Two dimensional water waves - finite depth case -

Daniel Tataru
University of California, Berkeley

October 31, 2016

This is joint work with Mihaela Ifrim and Ben Harrop-Griffiths

Two dimensional fluids

The setting:

- inviscid incompressible fluid flow (governed by the incompressible Euler equations)
- irrotational flow
- with gravity and no surface tension
- fluid is considered in an infinitely wide domain and above a flat, finite bottom at $y=-h<0$
- free boundary (the interface with air)

The Eulerian formulation

Fluid domain: $\Omega(t)$, free boundary $\Gamma(t)$.
Velocity field u, pressure p, gravity g.
Euler equations in $\Omega(t)$:

$$
\left\{\begin{array}{l}
u_{t}+u \cdot \nabla u=\nabla p-g \mathbf{j} \\
\operatorname{div} u=0 \\
\operatorname{curl} u=0 \\
u(0, x)=u_{0}(x)
\end{array}\right.
$$

Boundary conditions on $\Gamma(t)$:

$$
\begin{cases}\partial_{t}+u \cdot \nabla \text { is tangent to } \bigcup \Gamma(t) & \text { (kinematic) } \\ p=p_{0} \quad \text { on } \Gamma(t) & \text { (dynamic) }\end{cases}
$$

Assume the bottom is impermeable,

$$
u \cdot \mathbf{j}=0 \text { on }\{y=-h\}
$$

Reduction to the boundary for irrotational flows

 Velocity potential ϕ which satisfies$$
\left\{\begin{array}{l}
u=\nabla \phi, \quad \Delta \phi=0 \quad \text { in } \Omega(t) \\
\partial_{y} \phi=0, \quad \text { on } y=-h
\end{array}\right.
$$

As a consequence ϕ is uniquely determined by its trace on the boundary

$$
\psi=\left.\phi\right|_{\Gamma(t)}
$$

- Equations reduced to the boundary in Eulerian formulation in (η, ψ), where η is the elevation and $\psi(t, x)=\phi(t, \eta(t, x)))$:

$$
\left\{\begin{array}{l}
\partial_{t} \eta-G(\eta) \psi=0 \\
\partial_{t} \psi+g \eta+\frac{1}{2}|\nabla \psi|^{2}-\frac{1}{2} \frac{(\nabla \eta \nabla \psi+G(\eta) \psi)^{2}}{1+|\nabla \eta|^{2}}=0
\end{array}\right.
$$

where G is the Dirichlet to Neuman on the free surface.

Previous work

- Local well-posedness (mixture of dimensions and models)
- Nalimov, Yosihara, Wu, Christodoulou-Lindblad, Lannes, Lindblad, Coutand-Shkoller, Shatah-Zeng, Alazard-Burq-Zuilly, Nguyen...
- Enhanced lifespan (∞ depth)
- $2 d$ almost global: Wu, Hunter-I.-Tataru
- $2 d$ global: Alazard-Delort, Ionescu-Pusateri, I.-Tataru, Wang
- Other $2 d$ models: I.-Tataru, Ionescu-Pusateri
- 3d global: Wu, Germain-Masmoudi-Shatah, Deng-Ionesu-Pausauder-Pusateri
- Enhanced lifespan (finite depth)
- $3 d$ enhanced lifespan: Alvarez-Samaniego-Lannes
- $3 d$ global: Wang
- 2d: Berti-Delort (periodic, gravity-capillary, a.e.)

