Two dimensional water waves - finite depth case -

Daniel Tataru

University of California, Berkeley

October 31, 2016

This is joint work with Mihaela Ifrim and Ben Harrop-Griffiths

Two dimensional fluids

The setting:

- inviscid incompressible fluid flow (governed by the incompressible Euler equations)
 - irrotational flow
 - with gravity and no surface tension
- fluid is considered in an infinitely wide domain and above a flat, finite bottom at y = -h < 0
- free boundary (the interface with air)

The Eulerian formulation

Fluid domain: $\Omega(t)$, free boundary $\Gamma(t)$. Velocity field u, pressure p, gravity g. Euler equations in $\Omega(t)$:

$$\begin{cases} u_t + u \cdot \nabla u = \nabla p - g\mathbf{j} \\ \operatorname{div} u = 0 \\ \operatorname{curl} u = 0 \\ u(0, x) = u_0(x) \end{cases}$$

Boundary conditions on $\Gamma(t)$:

$$\begin{cases} \partial_t + u \cdot \nabla \text{ is tangent to } \bigcup \Gamma(t) & \text{(kinematic)} \\ p = p_0 & \text{on } \Gamma(t) & \text{(dynamic)} \end{cases}$$

Assume the bottom is impermeable,

$$u \cdot \mathbf{j} = 0 \text{ on } \{ y = -h \},\$$

Reduction to the boundary for irrotational flows Velocity potential ϕ which satisfies

$$\begin{cases} u = \nabla \phi, & \Delta \phi = 0 \quad \text{in } \Omega(t) \\ \partial_y \phi = 0, & \text{on } y = -h \end{cases}$$

As a consequence ϕ is uniquely determined by its trace on the boundary

$$\psi = \phi|_{\Gamma(t)}$$

• Equations reduced to the boundary in Eulerian formulation in (η, ψ) , where η is the elevation and $\psi(t, x) = \phi(t, \eta(t, x))$:

$$\begin{cases} \partial_t \eta - G(\eta)\psi = 0\\ \partial_t \psi + g\eta + \frac{1}{2}|\nabla \psi|^2 - \frac{1}{2}\frac{(\nabla \eta \nabla \psi + G(\eta)\psi)^2}{1 + |\nabla \eta|^2} = 0. \end{cases}$$

where G is the Dirichlet to Neuman on the free surface.

Daniel Tataru (UC Berkeley)

2-d water waves

Previous work

- Local well-posedness (mixture of dimensions and models)
 - Nalimov, Yosihara, Wu, Christodoulou-Lindblad, Lannes, Lindblad, Coutand-Shkoller, Shatah-Zeng, Alazard-Burq-Zuilly, Nguyen...
- Enhanced lifespan (∞ depth)
 - ▶ 2d almost global: Wu, Hunter-I.-Tataru
 - ▶ 2d global: Alazard-Delort, Ionescu-Pusateri, I.-Tataru, Wang
 - ▶ Other 2d models: I.-Tataru, Ionescu-Pusateri
 - ▶ 3d global: Wu, Germain-Masmoudi-Shatah, Deng-Ionesu-Pausauder-Pusateri
- Enhanced lifespan (finite depth)
 - ▶ 3d enhanced lifespan: Alvarez-Samaniego-Lannes
 - ▶ 3d global: Wang
 - ▶ 2d: Berti-Delort (periodic, gravity-capillary, a.e.)

GOAL: Initiate study of long time dynamics in 2d nonperiodic case:

- Rigorously formulate problem in holomorphic coordinates
- Low regularity local well-posedness for large initial data
- Enhanced (cubic) lifespan bounds for small initial data

Holomorphic coordinates

- We use holomorphic coordinates
 - Ovsjannikov, Dyachenko-Zakharov-Kuznetsov, Wu, Choi-Camassa, Li-Hyman-Choi, Hunter-I.-Tataru, I.-Tataru, ...
- We have a conformal map defined as below

Holomorphic coordinates

Properties of our conformal map:

- Key advantage: diagonalizes Dirichlet-to-Neumann map
- The map z is chosen to be holomorphic in S fixing the bottom and to satisfy the asymptotic condition z ≈ α + iβ for |α| → ∞
- The conformal map is then unique up to horizontal translation

Holomorphic variables

- Given the conformal map z we define its trace on the top {β = 0} to be Z(t, α) = z(t, α, 0)
- We then define the holomorphic function

$$W(t,\alpha) = Z(t,\alpha) - \alpha$$

- Taking ϕ to be the velocity potential we define $\psi = \phi \circ z$ and take its harmonic conjugate to be θ
- We then define the holomorphic function (call it holomorphic velocity potential)

$$Q(t,\alpha) = \psi(t,\alpha,0) + i\theta(t,\alpha,0)$$

• We may then write the water wave equations as a system for the holomorphic functions (W, Q).

