Nonuniqueness of weak solutions to the SQG equation

Steve Shkoller
UC Davis
(Joint work with Tristan Buckmaster and Vlad Vicol)

November 1, 2016

The SQG equation

- Inviscid Surface Quasi-Geostrophic (SQG) equation introduced in Constantin-Majda-Tabak (1994)

$$
\begin{aligned}
& \partial_{t} \theta+u \cdot \nabla \theta=0, \\
& u=\mathcal{R}^{\perp} \theta:=\nabla^{\perp} \Lambda^{-1} \theta,
\end{aligned}
$$

- $\theta=\theta(x, t)$, where $(x, t) \in \mathbb{T}^{2} \times \mathbb{R}=[-\pi, \pi]^{2} \times \mathbb{R}$.
- $\Lambda=(-\Delta)^{1 / 2}, \mathcal{R}=\left(\mathcal{R}_{1}, \mathcal{R}_{2}\right)$ is the vector of Riesz-transforms
- $\nabla^{\perp}=\left(-\partial_{2}, \partial_{1}\right)$, and $x^{\perp}=\left(-x_{2}, x_{1}\right)$ for any vector $x=\left(x_{1}, x_{2}\right)$.
- example of "active scalar equation"

Geophysics

- Derivation in Held, Pierrehumbert, Garner, Swanson (1995)
- θ is temperature (or surface buoyancy)
- Model for rapidly rotating, stratified fluids
- Uniform potential vorticity
- Applications in meteorology and oceans

SQG and 2-D Euler

- Stream function ψ
- Velocity $u=\nabla^{\perp} \psi$
- SQG: $-\Delta \psi=0$ in $\{z>0\}$ and $\theta=\frac{\partial \psi}{\partial z}=\Lambda \psi, \theta=\Lambda^{-1} \psi$

- 2-D Euler: $-\Delta \psi=\omega$ in \mathbb{R}^{2}, so $\omega=(-\Delta)^{-1} \psi$

SQG and 3-D Euler

- 3-D Euler: Let $\omega=\operatorname{curl} u$
- $\partial_{t} \omega+u \cdot \nabla \omega=\nabla u \cdot \omega$
- 2-D SQG: Let $W=\nabla^{\perp} \theta$
- $\partial_{t} W+u \cdot \nabla W=\nabla u \cdot W$
- SQG has a very similar behavior as 3-D Euler
- Global existence of smooth solutions?
- Finite-time blow-up?

A few prior results

- Local existence of smooth solutions, θ_{0} in $H^{s}, s>2$, or $C^{1, \alpha}, \alpha>0$, Constantin-Majda-Tabak (1994)
- Numerical simulations indicated a collapsing hyperbolic saddle blow-up scenario for θ-contours
- Cordoba (1998) and Cordoba-Fefferman (2002) ruled this out
- Constantin-Lai-Sharma-Tseng-Wu (2012) resolved numerical simulation well past predicted blow-up time

SQG Hamiltonian and Conservation Laws

- $\dot{H}^{-1 / 2}$ Hamiltonian:
- Compute L^{2} inner product of SQG equation with $\Lambda^{-1} \theta$
- integrate by parts in nonlinear term and use that

$$
u \cdot \nabla \Lambda^{-1} \theta=\nabla^{\perp} \Lambda^{-1} \theta \cdot \nabla \Lambda^{-1} \theta=0
$$

- Then,

$$
\mathcal{H}(t):=\|\theta(\cdot, t)\|_{\dot{H}^{-1 / 2}\left(\mathbb{T}^{2}\right)}^{2}=\left\|\theta_{0}\right\|_{\dot{H}^{-1 / 2}\left(\mathbb{T}^{2}\right)}^{2}
$$

- Isett-Vicol (2015) showed $\theta \in L_{t, x}^{3}\left(\mathbb{T}^{2} \times \mathbb{R}\right)$ implies $\mathcal{H}(t)$ conserved
- Casamir functions:
- Since θ is transported by the incompressible vector field u, then

$$
\|\theta(\cdot, t)\|_{L^{p}\left(\mathbb{T}^{2}\right)}=\left\|\theta_{0}\right\|_{L^{p}\left(\mathbb{T}^{2}\right)}, \quad 1 \leq p \leq \infty
$$

Weak solutions to inviscid SQG

- L^{2} weak solution
- Definition 1. $\theta \in L_{\text {loc }}^{2}\left(\mathbb{R}, L^{2}\left(\mathbb{T}^{2}\right)\right)$ is weak solution if

$$
\iint_{\mathbb{R} \times \mathbb{T}^{2}}\left(\theta \partial_{t} \phi+\theta u \cdot \nabla \phi\right) d x d t=0 \quad \forall \phi \in C^{\infty}\left(\mathbb{T}^{2} \times \mathbb{R}\right)
$$