GOAL: Initiate study of long time dynamics in $2 d$ nonperiodic case:

- Rigorously formulate problem in holomorphic coordinates
- Low regularity local well-posedness for large initial data
- Enhanced (cubic) lifespan bounds for small initial data

Holomorphic coordinates

- We use holomorphic coordinates
- Ovsjannikov, Dyachenko-Zakharov-Kuznetsov, Wu, Choi-Camassa, Li-Hyman-Choi, Hunter-I.-Tataru, I.-Tataru, ...
- We have a conformal map defined as below

Holomorphic coordinates

Properties of our conformal map:

- Key advantage: diagonalizes Dirichlet-to-Neumann map
- The map z is chosen to be holomorphic in S fixing the bottom and to satisfy the asymptotic condition $z \approx \alpha+i \beta$ for $|\alpha| \rightarrow \infty$
- The conformal map is then unique up to horizontal translation

Holomorphic variables

- Given the conformal map z we define its trace on the top $\{\beta=0\}$ to be $Z(t, \alpha)=z(t, \alpha, 0)$
- We then define the holomorphic function

$$
W(t, \alpha)=Z(t, \alpha)-\alpha
$$

- Taking ϕ to be the velocity potential we define $\psi=\phi \circ z$ and take its harmonic conjugate to be θ
- We then define the holomorphic function (call it holomorphic velocity potential)

$$
Q(t, \alpha)=\psi(t, \alpha, 0)+i \theta(t, \alpha, 0)
$$

- We may then write the water wave equations as a system for the holomorphic functions (W, Q).

The functional framework

- If U is the trace of a holomorphic function u that satisfies the boundary condition $\Im U=0$ on the base $\{\beta=-1\}$ then

$$
-\mathcal{T}_{h} \Re U=\Im U
$$

where $\mathcal{T}_{h}=-i \tanh (h D)$.

- We define the space \mathfrak{H}^{h} to consist of distributions defined on \mathbb{R} modulo real constants so that

$$
\|U\|_{\mathfrak{H}^{h}}^{2}=\left\|\mathcal{T}_{h} \Re U\right\|_{L^{2}}^{2}+\|\Im U\|_{L^{2}}^{2}<\infty
$$

- With respect to the natural inner product we have the orthogonal decomposition

$$
\mathfrak{H}=\mathfrak{H}^{h} \oplus \mathfrak{H}^{a},
$$

where \mathfrak{H}^{h} (resp. \mathfrak{H}^{a}) is the space of (traces of) holomorphic (resp. antiholomorphic) functions

- We define the orthogonal projection onto holomorphic functions

$$
\mathbf{P}_{h}: \mathfrak{H} \rightarrow \mathfrak{H}^{h}
$$

Water wave equations in holomorphic coords.

- \mathbf{P}_{h} - projector onto the space of holomorphic functions

Fully nonlinear equations for holomorphic variables $(W=Z-\alpha, Q)$:

$$
\left\{\begin{array}{l}
W_{t}+F\left(1+W_{\alpha}\right)=0 \\
Q_{t}+F Q_{\alpha}-g \mathcal{T}_{h}[W]+\mathbf{P}_{h}\left[\frac{\left|Q_{\alpha}\right|^{2}}{J}\right]=0
\end{array}\right.
$$

where

$$
F=\mathbf{P}_{h}\left[\frac{Q_{\alpha}-\bar{Q}_{\alpha}}{J}\right], \quad J=\left|1+W_{\alpha}\right|^{2}
$$

Conserved energy (Hamiltonian): $\quad L=\left(-\mathcal{T}_{h}^{-1} \partial_{\alpha}\right)^{\frac{1}{2}} \approx\langle D\rangle^{\frac{1}{2}}$.

$$
E(W, Q)=g\|W\|_{\mathfrak{H}_{h}}^{2}+\left\|L_{h} Q\right\|_{\mathfrak{H}_{h}}^{2}+2\left\langle W W_{\alpha}, W\right\rangle_{\mathfrak{H}_{h}}
$$

Symmetries:

- Translations in α and t.
- Scaling $(W(t, x), Q(t, x)) \rightarrow\left(\lambda^{-1} W(t, \lambda x), \lambda^{-1} Q(t, \lambda x)\right)$ (corresponds to $(g, h) \rightarrow(\lambda g, \lambda h))$

