotnikov & Toland '11, Blyth, Parau & Vanden-Broeck '11)

$$\begin{aligned} \Delta \phi &= 0 & -1 < y < \eta \\ \phi_y &= 0 & y = -1 \\ \eta_t + \phi_x \eta_x - \phi_y &= 0 & y = \eta \\ \phi_t + \frac{1}{2} |\nabla \phi|^2 + \eta + \gamma H(\eta) &= 0 & y = \eta \\ H(\eta) &= \frac{1}{(1 + \eta_x^2)^{\frac{1}{2}}} \left[\frac{1}{(1 + \eta_x^2)^{\frac{1}{2}}} \left(\frac{\eta_{xx}}{(1 + \eta_x^2)^{\frac{3}{2}}} \right)_x \right]_x + \frac{1}{2} \left(\frac{\eta_{xx}}{(1 + \eta_x^2)^{\frac{3}{2}}} \right)^3 \end{aligned}$$

Travelling (solitary) wave: $\eta = \eta(x - ct)$, $\phi = \phi(x - ct, y)$

Other models

• Euler-Bernoulli: $H(\eta) = \eta_{xxxx}$

• Kirchhoff-Love: $H(\eta) = \partial_x^2 \kappa$

Heuristics

$$\eta(x-ct) \sim e^{ik(x-ct)}, \qquad c^2 = (1+\gamma k^4) \frac{\tanh k}{k}$$

Dispersion relation:

where

$$\eta(x) = \varepsilon v(\varepsilon x) e^{ik_0 x} + \text{c.c.} + O(\varepsilon^2)$$

where

$$\eta(x) = \varepsilon v(\varepsilon x) e^{ik_0x} + {\rm c.c.} + O(\varepsilon^2)$$

(up to constant factors)

where

$$\eta(x) = \varepsilon v(\varepsilon x) e^{ik_0x} + \mathrm{c.c.} + O(\varepsilon^2)$$

(up to constant factors)

```
Focusing (+) if \gamma > \gamma_0 \approx 3.37 \times 10^{-10}
Typical values:
```

 $\gamma \approx 10^{-5}$ (McMurdo sound) $\gamma \approx 10^{-2}$ (Lake Saroma)

where

$$\eta(x) = \varepsilon v(\varepsilon x) e^{ik_0x} + {\rm c.c.} + O(\varepsilon^2)$$

(up to constant factors)

```
Focusing (+) if \gamma > \gamma_0 \approx 3.37 \times 10^{-10}
Typical values:
\gamma \approx 10^{-5} (McMurdo sound)
\gamma \approx 10^{-2} (Lake Saroma)
```

In the focusing case NLS has solitary waves

Hamiltonian formulation

$$\mathcal{H}(\eta,\xi) = \frac{1}{2} \iint_{\Omega} |\nabla \phi|^2 \, dx \, dy + \frac{1}{2} \int_{\mathbb{R}} \eta^2 \, dx + \frac{\gamma}{2} \int_{\mathbb{R}} \kappa^2 \, ds$$

Hamiltonian formulation

$$\mathcal{H}(\eta,\xi) = \frac{1}{2} \int_{\mathbb{R}} \left\{ \xi G(\eta)\xi + \eta^2 + \gamma \frac{\eta_{xx}^2}{(1+\eta_x^2)^{5/2}} \right\} \, dx$$

Hamiltonian formulation

$$\mathcal{H}(\eta,\xi) = \frac{1}{2} \int_{\mathbb{R}} \left\{ \xi G(\eta)\xi + \eta^2 + \gamma \frac{\eta_{xx}^2}{(1+\eta_x^2)^{5/2}} \right\} \, dx$$

Here $\xi = \phi|_{y=\eta}$ and $G(\eta)$ is the Dirichlet-Neumann operator $G(\eta)\xi = \sqrt{1+\eta_x^2}\,\partial_n\phi,$

