# Computing Flexural-Gravity Waves in Three Dimensions 

Olga Trichtchenko<br>Applied Mathematics<br>University of Washington<br>ota6@uw.edu

November 3, 2016

## Acknowledgements

This is joint work with

- Jean-Marc Vanden-Broeck at University College London
- Emilian Părău at UEA
- Paul Milewski at University of Bath


## Outline

Motivation

Formulation

Numerics

Solutions

Conclusion and Future Work

## Outline

Motivation

Formulation

Numerics

## Solutions

Conclusion and Future Work


## Goal

Compute solutions to Euler's equations as efficiently and as accurately as possible.

## Outline

## Motivation

Formulation

Numerics

## Solutions

Conclusion and Future Work

## Model for Water Waves

For an inviscid, incompressible fluid with velocity potential $\phi(x, y, z, t)$, the forced Euler's equations are given by

$$
\begin{cases}\triangle \phi=0, & (x, y, z) \in \Omega \\ \phi_{z}=0, & z=-h, \\ \eta_{t}+\eta_{x} \phi_{x}+\eta_{y} \phi_{y}=\phi_{z}, & z=\eta(x, y, t) \\ \phi_{t}+\frac{1}{2}|\nabla \phi|^{2}+\frac{1}{F^{2}} \eta+P(x, y, t)=-D \frac{\delta H}{\delta \eta}, & z=\eta(x, y, t)\end{cases}
$$

where
$h$ : depth
$F$ : Froude number
$D$ : flexural rigidity
$\eta(x, y, t)$ : variable surface
$P(x, y, t)$ : external pressure distribution
$\frac{\delta H}{\delta \eta}$ : condition at the interface.
$\Omega=\{-\infty<x<\infty,-\infty<y<\infty,-\infty<z<\eta(x, y, t)\}$

## Models For a Thin Sheet of Ice



We consider two models

- Biharmonic (linear) model

$$
H_{L}=D \frac{1}{2} \int(\triangle \eta)^{2} d A
$$

- Cosserat (nonlinear) model
$H_{N}=D \frac{1}{2} \int\left(\kappa_{1}+\kappa_{2}\right)^{2} d S$ with $\kappa_{1}, \kappa_{2}$ principle curvatures


## Models For a Thin Sheet of Ice



We consider two models

- Biharmonic (linear) model

$$
H_{L}=D \frac{1}{2} \int(\triangle \eta)^{2} d A
$$

- Cosserat (nonlinear) model

$$
H_{N}=D \frac{1}{2} \int\left(\kappa_{1}+\kappa_{2}\right)^{2} d S \text { with } \kappa_{1}, \kappa_{2} \text { principle curvatures }
$$

## Reformulation: Bernoulli Equation

- Switch into surface variables via the velocity potential at the surface

$$
q(x, y, t)=\phi(x, y, z=\eta, t)
$$

- Go into a moving frame of reference
- Combine the dynamic and kinematic boundary conditions

Then the steady-state Rernoulli equation becomes


## Reformulation: Bernoulli Equation

- Switch into surface variables via the velocity potential at the surface

$$
q(x, y, t)=\phi(x, y, z=\eta, t)
$$

- Go into a moving frame of reference
- Combine the dynamic and kinematic boundary conditions

Then the steady-state Bernoulli equation becomes


## Reformulation: Bernoulli Equation

- Switch into surface variables via the velocity potential at the surface

$$
q(x, y, t)=\phi(x, y, z=\eta, t)
$$

- Go into a moving frame of reference
- Combine the dynamic and kinematic boundary conditions
$\square$
Then the steady-state Bernoulli equation becomes



## Reformulation: Bernoulli Equation

- Switch into surface variables via the velocity potential at the surface

$$
q(x, y, t)=\phi(x, y, z=\eta, t)
$$

- Go into a moving frame of reference
- Combine the dynamic and kinematic boundary conditions
$\square$
Then the steady-state Bernoulli equation becomes



## Reformulation: Bernoulli Equation

- Switch into surface variables via the velocity potential at the surface

$$
q(x, y, t)=\phi(x, y, z=\eta, t)
$$

- Go into a moving frame of reference
- Combine the dynamic and kinematic boundary conditions