Gauge freedom and fixing

- A disadvantage of the holomorphic coordinates is that our system has a gauge freedom
$(W(t, \alpha), Q(t, \alpha)) \mapsto\left(W\left(t, \alpha+\alpha_{0}(t)\right)+\alpha_{0}(t), Q\left(t, \alpha+\alpha_{0}(t)\right)+q_{0}(t)\right)$
for real-valued functions $\alpha_{0}(t), q_{0}(t)$.
- This corresponds to $F \mapsto F+\alpha_{0}^{\prime}(t)$ in the equation for W and a similar choice involving $q_{0}^{\prime}(t)$ for the projector in the equation for Q.
- This is seen in the fact that $\mathbf{P} u$ involves the term $\mathcal{T}^{-1} \Im u$
- To fix the gauge:

1. At the initial time we must make an arbitrary choice
2. At later times we fix the choice of α_{0} and q_{0} by requiring that both F and the projector in the second equation have limit 0 at $-\infty$

- This is allowed because the arguments of \mathbf{P} are either holomorphic, antiholomorphic or in $L^{2} \cap L^{1}$.

The differentiated equations

Self-contained system in $\left(W_{\alpha}, Q_{\alpha}\right)$: degenerate hyperbolic system with double speed. Alternate quasilinear system for diagonal variables $(\mathbf{W}, R)=\left(W_{\alpha}, \frac{Q_{\alpha}}{1+W_{\alpha}}\right):$

$$
\left\{\begin{array}{l}
\mathbf{W}_{t}+b \mathbf{W}_{\alpha}+\frac{1+\mathbf{W}}{1+\overline{\mathbf{W}}} R_{\alpha}=(1+\mathbf{W}) M \\
R_{t}+b R_{\alpha}=i \frac{g \mathbf{W}-a}{1+\mathbf{W}}
\end{array}\right.
$$

Physical parameters:

- a is real $(g+a$ is the normal derivative of the pressure)

$$
a:=g\left(1+\mathcal{T}^{2}\right) \Re \mathbf{W}+2 \Im \mathbf{P}\left[R \bar{R}_{\alpha}\right],
$$

- b is real, and plays the role of an advection coefficient

$$
b:=2 \Re[R-\mathbf{P}[R \bar{Y}]]
$$

Other parameters:

$$
M=2 \Re \mathbf{P}\left[R \bar{Y}_{\alpha}-\bar{R}_{\alpha} Y\right] \quad Y:=\mathbf{W} /(1+\mathbf{W}) .
$$

The Taylor stability condition

Normal derivative of the pressure:

$$
\frac{d p}{d n}=g+a, \quad a=g\left(1+\mathcal{T}^{2}\right) \Re \mathbf{W}+2 \Im \mathbf{P}\left[R \bar{R}_{\alpha}\right]
$$

Taylor stability (necessary for well-posedness)

$$
\frac{d p}{d n}>0
$$

Theorem (Lannes,HG-I-T)

Assume that the fluid stays away from the bottom,

$$
\Im W \geq-h_{0}>-h
$$

Then

$$
\frac{d p}{d n} \geq g\left(h-h_{0}\right)
$$

Sobolev spaces: Main space:

$$
\mathcal{H}_{h}=\mathfrak{H}_{h} \times \mathfrak{H}_{h}^{\frac{1}{2}}
$$

Solutions:

$$
(W, Q) \in \mathcal{H}_{h}, \quad(\mathbf{W}, R) \in \mathcal{H}_{h}^{1}
$$

High frequency scaling:

$$
(\mathbf{W}, R) \in \mathcal{H}_{h}^{\frac{1}{2}}
$$

Control norms:

$$
\begin{aligned}
A & :=\|\mathbf{W}\|_{L^{\infty}}+\|Y\|_{L^{\infty}}+g^{-\frac{1}{2}}\left\|\langle D\rangle^{\frac{1}{2}} R\right\|_{L^{\infty} \cap B_{2}^{0, \infty}} \\
B & :=g^{\frac{1}{2}}\left\|\langle D\rangle^{\frac{1}{2}} \mathbf{W}\right\|_{b m o_{h}}+\|\langle D\rangle R\|_{b m o_{h}}
\end{aligned}
$$