The functional framework

• If U is the trace of a holomorphic function u that satisfies the boundary condition $\Im U = 0$ on the base $\{\beta = -1\}$ then

$$-\mathcal{T}_h \Re U = \Im U$$

where $\mathcal{T}_h = -i \tanh(hD)$.

• We define the space \mathfrak{H}^h to consist of distributions defined on $\mathbb R$ modulo real constants so that

$$\|U\|_{\mathfrak{H}^h}^2 = \|\mathcal{T}_h \Re U\|_{L^2}^2 + \|\Im U\|_{L^2}^2 < \infty,$$

• With respect to the natural inner product we have the orthogonal decomposition

$$\mathfrak{H}=\mathfrak{H}^{h}\oplus\mathfrak{H}^{a},$$

where \mathfrak{H}^h (resp. \mathfrak{H}^a) is the space of (traces of) holomorphic (resp. antiholomorphic) functions

• We define the orthogonal projection onto holomorphic functions

$$\mathbf{P}_h \colon \mathfrak{H} o \mathfrak{H}^h$$

Water wave equations in holomorphic coords.

• \mathbf{P}_h - projector onto the space of holomorphic functions Fully nonlinear equations for holomorphic variables ($W = Z - \alpha, Q$):

$$\begin{cases} W_t + F(1+W_\alpha) = 0\\ Q_t + FQ_\alpha - g\mathcal{T}_h[W] + \mathbf{P}_h\left[\frac{|Q_\alpha|^2}{J}\right] = 0, \end{cases}$$

where

$$F = \mathbf{P}_h \left[\frac{Q_\alpha - \bar{Q}_\alpha}{J} \right], \qquad J = |1 + W_\alpha|^2.$$

Conserved energy (Hamiltonian): $L = (-\mathcal{T}_h^{-1}\partial_\alpha)^{\frac{1}{2}} \approx \langle D \rangle^{\frac{1}{2}}.$

$$E(W,Q) = g \|W\|_{\mathfrak{H}_h}^2 + \|L_h Q\|_{\mathfrak{H}_h}^2 + 2\langle WW_\alpha, W\rangle_{\mathfrak{H}_h}$$

Symmetries:

- Translations in α and t.
- Scaling $(W(t, x), Q(t, x)) \rightarrow (\lambda^{-1}W(t, \lambda x), \lambda^{-1}Q(t, \lambda x))$ (corresponds to $(g, h) \rightarrow (\lambda g, \lambda h)$)

Daniel Tataru (UC Berkeley)

Gauge freedom and fixing

• A disadvantage of the holomorphic coordinates is that our system has a gauge freedom

 $(W(t,\alpha),Q(t,\alpha))\mapsto (W(t,\alpha+\alpha_0(t))+\alpha_0(t),Q(t,\alpha+\alpha_0(t))+q_0(t))$

for real-valued functions $\alpha_0(t), q_0(t)$.

- ► This corresponds to $F \mapsto F + \alpha'_0(t)$ in the equation for W and a similar choice involving $q'_0(t)$ for the projector in the equation for Q.
- This is seen in the fact that $\mathbf{P}u$ involves the term $\mathcal{T}^{-1}\Im u$
- To fix the gauge:
 - 1. At the initial time we must make an arbitrary choice
 - 2. At later times we fix the choice of α_0 and q_0 by requiring that both F and the projector in the second equation have limit 0 at $-\infty$
- This is allowed because the arguments of \mathbf{P} are either holomorphic, antiholomorphic or in $L^2 \cap L^1$.