$\Delta \phi = 0,$	$-1 < y < \eta$
$\phi=\xi,$	$y = \eta$
$\phi_y = 0,$	y = -1

Hamiltonian formulation

$$\mathcal{H}(\eta,\xi) = \frac{1}{2} \int_{\mathbb{R}} \left\{ \xi G(\eta)\xi + \eta^2 + \gamma \frac{\eta_{xx}^2}{(1+\eta_x^2)^{5/2}} \right\} \, dx$$

Here $\xi=\phi|_{y=\eta}$ and $G(\eta)$ is the Dirichlet-Neumann operator

$$G(\eta)\xi = \sqrt{1 + \eta_x^2}\,\partial_n\phi,$$

$\Delta \phi = 0,$	$-1 < y < \eta$
$\phi = \xi,$	$y = \eta$
$\phi_y = 0,$	y = -1

Conservation of total momentum

$$\mathcal{I}(\eta,\xi) = -\int_{\mathbb{R}} \xi_x \eta \, dx$$

Hamiltonian formulation

$$\mathcal{H}(\eta,\xi) = \frac{1}{2} \int_{\mathbb{R}} \left\{ \xi G(\eta)\xi + \eta^2 + \gamma \frac{\eta_{xx}^2}{(1+\eta_x^2)^{5/2}} \right\} \, dx$$

Here $\xi=\phi|_{y=\eta}$ and $G(\eta)$ is the Dirichlet-Neumann operator

$$G(\eta)\xi = \sqrt{1 + \eta_x^2}\,\partial_n\phi,$$

$\Delta \phi = 0,$	$-1 < y < \eta$
$\phi = \xi,$	$y = \eta$
$\phi_y = 0,$	y = -1

Conservation of total momentum

$$\mathcal{I}(\eta,\xi) = -\int_{\mathbb{R}} \xi_x \eta \, dx$$

Travelling waves are critical points of $\mathcal{H}-c\mathcal{I}$

Theorem

Let $B_R(0) = \{\eta \in H^2(\mathbb{R}) : \|\eta\|_{H^2} < R\}$, R > 0 given.

Assume that $\gamma > \gamma_0$ and $0 < \mu \ll 1$.

Theorem

Let $B_R(0) = \{\eta \in H^2(\mathbb{R}) \colon \|\eta\|_{H^2} < R\}$, R > 0 given.

Assume that $\gamma > \gamma_0$ and $0 < \mu \ll 1$.

• The set D_{μ} of minimisers of $\mathcal{H}(\eta, \xi)$ subject to the constraint $\mathcal{I}(\eta, \xi) = 2\mu$ in the set $B_R(0) \times H^{1/2}_{\star}(\mathbb{R})$ is nonempty.

Theorem

Let $B_R(0) = \{\eta \in H^2(\mathbb{R}) \colon \|\eta\|_{H^2} < R\}$, R > 0 given.

Assume that $\gamma > \gamma_0$ and $0 < \mu \ll 1$.

- The set D_{μ} of minimisers of $\mathcal{H}(\eta, \xi)$ subject to the constraint $\mathcal{I}(\eta, \xi) = 2\mu$ in the set $B_R(0) \times H^{1/2}_{\star}(\mathbb{R})$ is nonempty.
- ► The minimisers satisfy ||η||₂ ≤ Cµ^{1/2} uniformly over D_µ.

Theorem

Let $B_R(0) = \{\eta \in H^2(\mathbb{R}) \colon \|\eta\|_{H^2} < R\}$, R > 0 given.

Assume that $\gamma > \gamma_0$ and $0 < \mu \ll 1$.

- The set D_{μ} of minimisers of $\mathcal{H}(\eta, \xi)$ subject to the constraint $\mathcal{I}(\eta, \xi) = 2\mu$ in the set $B_R(0) \times H^{1/2}_{\star}(\mathbb{R})$ is nonempty.
- The minimisers satisfy $\|\eta\|_2 \leq C\mu^{1/2}$ uniformly over D_{μ} .
- Every minimising sequence {(η_n, ξ_n)} in B_R(0) × H^{1/2}_{*}(ℝ) converges (up to subsequences and translations) to an element of D_μ.