Then the steady-state Bernoulli equation becomes

$$
\frac{1}{2} \frac{\left(1+\eta_{x}^{2}\right) q_{y}^{2}+\left(1+\eta_{y}^{2}\right) q_{x}^{2}-2 \eta_{x} \eta_{y} q_{x} q_{y}}{1+\eta_{x}^{2}+\eta_{y}^{2}}+\frac{\eta}{F^{2}}+P+D \frac{\delta H}{\delta \eta}=\frac{1}{2}
$$

## Models for Ice

The two different models are considered

- Biharmonic (linear) model

$$
\frac{\delta H}{\delta \eta}=\nabla^{4} \eta
$$

- Cosserat (nonlinear) model


## Models for Ice

The two different models are considered

- Biharmonic (linear) model

$$
\frac{\delta H}{\delta \eta}=\nabla^{4} \eta
$$

- Cosserat (nonlinear) model

$$
\begin{aligned}
\frac{\delta H}{\delta \eta} & =\frac{2}{\sqrt{a}}\left[\partial_{x}\left(\frac{1+\eta_{y}^{2}}{\sqrt{a}} \partial_{x} H\right)-\partial_{x}\left(\frac{\eta_{x} \eta_{y}}{\sqrt{a}} \partial_{y} H\right)-\partial_{y}\left(\frac{\eta_{x} \eta_{y}}{\sqrt{a}} \partial_{x} H\right)+\partial_{y}\left(\frac{1+\eta_{x}^{2}}{\sqrt{a}} \partial_{y} H\right)\right] \\
& +4 H^{3}-4 K H
\end{aligned}
$$

where

$$
\begin{aligned}
a & =1+\eta_{x}^{2}+\eta_{y}^{2} \\
H & =\frac{1}{2} a^{3 / 2}\left[\left(1+\eta_{y}^{2}\right) \eta_{x x}-2 \eta_{x y} \eta_{x} \eta_{y}+\left(1+\eta_{x}^{2}\right) \eta_{y y}\right] \\
K & =\frac{1}{a^{2}}\left[\eta_{x x} \eta_{y y}-\eta_{x y}^{2}\right]
\end{aligned}
$$

## Reformulation: Boundary Integral Method

Following the formulation by Forbes (1989), use Green's second identity

$$
\int_{V}(\alpha \Delta \beta-\beta \Delta \alpha) d V=\oint_{S(V)}\left(\alpha \frac{\partial \beta}{\partial n}-\beta \frac{\partial \alpha}{\partial n}\right) d S
$$

where in three dimensions, $\beta$ is the fundamental solution given by the Green's function

$$
\frac{1}{4 \pi} \frac{1}{\left(\left(x-x^{*}\right)^{2}+\left(y-y^{*}\right)^{2}+\left(z-z^{*}\right)^{2}\right)^{1 / 2}}
$$

and $\alpha=\phi-x$, which satisfies Laplace's equation.

## System of Equations

The final form of equations to solve for flexural-gravity waves in infinite depth is

$$
\begin{aligned}
& \frac{1}{2} \frac{\left(1+\eta_{x}^{2}\right) q_{y}^{2}+\left(1+\eta_{y}^{2}\right) q_{x}^{2}-2 \eta_{x} \eta_{y} q_{x} q_{y}}{1+\eta_{x}^{2}+\eta_{y}^{2}}+\frac{\eta}{F^{2}}+P+D \frac{\delta H}{\delta \eta}=\frac{1}{2} \\
& \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left[\left(q-q^{*}-x+x^{*}\right) K_{1}+\eta_{x} K_{2}\right] d x d y=2 \pi\left(q^{*}-x^{*}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& K_{1}=\frac{1}{d^{3 / 2}}\left(\eta-\eta^{*}-\left(x-x^{*}\right)^{2} \eta_{x}-\left(y-y^{*}\right)^{2} \eta_{y}\right) \\
& K_{2}=\frac{1}{d^{1 / 2}}
\end{aligned}
$$

with

$$
d\left(x, y, x^{*}, y^{*}, \eta\right)=\left(x-x^{*}\right)^{2}+\left(y-y^{*}\right)^{2}+\left(\eta-\eta^{*}\right)^{2}
$$