- the inhomogeneous space $b m o$ is given by the norm

$$
\|f\|_{b m o_{h}}=\left\|f_{<h^{-1}}\right\|_{L^{\infty}}+\left\|f_{\geq h^{-1}}\right\|_{B M O}
$$

where $f=f_{<h^{-1}}+f_{\geq h^{-1}}$

- $B M O$ is the usual space of functions of bounded mean oscillation.

Low regularity local well-posedness:

Theorem

- The system is locally well-posed for all initial data $\left(W_{0}, Q_{0}\right)$ with regularity

$$
\left(W_{0}, Q_{0}\right) \in \mathcal{H}_{h}, \quad\left(\mathbf{W}_{0}, R_{0}\right) \in \mathcal{H}_{h}^{1}
$$

Further, the solutions can be continued as long as our control parameter $A(t)$ remains finite, and $\int B(t) d t$ remains finite.

- This result is uniform with respect to our choice of parameters $g \lesssim h$ as follows. If for a large parameter C the initial data satisfies

$$
g^{-1} h^{-1}\left\|\left(W_{0}, Q_{0}\right)\right\|_{\mathcal{H}}+g^{-1}\left\|\left(\mathbf{W}_{0}, R_{0}\right)\right\|_{\mathcal{H}}+\left\|\left(\mathbf{W}_{0, \alpha}, R_{0, \alpha}\right)\right\|_{\mathcal{H}} \leq C,
$$

then there exists some $T=T(C)$, independent on g, h so that the solution exists on $[-T, T]$ with similar bounds.

A model system

- first order diagonal double speed (b) hyperbolic system written is variables (w, r) :

$$
\left\{\begin{array}{l}
w_{t}+\mathbf{P}\left[b w_{\alpha}\right]+\mathbf{P}\left[\frac{r_{\alpha}}{1+\overline{\mathbf{W}}}\right]-\mathbf{P}\left[\frac{R_{\alpha} \mathcal{T}^{2} w}{1+\overline{\mathbf{W}}}\right]=G \\
r_{t}+\mathbf{P}\left[b r_{\alpha}\right]-\mathbf{P}\left[\frac{(g+a) \mathcal{T}[w]}{1+\mathbf{W}}\right]=K
\end{array}\right.
$$

- (w, r) and the inhomogeneous terms $(G, K) \in \mathcal{H}$ are holomorphic. Quasilinear energy:

$$
E_{l i n}^{(2)}(w, r)=\langle w, w\rangle_{g+a}-\left\langle r, \mathcal{T}^{-1}\left[r_{\alpha}\right]\right\rangle=\langle w, w\rangle_{g+a}+\langle L r, L r\rangle
$$

Quasilinear weighted energy:

$$
E_{\omega, l i n}^{(2)}(w, r)=\langle w, w\rangle_{(g+a) \omega}+\langle L r, L r\rangle_{\omega}
$$

Energy estimates:

Let I be a time interval where A is bounded and $B \in L^{1}$. Then in I the following properties hold:
a) The system of equations is well posed in \mathcal{H}, and satisfies the estimate

$$
\frac{d}{d t} E_{l i n}^{(2)}(w, r)=2\langle G, w\rangle_{g+a}-2\langle L K, L r\rangle+O_{A}(B) E_{l i n}^{(2)}(w, r)
$$

b) Assume in addition that ω is a weight satisfying

$$
\|\omega\|_{L^{\infty}} \leq A, \quad\|\omega\|_{b m o^{\frac{1}{2}}} \leq B, \quad\left\|\left(\partial_{t}+b \partial_{\alpha}\right) \omega\right\|_{L^{\infty}} \leq B
$$