The differentiated equations

Self-contained system in (W_{α}, Q_{α}) : degenerate hyperbolic system with double speed. Alternate quasilinear system for diagonal variables $(\mathbf{W}, R) = (W_{\alpha}, \frac{Q_{\alpha}}{1+W_{\alpha}})$:

$$\begin{cases} \mathbf{W}_t + b\mathbf{W}_{\alpha} + \frac{1 + \mathbf{W}}{1 + \bar{\mathbf{W}}} R_{\alpha} = (1 + \mathbf{W})M\\ R_t + bR_{\alpha} = i\frac{g\mathbf{W} - a}{1 + \mathbf{W}} \end{cases}$$

Physical parameters:

• a is real (g + a is the normal derivative of the pressure)

$$a := g(1 + \mathcal{T}^2) \Re \mathbf{W} + 2 \Im \mathbf{P}[R\bar{R}_{\alpha}],$$

 $\bullet~b$ is real, and plays the role of an advection coefficient

$$b := 2\Re \left[R - \mathbf{P}[R\bar{Y}] \right]$$

Other parameters:

$$M = 2\Re \mathbf{P}[R\bar{Y}_{\alpha} - \bar{R}_{\alpha}Y] \quad Y := \mathbf{W}/(1 + \mathbf{W}).$$

Daniel Tataru (UC Berkeley)

The Taylor stability condition

Normal derivative of the pressure:

$$\frac{dp}{dn} = g + a, \qquad a = g(1 + \mathcal{T}^2) \Re \mathbf{W} + 2\Im \mathbf{P}[R\bar{R}_{\alpha}],$$

Taylor stability (necessary for well-posedness)

$$\frac{dp}{dn} > 0$$

Theorem (Lannes, HG-I-T)

Assume that the fluid stays away from the bottom,

$$\Im W \ge -h_0 > -h$$

Then

$$\frac{dp}{dn} \ge g(h - h_0)$$

Daniel Tataru (UC Berkeley)

Sobolev spaces: Main space:

$$\mathcal{H}_h = \mathfrak{H}_h imes \mathfrak{H}_h^{rac{1}{2}}$$

Solutions:

$$(W,Q) \in \mathcal{H}_h, \qquad (\mathbf{W},R) \in \mathcal{H}_h^1$$

High frequency scaling:

$$(\mathbf{W}, R) \in \mathcal{H}_h^{\frac{1}{2}}$$

Control norms:

$$A := \|\mathbf{W}\|_{L^{\infty}} + \|Y\|_{L^{\infty}} + g^{-\frac{1}{2}} \|\langle D \rangle^{\frac{1}{2}} R\|_{L^{\infty} \cap B_{2}^{0,\infty}}$$
$$B := g^{\frac{1}{2}} \|\langle D \rangle^{\frac{1}{2}} \mathbf{W}\|_{bmo_{h}} + \|\langle D \rangle R\|_{bmo_{h}}$$

• the inhomogeneous space bmo is given by the norm

$$||f||_{bmo_h} = ||f_{< h^{-1}}||_{L^{\infty}} + ||f_{\ge h^{-1}}||_{BMO},$$

where $f = f_{< h^{-1}} + f_{\ge h^{-1}}$

 $\bullet~BMO$ is the usual space of functions of bounded mean oscillation.

Low regularity local well-posedness:

Theorem

• The system is locally well-posed for all initial data (W_0, Q_0) with regularity

 $(W_0, Q_0) \in \mathcal{H}_h, \qquad (\mathbf{W}_0, R_0) \in \mathcal{H}_h^1.$

Further, the solutions can be continued as long as our control parameter A(t) remains finite, and $\int B(t)dt$ remains finite.

 This result is uniform with respect to our choice of parameters g ≤ h as follows. If for a large parameter C the initial data satisfies

 $g^{-1}h^{-1}\|(W_0,Q_0)\|_{\mathcal{H}} + g^{-1}\|(\mathbf{W}_0,R_0)\|_{\mathcal{H}} + \|(\mathbf{W}_{0,\alpha},R_{0,\alpha})\|_{\mathcal{H}} \le C,$

then there exists some T = T(C), independent on g,h so that the solution exists on [-T,T] with similar bounds.