Theorem

Let $B_R(0) = \{\eta \in H^2(\mathbb{R}) \colon \|\eta\|_{H^2} < R\}$, R > 0 given.

Assume that $\gamma > \gamma_0$ and $0 < \mu \ll 1$.

- The set D_{μ} of minimisers of $\mathcal{H}(\eta, \xi)$ subject to the constraint $\mathcal{I}(\eta, \xi) = 2\mu$ in the set $B_R(0) \times H^{1/2}_{\star}(\mathbb{R})$ is nonempty.
- The minimisers satisfy $\|\eta\|_2 \leq C\mu^{1/2}$ uniformly over D_{μ} .
- Every minimising sequence {(η_n, ξ_n)} in B_R(0) × H^{1/2}_{*}(ℝ) converges (up to subsequences and translations) to an element of D_μ.

Function space for ξ :

$$\begin{aligned} H_{\star}^{1/2}(\mathbb{R}) &= \{ u \in H_{\mathsf{loc}}^{s}(\mathbb{R}) \colon u' \in H^{-1/2}(\mathbb{R}) \} / \mathbb{R} \\ \| u \|_{H_{\star}^{1/2}} &= \| u' \|_{H^{-1/2}} \end{aligned}$$

The set D_{μ} of minimisers is conditionally energetically stable.

The set D_{μ} of minimisers is conditionally energetically stable.

Remarks:

The set D_{μ} of minimisers is conditionally energetically stable.

Remarks:

 Better existence and stability results than for capillary-gravity waves

The set D_{μ} of minimisers is conditionally energetically stable.

Remarks:

- Better existence and stability results than for capillary-gravity waves
- ► So far no global existence results under these conditions

The set D_{μ} of minimisers is conditionally energetically stable.

Remarks:

- Better existence and stability results than for capillary-gravity waves
- ► So far no global existence results under these conditions
- Local well-posedness: Ambrose & Siegel (to appear in PRSE)

Proof of the theorem

Step 1. Reduction from phase space to configuration space

Proof of the theorem

Step 1. Reduction from phase space to configuration space

Fix η and minimise H(η, ξ) subject to I(η, ξ) = 2μ. Unique minimiser:

$$\xi_\eta = c_\eta G(\eta)^{-1} \eta_x$$

Proof of the theorem

Step 1. Reduction from phase space to configuration space

Fix η and minimise H(η, ξ) subject to I(η, ξ) = 2μ. Unique minimiser:

$$\xi_{\eta} = c_{\eta} G(\eta)^{-1} \eta_x$$

Minimise

$$\mathcal{J}(\eta) = \mathcal{H}(\eta, \xi_{\eta}) = \frac{\mu^2}{\mathcal{L}(\eta)} + \mathcal{K}(\eta)$$

where

$$\mathcal{L}(\eta) = \frac{1}{2} \int_{\mathbb{R}} \eta_x G(\eta)^{-1} \eta_x \, dx$$
$$\mathcal{K}(\eta) = \int_{\mathbb{R}} \left\{ \frac{1}{2} \eta^2 + \gamma \frac{\eta_{xx}^2}{(1+\eta_x^2)^{5/2}} \right\} \, dx$$

Step 1.5. Periodic problem with large period $(H^s \subset \subset H^r, s > r)$

Step 1.5. Periodic problem with large period $(H^s \subset \subset H^r, s > r)$

Existence of a minimiser $\eta \in \overline{B_R(0)} \setminus \{0\}$ by standard arguments

Step 1.5. Periodic problem with large period $(H^s \subset \subset H^r, s > r)$

Existence of a minimiser $\eta\in\overline{B_R(0)}\setminus\{0\}$ by standard arguments