## Symmetry

Symmetry in $y$ direction

$$
\eta(x, y)=\eta(x,-y)
$$

and

$$
q(x, y)=q(x,-y)
$$

implies additional terms

$$
\begin{aligned}
& \frac{1}{2} \frac{\left(1+\eta_{x}^{2}\right) q_{y}^{2}+\left(1+\eta_{y}^{2}\right) q_{x}^{2}-2 \eta_{x} \eta_{y} q_{x} q_{y}}{1+\eta_{x}^{2}+\eta_{y}^{2}}+\frac{\eta}{F}-\frac{1}{2}=F(\eta) \\
& \int_{0}^{\infty} \int_{-\infty}^{\infty}\left[\left(q-q^{*}-x+x^{*}\right) \tilde{K}_{1}+\eta_{x} \tilde{K}_{2}\right] d x d y=2 \pi\left(q^{*}-x^{*}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& \tilde{K}_{1}=\bar{K}_{1}\left(x, y, \eta, x^{*}, y^{*}, \eta^{*}\right)+\bar{K}_{1}\left(x,-y, \eta, x^{*}, y^{*}, \eta^{*}\right) \\
& \tilde{K}_{2}=\bar{K}_{2}\left(x, y, \eta, x^{*}, y^{*}, \eta^{*}\right)+\bar{K}_{2}\left(x,-y, \eta, x^{*}, y^{*}, \eta^{*}\right)
\end{aligned}
$$

## Outline

## Motivation

Formulation

Numerics

## Solutions

Conclusion and Future Work

## Discretisation

- Let $x_{i}$ and $y_{j}$ be equally spaced points such that $i=1, \ldots, N$ and $j=1, \ldots, M$.
- Let the vector of unknowns be $q_{x(i, j)}$ and $\eta_{x(i, j)}$ such that

- Use finite differences to discretise the derivatives
- Obtain 2NM equations

$$
G(u)=0
$$

## Discretisation

- Let $x_{i}$ and $y_{j}$ be equally spaced points such that $i=1, \ldots, N$ and $j=1, \ldots, M$.
- Let the vector of unknowns be $q_{x(i, j)}$ and $\eta_{x(i, j)}$ such that

$$
u=\left[q_{\times(1,1)}, \cdots, q_{\times(N, 1)}, \cdots, q_{x(N, M)}, \eta_{\times(1,1)}, \cdots, \eta_{\times(N, M)}\right]^{T}
$$

- Use finite differences to discretise the derivatives
- Obtain 2NM equations

$$
G(u)=0
$$

## Discretisation

- Let $x_{i}$ and $y_{j}$ be equally spaced points such that $i=1, \ldots, N$ and $j=1, \ldots, M$.
- Let the vector of unknowns be $q_{x(i, j)}$ and $\eta_{\times(i, j)}$ such that

$$
u=\left[q_{x(1,1)}, \cdots, q_{x(N, 1)}, \cdots, q_{x(N, M)}, \eta_{x(1,1)}, \cdots, \eta_{\times(N, M)}\right]^{T}
$$

- Use finite differences to discretise the derivatives
- Obtain 2NM equations

$$
G(u)=0
$$

## Discretisation

- Let $x_{i}$ and $y_{j}$ be equally spaced points such that $i=1, \ldots, N$ and $j=1, \ldots, M$.
- Let the vector of unknowns be $q_{x(i, j)}$ and $\eta_{\times(i, j)}$ such that

$$
u=\left[q_{\times(1,1)}, \cdots, q_{x(N, 1)}, \cdots, q_{x(N, M)}, \eta_{\times(1,1)}, \cdots, \eta_{\times(N, M)}\right]^{T}
$$

- Use finite differences to discretise the derivatives
- Obtain 2NM equations

$$
G(u)=0
$$

## Numerical Approach

To solve the system

1. Set up an initial guess $u^{0}$
2. Until convergence

This method relies on an initial guess $u^{0}$ and the Jacobian J.

## Numerical Approach

To solve the system

1. Set up an initial guess $u^{0}$
2. Until convergence
2.1 Solve $J\left(u^{n}\right) \delta^{n}=-G\left(u^{n}\right)$
2.2 Set $u^{n+1}=u^{n}+\lambda \delta^{n}, \quad 0<\lambda<1$
2.3 Test for convergence

This method relies on an initial guess $u^{0}$ and the Jacobian $J$.

## Numerical Approach

To solve the system

1. Set up an initial guess $u^{0}$
2. Until convergence
2.1 Solve $J\left(u^{n}\right) \delta^{n}=-G\left(u^{n}\right)$
2.3 Test for convergence

This method relies on an initial guess $u^{0}$ and the Jacobian J.