Then we also have

$$
\frac{d}{d t} E_{\omega, l i n}^{(2)}(w, r)=2\langle G, w\rangle_{(g+a) \omega}+2\langle L K, L r\rangle+O_{A}(B) E_{l i n}^{(2)}(w, r)
$$

The linearization at zero

- The linearized system for $(w, q)=(\delta W, \delta Q)$ about zero is given by

$$
\left\{\begin{array}{l}
w_{t}+q_{\alpha}=0 \\
q_{t}-g \mathcal{T}[W]=0
\end{array}\right.
$$

- The dispersion relation is then seen to be

$$
\tau^{2}=g \xi \tanh \xi
$$

- Two branches $\tau= \pm \sqrt{g} \omega(\xi)$ where $\omega(\xi)=\xi \sqrt{\frac{\tanh \xi}{\xi}}$ corresponding to left-moving and right-moving waves
- At high frequency the behavior is similar to the infinite depth case

$$
\omega(\xi) \sim \frac{\xi}{\sqrt{|\xi|}}
$$

- At low frequency we obtain the KdV like dispersion relation

$$
\omega(\xi) \sim \xi-\frac{1}{6} \xi^{3}
$$

Figure: Dispersion relation

Nonlinear resonances and solitons

- The worst quadratic interactions of linear waves correspond to three-wave resonances: solutions to the system

$$
\left\{\begin{array}{l}
\omega\left(\xi_{1}\right) \pm \omega\left(\xi_{2}\right) \pm \omega\left(\xi_{3}\right)=0 \\
\xi_{1}+\xi_{2}+\xi_{3}=0
\end{array}\right.
$$

- This can only occur when one of $\xi_{1}, \xi_{2}, \xi_{3}$ vanishes.
- The equation has a null structure that kills these interactions, so it is reasonable to expect that small solutions will exist on longer-than-quadratic timescales
- Small solitons arising from the KdV approximation
- For small localized data solitons emerge at quartic time scales

Cubic lifespan bounds

Theorem

Our fully nonlinear system with small initial data $\left(W_{0}, Q_{0}\right)$,

$$
g^{-1} h^{-1}\|(W, Q)(0)\|_{\mathcal{H}_{h}}+g^{-1}\|(\mathbf{W}, R)(0)\|_{\mathcal{H}_{h}}+\left\|\left(\mathbf{W}_{\alpha}, R_{\alpha}\right)(0)\right\|_{\mathcal{H}_{h}} \leq \epsilon .
$$

Then the solution (W, Q) exists and satisfies similar bounds on a time interval $\left[-T_{\epsilon}, T_{\epsilon}\right]$ with $T_{\epsilon} \gtrsim \epsilon^{-2}$. In addition, higher regularity also propagates uniformly on the same scale, i.e. for solutions as above we have

$$
\|(\mathbf{W}, R)\|_{C\left(\left[-T_{\epsilon}, T_{\epsilon}\right] ; \mathcal{H}_{h}^{k}\right)} \lesssim\|(\mathbf{W}, R)(0)\|_{\mathcal{H}_{h}^{k}}+\epsilon h^{1-k}
$$

whenever the right hand side is finite.

- The regularity of the data is same as in the LWP result.
- Proof idea: quasilinear modified energy method
- Bounds for all higher norms propagate on same timescale.
- Result is uniform in the infinite depth limit $h \rightarrow \infty$.