Problem: Have to show that $\|\eta\|_2 < R!$

Step 1.5. Periodic problem with large period $(H^s \subset C H^r, s > r)$

Existence of a minimiser $\eta \in \overline{B_R(0)} \setminus \{0\}$ by standard arguments

Problem: Have to show that $\|\eta\|_2 < R!$

► Coercivity estimate (in *B_R*(0))

 $\|\eta\|_{H^2}^2 \le C\mathcal{J}(\eta)$

Step 1.5. Periodic problem with large period $(H^s \subset H^r, s > r)$

Existence of a minimiser $\eta\in\overline{B_R(0)}\setminus\{0\}$ by standard arguments

Problem: Have to show that $\|\eta\|_2 < R!$

▶ Coercivity estimate (in *B_R*(0))

 $\|\eta\|_{H^2}^2 \le C\mathcal{J}(\eta)$

▶ For $0 < \mu \ll 1$, \exists test function

$$\eta^{\mu}_{\star}(x) = \mu \operatorname{sech}(\mu x) \cos(k_0 x) - A\mu^2 \operatorname{sech}^2(\mu x) \cos(2k_0 x) - B\mu^2 \operatorname{sech}^2(\mu x),$$

such that

$$\mathcal{J}(\eta^{\mu}_{\star}) < 2\mu$$

Problem: The compact embedding fails on \mathbb{R} ! It can fail in two ways (up to translations):

Problem: The compact embedding fails on \mathbb{R} ! It can fail in two ways (up to translations):

Vanishing: Easy to rule out

Problem: The compact embedding fails on \mathbb{R} ! It can fail in two ways (up to translations):

- Vanishing: Easy to rule out
- Dichotomy: This is the main difficulty

Problem: The compact embedding fails on \mathbb{R} ! It can fail in two ways (up to translations):

- Vanishing: Easy to rule out
- Dichotomy: This is the main difficulty

To rule out dichotomy, we show that

$$I(\mu) = \inf \{ \mathcal{J}(\eta) \colon \eta \in B_R(0) \}, \quad 0 < \mu \ll 1,$$

is strictly subhomogeneous:

$$I(a\mu) < aI(\mu), \quad a > 1$$

Problem: The compact embedding fails on \mathbb{R} ! It can fail in two ways (up to translations):

- Vanishing: Easy to rule out
- Dichotomy: This is the main difficulty

To rule out dichotomy, we show that

$$I(\mu) = \inf \{ \mathcal{J}(\eta) \colon \eta \in B_R(0) \}, \quad 0 < \mu \ll 1,$$

is strictly subhomogeneous:

$$I(a\mu) < aI(\mu), \quad a > 1$$

Implies strict subadditivity:

$$I(\mu_1 + \mu_2) < I(\mu_1) + I(\mu_2)$$

• The operator $K(\eta) = -\partial_x G(\eta)^{-1} \partial_x$ is non-local

- ▶ The operator $K(\eta) = -\partial_x G(\eta)^{-1} \partial_x$ is non-local
- The nonlinearity in the equation is not a pure power

- ▶ The operator $K(\eta) = -\partial_x G(\eta)^{-1} \partial_x$ is non-local
- The nonlinearity in the equation is not a pure power

Solutions:

- \blacktriangleright The operator $K(\eta)=-\partial_x G(\eta)^{-1}\partial_x$ is non-local
- The nonlinearity in the equation is not a pure power

Solutions:

First problem solved by showing that $K(\eta)$ is 'almost' local

- The operator $K(\eta) = -\partial_x G(\eta)^{-1} \partial_x$ is non-local
- The nonlinearity in the equation is not a pure power

Solutions:

- First problem solved by showing that $K(\eta)$ is 'almost' local
- The other problem is the interesting part

Idea:

For the test function we find that

$$\mathcal{J}(\eta^{\mu}_{\star}) = 2c_0\mu + I_{\mathsf{NLS}}\mu^3 + O(\mu^4),$$

where $I_{\rm NLS} < 0$ is the ground state energy for NLS

Idea:

