A NUMERICAL
 INVESTIGATION OF
 NON-SYMMETRIC

NONLINEAR WATER WAVES

Jean-Marc Vanden-Broeck
University College London

BANFF, October 2016

COWORKERS

Zhan Wang

Tao Gao

Paul Milewski

Emilian Parau

Olga Trichtchenko

- inviscid, incompressible, irrotational
- gravity
- surface tension
- steady

NON SYMMETRIC WAVES....in two and three dimensions

- Periodic waves
- Solitary waves
- Generalised Solitary waves
flexural waves (thursday.....).
stability

PART 1

TWO-DIMENSIONAL FLOWS

FORMULATION

GRAVITY-CAPILLARY WAVES

$$
\begin{gathered}
\phi_{x x}+\phi_{y y}=0 \\
\phi_{y}=\phi_{x} \zeta_{x} \text { on } y=\zeta(x) \\
\frac{1}{2}\left(\phi_{x}^{2}+\phi_{y}^{2}\right)+g y-\frac{T}{\rho} \kappa=B \quad \text { on } y=\zeta(x) \\
\phi_{y}=0 \quad \text { on } y=-h
\end{gathered}
$$

FLEXURAL WAVES

$$
\frac{D}{\rho}\left(\partial_{s}^{2} \kappa+\frac{1}{2} \kappa^{3}\right)
$$

$T=$ surface tension,$\quad D=$ flexural rigidity

$$
\kappa=\frac{\zeta_{x x}}{\left(1+\zeta_{x}^{2}\right)^{3 / 2}}
$$

PERIODIC and SOLITARY waves

Gravity waves

Craig W. and Sternberg P. (1988)

NUMERICAL METHODS

boundary integral equation methods, series truncation methods or ANY OTHER METHODS....

1. Iterations by using Newton's method
2. Continuation methods
3. INITIAL GUESS: bifurcations, symmetry breaking...

Gravity-capillary solitary waves

Dimensioless variables: $\left(\frac{T}{\rho g}\right)^{1 / 2}$ (reference length), $\left(\frac{T}{\rho g^{3}}\right)^{1 / 2}$ (reference time)
amplitude: A
phase velocity: c
energy: E

$$
\begin{gathered}
E=\frac{1}{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\eta}\left(\phi_{x}^{2}+\phi_{y}^{2}\right) d y d x+\frac{1}{2} \int_{-\infty}^{\infty} \eta^{2} d x \\
+\int_{-\infty}^{\infty}\left(\sqrt{1+\eta_{x}^{2}}-1\right) d x
\end{gathered}
$$

Boundary integral equation, Newton iterations, continuation

Gravity capillary solitary waves
infinite depth

[^0]

(b)

(d)

(b)

(c)

HYDROELASTIC WAVES

Tao Gao, Zhan Wang

GENERALISED SOLITARY WAVES

(3)

 (3*)

Wang Z., Parau E.I., Milewski P.A. and Vdb (2014) Proc. Roy. Soc. A 470

THREE-DIMENSIONAL FLOWS

Use Green's theorem instead of Cauchy integral equation formula.

Emilian Parau, Mark Cooker

Olga Trichtchenko

NON-SYMMETRIC 3D WAVES

Model: Akers and Milewski (2009)

$u_{t}+\frac{\sqrt{2}}{2} u_{x}-\frac{\sqrt{2}}{4} H\left[u-u_{x x}-2 u_{y y}\right]+\alpha\left(u^{2}\right)_{x}=0$

Zhan Wang

31

Non-symmetric PERIODIC gravity-capillary waves

Tao Gao and Zhan Wang

Zufiria (1987)

Shimizu ans Shoji (2012)

Symmetric waves

Non-symmetric waves

Non-symmetric waves

Non-symmetric waves

Non-symmetric waves

Conclusions

New non-symmetric gravity-capillary waves for the Euler's equations in 2D (solitary waves)

New non-symmetric flexural waves for the Euler's equations in 2D (solitary waves)

New non-symmetric gravity-capillary waves for a model in 3D (solitary waves)

New non-symmetric generalised solitary waves in 2D

New non-symmetric periodic gravity-capillary waves in 2D

References

1. Wang Z., Vanden-Broeck J.-M. and Milewski, PA., 2014, J. Fluid Mech. 759-770
2. Gao T., Wang Z. and Vanden-Broeck J.M., 2016, J. Fluid Mech. 788, pp 469-491
3. Gao T., Wang Z. and Vanden-Broeck J.M. 2016, Proc. Roy,. Soc. A (in press)
4. Gao T., Wang Z. and Vanden-Broeck J.M. 2016, J. Fluid Mech. (in press)

[^0]: Zufiria (1987), Buffoni, Champneys and Toland (1996), Yang and Akylas (1997), Champneys and Groves (1997).......