Normal form for the finite depth water waves

The normal form variables are (\tilde{W}, \tilde{Q}) :

$$
\left\{\begin{array}{l}
\tilde{W}=W+B^{h}[W, W]+\frac{1}{g} C^{h}[Q, Q]+B^{a}[W, \bar{W}]+\frac{1}{g} C^{a}[Q, \bar{Q}] \\
\tilde{Q}=Q+A^{h}[W, Q]+A^{a}[W, \bar{Q}]+D^{a}[Q, \bar{W}]
\end{array}\right.
$$

- The symbols have singularites at zero frequency-thus we cannot implement the normal form directly
- When we compute the normal form energies, the repeated symmetrizations lead to cancelations of the singularities - this is what we call a null structure. E.g.:

$$
<W, B^{h}[W, W]>
$$

The normal form symbols

$$
\Omega(\xi, \eta, \zeta)=J(\xi)^{2}+J(\eta)^{2}+J(\zeta)^{2}-2 J(\xi) J(\eta)-2 J(\eta) J(\zeta)-2 J(\zeta) J(\xi),
$$

$$
J(\xi)=\omega(\xi)^{2}=\xi \tanh \xi
$$

$$
A^{h}(\xi, \eta)=\frac{2 i \eta J(\xi)(J(\xi+\eta)-J(\xi)+J(\eta))}{\Omega(\xi, \eta)},
$$

$$
B^{h}(\xi, \eta)=\frac{2 i(\xi+\eta) J(\xi) J(\eta)}{\Omega(\xi, \eta)}
$$

$$
C^{h}(\xi, \eta)=\frac{i \xi \eta(\xi+\eta)(J(\xi+\eta)-J(\xi)-J(\eta))}{\Omega(\xi, \eta)} .
$$

$$
\begin{aligned}
A^{a}(\xi, \eta) & =\frac{1}{1-e^{2(\xi-\eta)}} \frac{\tanh (\xi-\eta)}{\xi-\eta} \\
& \left\{\eta(1-\operatorname{coth} \eta) B^{h}(\xi,-\eta)+(1-\tanh \xi) C^{h}(\xi,-\eta)\right\} \\
B^{a}(\xi, \eta)= & -\frac{1}{1-e^{2(\xi-\eta)}} \frac{1}{\xi-\eta} \\
& \left\{(J(\xi-\eta)-(\xi+\eta)) B^{h}(\xi,-\eta)+(\tanh \xi+\tanh \eta) C^{h}(\xi,-\eta)\right\} \\
C^{a}(\xi, \eta)= & -\frac{1}{1-e^{2(\xi-\eta)}} \frac{1}{\xi-\eta} \\
& \left\{(J(\xi-\eta)-(\xi+\eta)) C^{h}(\xi,-\eta)+\xi \eta(\operatorname{coth} \eta+\operatorname{coth} \xi) B^{h}(\xi,-\eta)\right\} \\
D^{a}(\xi, \eta)= & -\frac{1}{1-e^{2(\xi-\eta)}} \frac{\tanh (\xi-\eta)}{\xi-\eta} \\
& \left\{\xi(1-\operatorname{coth} \xi) B^{h}(\xi,-\eta)+(1-\tanh \eta) C^{h}(\xi,-\eta)\right\}
\end{aligned}
$$

Thank you

The modified energy method

Idea: Modify the energy rather than the equation in order to get cubic energy estimates.

Step 1: Construct a cubic normal form energy

$$
E_{N F}^{n}(W, Q)=(\text { quadratic }+ \text { cubic })\left(\left\|\tilde{W}^{(n)}\right\|_{L^{2}}^{2}+\left\|\tilde{Q}^{(n)}\right\|_{\dot{H}^{\frac{1}{2}}}^{2}\right)
$$

Then

$$
\frac{d}{d t} E_{N F}^{n}(W, Q)=\text { quartic }+ \text { higher }
$$

Here higher derivatives arise on the right, making it impossible to close.
Step 2: Switch $E_{N F}^{n}(W, Q)$ to diagonal variables $E_{N F}^{n}(\mathbf{W}, R)$.
Step 3: To account for the fact that the equation is quasilinear, replace the leading order terms in $E_{N F}^{n}(\mathbf{W}, R)$ with their natural quasilinear counterparts to obtain a good cubic quasilinear energy $E^{n}(\mathbf{W}, R)$. Clue: look at the quasilinear energy for the linearized equation.