A model system

• first order diagonal double speed (b) hyperbolic system written is variables (w, r):

$$\begin{cases} w_t + \mathbf{P}[bw_\alpha] + \mathbf{P}\left[\frac{r_\alpha}{1 + \bar{\mathbf{W}}}\right] - \mathbf{P}\left[\frac{R_\alpha \mathcal{T}^2 w}{1 + \bar{\mathbf{W}}}\right] = G\\ r_t + \mathbf{P}[br_\alpha] - \mathbf{P}\left[\frac{(g+a)\mathcal{T}[w]}{1 + \mathbf{W}}\right] = K \end{cases}$$

• (w, r) and the inhomogeneous terms $(G, K) \in \mathcal{H}$ are holomorphic. Quasilinear energy:

$$E_{lin}^{(2)}(w,r) = \langle w, w \rangle_{g+a} - \langle r, \mathcal{T}^{-1}[r_{\alpha}] \rangle = \langle w, w \rangle_{g+a} + \langle Lr, Lr \rangle$$

Quasilinear weighted energy:

$$E^{(2)}_{\omega,lin}(w,r) = \langle w,w\rangle_{(g+a)\omega} + \langle Lr,Lr\rangle_{\omega}$$

Energy estimates:

Let I be a time interval where A is bounded and $B \in L^1$. Then in I the following properties hold:

a) The system of equations is well posed in \mathcal{H} , and satisfies the estimate

$$\frac{d}{dt}E_{lin}^{(2)}(w,r) = 2\langle G, w \rangle_{g+a} - 2\langle LK, Lr \rangle + O_A(B)E_{lin}^{(2)}(w,r).$$

b) Assume in addition that ω is a weight satisfying

$$\|\omega\|_{L^{\infty}} \le A, \qquad \|\omega\|_{bmo^{\frac{1}{2}}} \le B, \qquad \|(\partial_t + b\partial_{\alpha})\omega\|_{L^{\infty}} \le B$$

Then we also have

$$\frac{d}{dt}E^{(2)}_{\omega,lin}(w,r) = 2\langle G,w\rangle_{(g+a)\omega} + 2\langle LK,Lr\rangle + O_A(B)E^{(2)}_{lin}(w,r)$$

The linearization at zero

• The linearized system for $(w, q) = (\delta W, \delta Q)$ about zero is given by

$$\begin{cases} w_t + q_\alpha = 0\\ q_t - g\mathcal{T}[W] = 0, \end{cases}$$

• The dispersion relation is then seen to be

$$\tau^2 = g\xi \tanh \xi$$

- Two branches $\tau = \pm \sqrt{g}\omega(\xi)$ where $\omega(\xi) = \xi \sqrt{\frac{\tanh \xi}{\xi}}$ corresponding to left-moving and right-moving waves
- At high frequency the behavior is similar to the infinite depth case

$$\omega(\xi) \sim \frac{\xi}{\sqrt{|\xi|}}$$

• At low frequency we obtain the KdV like dispersion relation

$$\omega(\xi) \sim \xi - \frac{1}{6}\xi^3$$

Figure : Dispersion relation

Nonlinear resonances and solitons

• The worst quadratic interactions of linear waves correspond to three-wave resonances: solutions to the system

$$\begin{cases} \omega(\xi_1) \pm \omega(\xi_2) \pm \omega(\xi_3) = 0\\ \xi_1 + \xi_2 + \xi_3 = 0 \end{cases}$$

- This can only occur when one of ξ_1, ξ_2, ξ_3 vanishes.
- The equation has a null structure that kills these interactions, so it is reasonable to expect that small solutions will exist on longer-than-quadratic timescales
- Small solitons arising from the KdV approximation
- For small localized data solitons emerge at quartic time scales

Cubic lifespan bounds

Theorem

Our fully nonlinear system with small initial data (W_0, Q_0) ,

 $g^{-1}h^{-1} \| (W,Q)(0) \|_{\mathcal{H}_h} + g^{-1} \| (\mathbf{W},R)(0) \|_{\mathcal{H}_h} + \| (\mathbf{W}_{\alpha},R_{\alpha})(0) \|_{\mathcal{H}_h} \le \epsilon.$

Then the solution (W, Q) exists and satisfies similar bounds on a time interval $[-T_{\epsilon}, T_{\epsilon}]$ with $T_{\epsilon} \gtrsim \epsilon^{-2}$. In addition, higher regularity also propagates uniformly on the same scale, i.e. for solutions as above we have

$$\|(\mathbf{W}, R)\|_{C([-T_{\epsilon}, T_{\epsilon}]; \mathcal{H}_{h}^{k})} \lesssim \|(\mathbf{W}, R)(0)\|_{\mathcal{H}_{h}^{k}} + \epsilon h^{1-k}$$

whenever the right hand side is finite.

- The regularity of the data is same as in the LWP result.
- Proof idea: quasilinear modified energy method
- Bounds for all higher norms propagate on same timescale.
- Result is uniform in the infinite depth limit $h \to \infty$.