For the test function we find that

$$\mathcal{J}(\eta^{\mu}_{\star}) = 2c_0\mu + I_{\mathsf{NLS}}\mu^3 + O(\mu^4),$$

where $I_{\rm NLS} < 0$ is the ground state energy for NLS

We try to prove strict subhomogeneity by approximating with NLS

Idea:

For the test function we find that

$$\mathcal{J}(\eta^{\mu}_{\star}) = 2c_0\mu + I_{\mathsf{NLS}}\mu^3 + O(\mu^4),$$

where $I_{\rm NLS} < 0$ is the ground state energy for NLS

We try to prove strict subhomogeneity by approximating with NLS

Problem: Are near minimisers similar to η^{μ}_{\star} ?

Properties of minimising sequences

Any minimising sequence satisfies

$$\|\mathcal{J}'(\eta_n)\|_{H^{-2}} \to 0 \text{ and } \|\eta_n\|_{H^2}^2 \le C\mu$$

Properties of minimising sequences

Any minimising sequence satisfies

$$\|\mathcal{J}'(\eta_n)\|_{H^{-2}} \to 0 \text{ and } \|\eta_n\|_{H^2}^2 \le C\mu$$

We use these properties to show that η_n has a form similar to η_\star^μ

 $\eta_n = \eta_{n,1} + \eta_{n,2} + \eta_{n,3}$ where:

$$\eta_n = \eta_{n,1} + \eta_{n,2} + \eta_{n,3}$$
 where:
 $\hat{\eta}_{n,1}$ has support near $\pm k_0$ and

$$\eta_{n,1} = \mu v_n(\mu x) e^{ik_0 x} + c.c.$$

with $\|v_n\|_{H^2}^2 \leq C$

$$\eta_n = \eta_{n,1} + \eta_{n,2} + \eta_{n,3}$$
 where:
 $\hat{\eta}_{n,1}$ has support near $\pm k_0$ and
 $\eta_{n,1} = \mu v_n(\mu x) e^{ik_0 x} + c.c.$

with $||v_n||_{H^2}^2 \leq C$ • $\hat{\eta}_{n,2}$ has support near $0, \pm 2k_0$, $\eta_{n,2}$ is an explicit quadratic expression in $\eta_{n,1}$, and

$$\|\eta_{n,2}\|_{H^2}^2 \le C\mu^3$$

$$\begin{split} \eta_n &= \eta_{n,1} + \eta_{n,2} + \eta_{n,3} \text{ where:} \\ \bullet \ \hat{\eta}_{n,1} \text{ has support near } \pm k_0 \text{ and} \\ \eta_{n,1} &= \mu v_n(\mu x) e^{ik_0 x} + c.c. \\ \text{with } \|v_n\|_{H^2}^2 \leq C \\ \bullet \ \hat{\eta}_{n,2} \text{ has support near } 0, \pm 2k_0, \\ \eta_{n,2} \text{ is an explicit quadratic expression in } \eta_{n,1}, \text{ and} \end{split}$$

$$\|\eta_{n,2}\|_{H^2}^2 \le C\mu^3$$

$$\|\eta_{n,3}\|_{H^2}^2 \le C\mu^5$$

Using the above estimates one can show that

$$\mathcal{J}(\eta_n) = 2c_0\mu + I_{\mathsf{NLS}}\mu^3 + o(\mu^3),$$

so that $I(\mu)$ is strictly subhomogeneous

Using the above estimates one can show that

$$\mathcal{J}(\eta_n) = 2c_0\mu + I_{\mathsf{NLS}}\mu^3 + o(\mu^3),$$

so that $I(\mu)$ is strictly subhomogeneous

Also yields convergence of v_n to solution of NLS using compactness of minimising sequences for the NLS variational problem

Reference

M. D. Groves, B. Hewer & E. Wahlén, Variational existence theory for hydroelastic solitary waves, C. R. Math. Acad. Sci. Paris **354** (2016)

Thank you for staying awake!