## Numerical Approach

To solve the system

1. Set up an initial guess $u^{0}$
2. Until convergence
2.1 Solve $J\left(u^{n}\right) \delta^{n}=-G\left(u^{n}\right)$
2.2 Set $u^{n+1}=u^{n}+\lambda \delta^{n}, 0<\lambda<1$

This method relies on an initial guess $u^{0}$ and the Jacobian J.

## Numerical Approach

To solve the system

1. Set up an initial guess $u^{0}$
2. Until convergence
2.1 Solve $J\left(u^{n}\right) \delta^{n}=-G\left(u^{n}\right)$
2.2 Set $u^{n+1}=u^{n}+\lambda \delta^{n}, 0<\lambda<1$
2.3 Test for convergence

This method relies on an initial guess $u^{0}$ and the Jacobian $J$.

## Numerical Approach

To solve the system

1. Set up an initial guess $u^{0}$
2. Until convergence
2.1 Solve $J\left(u^{n}\right) \delta^{n}=-G\left(u^{n}\right)$
2.2 Set $u^{n+1}=u^{n}+\lambda \delta^{n}, 0<\lambda<1$
2.3 Test for convergence

This method relies on an initial guess $u^{0}$ and the Jacobian $J$.

## Numerical Approach

To solve the system

1. Set up an initial guess $u^{0}$
2. Until convergence
2.1 Solve $J\left(u^{n}\right) \delta^{n}=-G\left(u^{n}\right)$
2.2 Set $u^{n+1}=u^{n}+\lambda \delta^{n}, 0<\lambda<1$
2.3 Test for convergence

This method relies on an initial guess $u^{0}$ and the Jacobian $J$.

## Jacobian

The sparsity of the linearised Jacobian for flexural-gravity waves


## Solving the System of Equations

We consider two ways of solving the system of equations

1. Inexact Newton Method: (direct method) uses an inexact Jacobian (not computed at each step).
2. Modified Newton Method: (iterative method) using a preconditioned Krylov method to construct the solution, not keeping the full Jacobian matrix.

## Solving the System of Equations

We consider two ways of solving the system of equations

1. Inexact Newton Method: (direct method) uses an inexact Jacobian (not computed at each step).
2. Modified Newton Method: (iterative method) using a preconditioned Krylov method to construct the solution, not keeping the full Jacobian matrix.


## Solving the System of Equations

We consider two ways of solving the system of equations

1. Inexact Newton Method: (direct method) uses an inexact Jacobian (not computed at each step).
2. Modified Newton Method: (iterative method) using a preconditioned Krylov method to construct the solution, not keeping the full Jacobian matrix.

- Preconditioner is constructed as shown in Pethiyagoda et al (2014)
- Krylov subspace methods implemented using Sundials solver KINSOL implemented in Matlab and C.


## Solving the System of Equations

We consider two ways of solving the system of equations

1. Inexact Newton Method: (direct method) uses an inexact Jacobian (not computed at each step).
2. Modified Newton Method: (iterative method) using a preconditioned Krylov method to construct the solution, not keeping the full Jacobian matrix.

- Preconditioner is constructed as shown in Pethiyagoda et al (2014)
- Krylov subspace methods implemented using Sundials solver KINSOL implemented in Matlab and C.


## Initial Condition

Newton's method is very sensitive to initial conditions. In order to compute different wave amplitudes, generate a bifurcation diagram

- Guess a small amplitude solution
- Use this guess in Newton's method to compute the true solution.
- Scale the previous solution to get a guess for a larger amplitude solution
- Apply Newton's method to find the true solution.

Can use the Jacobians from previous steps in the bifurcation branch as preconditioners.

## Initial Condition

Newton's method is very sensitive to initial conditions. In order to compute different wave amplitudes, generate a bifurcation diagram

- Guess a small amplitude solution
- Use this guess in Newton's method to compute the true solution.
- Scale the previous solution to get a guess for a larger amplitude solution
- Apply Newton's method to find the true solution.

Can use the Jacobians from previous steps in the bifurcation branch as preconditioners.