Daniel Tataru (UC Berkeley)

2-d water waves

Normal form for the finite depth water waves

The normal form variables are (\tilde{W}, \tilde{Q}) :

$$\begin{cases} \tilde{W} = W + B^{h}[W, W] + \frac{1}{g}C^{h}[Q, Q] + B^{a}[W, \bar{W}] + \frac{1}{g}C^{a}[Q, \bar{Q}] \\ \tilde{Q} = Q + A^{h}[W, Q] + A^{a}[W, \bar{Q}] + D^{a}[Q, \bar{W}], \end{cases}$$

- The symbols have singularities at zero frequency-thus we cannot implement the normal form directly
- When we compute the normal form energies, the repeated symmetrizations lead to cancelations of the singularities this is what we call a null structure. E.g.:

$$\langle W, B^h[W,W] \rangle$$

The normal form symbols

$$\Omega(\xi,\eta,\zeta) = J(\xi)^2 + J(\eta)^2 + J(\zeta)^2 - 2J(\xi)J(\eta) - 2J(\eta)J(\zeta) - 2J(\zeta)J(\xi),$$
$$J(\xi) = \omega(\xi)^2 = \xi \tanh \xi$$

$$A^{h}(\xi,\eta) = \frac{2i\eta J(\xi) (J(\xi+\eta) - J(\xi) + J(\eta))}{\Omega(\xi,\eta)},$$

$$B^{h}(\xi,\eta) = \frac{2i(\xi+\eta)J(\xi)J(\eta)}{\Omega(\xi,\eta)},$$

$$C^{h}(\xi,\eta) = \frac{i\xi\eta(\xi+\eta) (J(\xi+\eta) - J(\xi) - J(\eta))}{\Omega(\xi,\eta)}$$

•

$$\begin{split} A^{a}(\xi,\eta) &= \frac{1}{1-e^{2(\xi-\eta)}} \frac{\tanh(\xi-\eta)}{\xi-\eta} \\ & \left\{ \eta \left(1-\coth\eta\right) B^{h}(\xi,-\eta) + (1-\tanh\xi) \, C^{h}(\xi,-\eta) \right\} \\ B^{a}(\xi,\eta) &= -\frac{1}{1-e^{2(\xi-\eta)}} \frac{1}{\xi-\eta} \\ & \left\{ \left(J(\xi-\eta) - (\xi+\eta)\right) B^{h}(\xi,-\eta) + (\tanh\xi + \tanh\eta) C^{h}(\xi,-\eta) \right\} \\ C^{a}(\xi,\eta) &= -\frac{1}{1-e^{2(\xi-\eta)}} \frac{1}{\xi-\eta} \\ & \left\{ \left(J(\xi-\eta) - (\xi+\eta)\right) C^{h}(\xi,-\eta) + \xi\eta \left(\coth\eta + \coth\xi\right) B^{h}(\xi,-\eta) \right\} \\ D^{a}(\xi,\eta) &= -\frac{1}{1-e^{2(\xi-\eta)}} \frac{\tanh(\xi-\eta)}{\xi-\eta} \\ & \left\{ \xi(1-\coth\xi) B^{h}(\xi,-\eta) + (1-\tanh\eta) C^{h}(\xi,-\eta) \right\} \end{split}$$

Thank you

The modified energy method

Idea: Modify the energy rather than the equation in order to get cubic energy estimates.

Step 1: Construct a cubic normal form energy

$$E_{NF}^{n}(W,Q) = (quadratic + cubic)(\|\tilde{W}^{(n)}\|_{L^{2}}^{2} + \|\tilde{Q}^{(n)}\|_{\dot{H}^{\frac{1}{2}}}^{2})$$

Then

$$\frac{d}{dt}E_{NF}^n(W\!,Q)=quartic+higher$$

Here higher derivatives arise on the right, making it impossible to close.

Step 2: Switch $E_{NF}^n(W,Q)$ to diagonal variables $E_{NF}^n(\mathbf{W},R)$.

Step 3: To account for the fact that the equation is quasilinear, replace the leading order terms in $E_{NF}^n(\mathbf{W}, R)$ with their natural quasilinear counterparts to obtain a good cubic quasilinear energy $E^n(\mathbf{W}, R)$. Clue: look at the quasilinear energy for the linearized equation.

Daniel Tataru (UC Berkeley)