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Equations of motion

(Plotnikov & Toland ’11, Blyth, Parau & Vanden-Broeck ’11)

∆φ = 0 − 1 < y < η

φy = 0 y = −1

ηt + φxηx − φy = 0 y = η

φt +
1

2
|∇φ|2 + η + γH(η) = 0 y = η

H(η) = κss +
1

2
κ3, γ =

D
ρgd4

Travelling (solitary) wave: η = η(x− ct), φ = φ(x− ct, y)
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Other models

I Euler-Bernoulli: H(η) = ηxxxx

I Kirchhoff-Love: H(η) = ∂2
xκ



Heuristics

η(x− ct) ∼ eik(x−ct), c2 = (1 + γk4)
tanh k

k
Dispersion relation:

k

c2

c2
0

k0



For c = c0 − ε2, one can derive the NLS equation

vxx − v ± |v|2v = 0

where
η(x) = εv(εx)eik0x + c.c. +O(ε2)

(up to constant factors)

Focusing (+) if γ > γ0 ≈ 3.37× 10−10

Typical values:
γ ≈ 10−5 (McMurdo sound)
γ ≈ 10−2 (Lake Saroma)

In the focusing case NLS has solitary waves
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Stability theory

Hamiltonian formulation

H(η, ξ) =
1

2

∫∫
Ω
|∇φ|2 dx dy +

1

2

∫
R
η2 dx+

γ

2

∫
R
κ2 ds

Here ξ = φ|y=η and G(η) is the Dirichlet-Neumann operator

G(η)ξ =
√

1 + η2
x ∂nφ,

∆φ = 0, −1 < y < η

φ = ξ, y = η

φy = 0, y = −1

Conservation of total momentum

I(η, ξ) = −
∫
R
ξxη dx

Travelling waves are critical points of H− cI
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Main Theorem

Theorem
Let BR(0) = {η ∈ H2(R) : ‖η‖H2 < R}, R > 0 given.

Assume that γ > γ0 and 0 < µ� 1.

I The set Dµ of minimisers of H(η, ξ) subject to the constraint

I(η, ξ) = 2µ in the set BR(0)×H1/2
? (R) is nonempty.

I The minimisers satisfy ‖η‖2 ≤ Cµ1/2 uniformly over Dµ.

I Every minimising sequence {(ηn, ξn)} in BR(0)×H1/2
∗ (R)

converges (up to subsequences and translations) to an
element of Dµ.

Function space for ξ:

H
1/2
? (R) = {u ∈ Hs

loc(R) : u′ ∈ H−1/2(R)}/R
‖u‖

H
1/2
?

= ‖u′‖H−1/2
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Corollary

The set Dµ of minimisers is conditionally energetically stable.

Remarks:

I Better existence and stability results than for capillary-gravity
waves

I So far no global existence results under these conditions

I Local well-posedness: Ambrose & Siegel (to appear in PRSE)
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Proof of the theorem

Step 1. Reduction from phase space to configuration space

I Fix η and minimise H(η, ξ) subject to I(η, ξ) = 2µ.
Unique minimiser:

ξη = cηG(η)−1ηx

I Minimise

J (η) = H(η, ξη) =
µ2

L(η)
+K(η)

where

L(η) =
1

2

∫
R
ηxG(η)−1ηx dx

K(η) =

∫
R

{
1

2
η2 + γ

η2
xx

(1 + η2
x)5/2

}
dx
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Step 1.5. Periodic problem with large period
(Hs ⊂⊂ Hr, s > r)

Existence of a minimiser η ∈ BR(0) \ {0} by standard arguments

Problem: Have to show that ‖η‖2 < R!

I Coercivity estimate (in BR(0))

‖η‖2H2 ≤ CJ (η)

I For 0 < µ� 1, ∃ test function

ηµ? (x) = µ sech(µx) cos(k0x)

−Aµ2 sech2(µx) cos(2k0x)−Bµ2 sech2(µx),

such that

J (ηµ? ) < 2µ
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Step 2. Concentration-compactness

Problem: The compact embedding fails on R!
It can fail in two ways (up to translations):

I Vanishing: Easy to rule out

I Dichotomy: This is the main difficulty

To rule out dichotomy, we show that

I(µ) = inf{J (η) : η ∈ BR(0)}, 0 < µ� 1,

is strictly subhomogeneous:

I(aµ) < aI(µ), a > 1

Implies strict subadditivity:

I(µ1 + µ2) < I(µ1) + I(µ2)
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Problems:

I The operator K(η) = −∂xG(η)−1∂x is non-local

I The nonlinearity in the equation is not a pure power

Solutions:

I First problem solved by showing that K(η) is ‘almost’ local

I The other problem is the interesting part
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Idea:

For the test function we find that

J (ηµ? ) = 2c0µ+ INLSµ
3 +O(µ4),

where INLS < 0 is the ground state energy for NLS

We try to prove strict subhomogeneity by approximating with NLS

Problem: Are near minimisers similar to ηµ? ?
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Properties of minimising sequences

Any minimising sequence satisfies

‖J ′(ηn)‖H−2 → 0 and ‖ηn‖2H2 ≤ Cµ

We use these properties to show that ηn has a form similar to ηµ?
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Theorem
ηn = ηn,1 + ηn,2 + ηn,3 where:

I η̂n,1 has support near ±k0 and

ηn,1 = µvn(µx)eik0x + c.c.

with ‖vn‖2H2 ≤ C
I η̂n,2 has support near 0,±2k0,
ηn,2 is an explicit quadratic expression in ηn,1, and

‖ηn,2‖2H2 ≤ Cµ3

I

‖ηn,3‖2H2 ≤ Cµ5
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Using the above estimates one can show that

J (ηn) = 2c0µ+ INLSµ
3 + o(µ3),

so that I(µ) is strictly subhomogeneous

Also yields convergence of vn to solution of NLS using compactness
of minimising sequences for the NLS variational problem
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Thank you for staying awake!