## Initial Condition

Newton's method is very sensitive to initial conditions. In order to compute different wave amplitudes, generate a bifurcation diagram

- Guess a small amplitude solution
- Use this guess in Newton's method to compute the true solution.
- Scale the previous solution to get a guess for a larger amplitude solution
- Apply Newton's method to find the true solution.

Can use the Jacobians from previous steps in the bifurcation branch as preconditioners.

## Initial Condition

Newton's method is very sensitive to initial conditions. In order to compute different wave amplitudes, generate a bifurcation diagram

- Guess a small amplitude solution
- Use this guess in Newton's method to compute the true solution.
- Scale the previous solution to get a guess for a larger amplitude solution
- Apply Newton's method to find the true solution.

[^0]
## Initial Condition

Newton's method is very sensitive to initial conditions. In order to compute different wave amplitudes, generate a bifurcation diagram

- Guess a small amplitude solution
- Use this guess in Newton's method to compute the true solution.
- Scale the previous solution to get a guess for a larger amplitude solution
- Apply Newton's method to find the true solution.

[^1]
## Initial Condition

Newton's method is very sensitive to initial conditions. In order to compute different wave amplitudes, generate a bifurcation diagram

- Guess a small amplitude solution
- Use this guess in Newton's method to compute the true solution.
- Scale the previous solution to get a guess for a larger amplitude solution
- Apply Newton's method to find the true solution.

Can use the Jacobians from previous steps in the bifurcation branch as preconditioners.

## Outline

## Motivation

Formulation

Numerics

Solutions

Conclusion and Future Work


## Forcing Term

We use the following pressure as a forcing for depression waves


## Sample Solutions

Solutions for forced waves underneath an ice sheet


## Sample Solutions

Solutions for forced waves underneath an ice sheet


## Sample Solutions

Solutions for forced waves underneath an ice sheet


## Bifurcation Branch

Comparison of the bifurcation branches for flexural-gravity waves with the linear and the nonlinear elasticity models


Note: both models give the same wave amplitude, but different Froude numbers

## Flexural-Gravity Wave Profiles

Comparison of the solution profiles for linear elasticity model and the nonlinear elasticity model.



## Flexural-Gravity Wave Profiles

Comparison of the solution profiles for linear elasticity model and the nonlinear elasticity model.




## Flexural-Gravity Bifurcation Branch

Comparison of the bifurcation branch for linear elasticity model and the nonlinear elasticity model.


Elevation waves are represented as crosses and depression waves as circles.

## Outline

## Motivation

## Formulation

Numerics

## Solutions

Conclusion and Future Work

## Conclusions

- Can compute solutions to both models for flexural-gravity waves
- Both models for produce similar shaped profiles, but at different Froude numbers
- The code is easy to use and easy to modify
- A variety of numerical methods have been tested


## Conclusions

- Can compute solutions to both models for flexural-gravity waves
- Both models for produce similar shaped profiles, but at different Froude numbers
* The code is easy to use and easy to modify
- A variety of numerical methods have been tested


## Conclusions

- Can compute solutions to both models for flexural-gravity waves
- Both models for produce similar shaped profiles, but at different Froude numbers
- The code is easy to use and easy to modify
- A variety of numerical methods have been tested


## Conclusions

- Can compute solutions to both models for flexural-gravity waves
- Both models for produce similar shaped profiles, but at different Froude numbers
- The code is easy to use and easy to modify
- A variety of numerical methods have been tested


## Future Work

- Compute accurate free surface waves without a forcing
- Compare the different models quantitatively
- Do free surface depression or elevation waves bifurcate away from 0?
- Switch to using a Modified Newton Method for solutions


## Future Work

- Compute accurate free surface waves without a forcing
- Compare the different models quantitatively
- Do free surface depression or elevation waves bifurcate away from 0?
- Switch to using a Modified Newton Method for solutions


## Future Work

- Compute accurate free surface waves without a forcing
- Compare the different models quantitatively
- Do free surface depression or elevation waves bifurcate away from 0?
- Switch to using a Modified Newton Method for solutions


## Future Work

- Compute accurate free surface waves without a forcing
- Compare the different models quantitatively
- Do free surface depression or elevation waves bifurcate away from 0?
- Switch to using a Modified Newton Method for solutions

Thank you for your attention


[^0]:    Can use the Jacobians from previous steps in the bifurcation branch as preconditioners.

[^1]:    Can use the Jacobians from previous steps in the bifurcation branch as preconditioners.