- Resnick (1995) proved existence of global L^{2} weak solutions
- $\dot{H}^{-1 / 2}$ distributional solution
- Definition 2. $\theta \in L_{\text {loc }}^{2}\left(\mathbb{R} ; \dot{H}^{-1 / 2}\left(\mathbb{T}^{2}\right)\right)$ is weak solution if

$$
\int_{\mathbb{R}}\left\langle\mathcal{R}_{i}^{\perp} \theta, \partial_{t} \Lambda^{-1} \phi^{i}\right\rangle+\left\langle\mathcal{R}_{j}^{\perp} \theta, \mathcal{R}_{i}^{\perp} \Lambda^{-1} \theta \partial_{j} \phi^{i}\right\rangle-\frac{1}{2}\left\langle\mathcal{R}_{i} \mathcal{R}_{j}^{\perp} \theta,\left[\Lambda, \phi^{i}\right] \mathcal{R}_{j}^{\perp} \Lambda^{-1} \theta\right\rangle d t=0
$$

for any $\phi \in C_{0}^{\infty}\left(\mathbb{T}^{2} \times \mathbb{R}\right)$ such that $\operatorname{div} \phi=0$, where $\langle\cdot, \cdot\rangle$ denotes the $\dot{H}^{-1 / 2}-\dot{H}^{1 / 2}$ duality pairing.

- Marchand (2008) proved existence of global L^{p} weak solutions, $p>4 / 3$
- $\theta \in \dot{H}^{-1 / 2}$ remains open

Nonuniqueness of weak solutions to inviscid SQG

- Uniqueness remained open and was Challenge Problem 11 in De Lellis-Székelyhidi (2002), Bulletin AMS

Theorem 1

Suppose $\mathfrak{h}: \mathbb{R} \rightarrow \mathbb{R}^{+}$is a smooth function with compact support. Then for every $1 / 2<\beta<4 / 5$ and $\sigma<\beta /(2-\beta)$, there exist weak solution θ, with $\Lambda^{-1} \theta \in C_{t}^{\sigma} C_{x}^{\beta}$, satisfying

$$
\mathcal{H}(t)=\int_{\mathbb{T}^{2}}\left|\Lambda^{-1 / 2} \theta(x, t)\right|^{2} d x=\mathfrak{h}(t) \quad \forall t \in \mathbb{R} .
$$

- $\theta \equiv 0$ not the only weak solution

Dissipative SQG equation

$$
\begin{aligned}
& \partial_{t} \theta+u \cdot \nabla \theta+\Lambda^{\gamma}=0, \quad \gamma>0 \\
& u=\mathcal{R}^{\perp} \theta:=\nabla^{\perp} \Lambda^{-1} \theta
\end{aligned}
$$

- The distribution $\theta \in L_{\text {loc }}^{2}\left(\mathbb{R} ; \dot{H}^{-1 / 2}\left(\mathbb{T}^{2}\right)\right)$ is a weak solution of the dissipative SQG equation if

$$
\begin{aligned}
\int_{\mathbb{R}}\left\langle\mathcal{R}_{i}^{\perp} \theta\right. & \left., \partial_{t} \Lambda^{-1} \phi^{i}\right\rangle+\left\langle\mathcal{R}_{j}^{\perp} \theta, \mathcal{R}_{i}^{\perp} \Lambda^{-1} \theta \partial_{j} \phi^{i}\right\rangle \\
& -\frac{1}{2}\left\langle\mathcal{R}_{i} \mathcal{R}_{j}^{\perp} \theta,\left[\Lambda, \phi^{i}\right] \mathcal{R}_{j}^{\perp} \Lambda^{-1} \theta\right\rangle-\left\langle\mathcal{R}_{i}^{\perp} \theta, \Lambda^{\gamma-1} \phi^{i}\right\rangle d t=0
\end{aligned}
$$

for any $\phi \in C_{0}^{\infty}\left(\mathbb{T}^{2} \times \mathbb{R}\right)$ such that $\operatorname{div} \phi=0$, where $\langle\cdot, \cdot\rangle$ denotes the $\dot{H}^{-1 / 2}-\dot{H}^{1 / 2}$ duality pairing.

Natural scaling symmetry

- $\theta_{\lambda}(x, t)=\lambda^{\gamma-1} \theta\left(\lambda x, \lambda^{\gamma} t\right)$ is a $\left[-\frac{\pi}{\lambda}, \frac{\pi}{\lambda}\right]^{2}$-periodic solution with initial datum $\theta_{0, \lambda}(x)=\lambda^{\gamma-1} \theta_{0}(\lambda x)$
- L_{x}^{∞}-norm scale invariant for $\gamma=1$
- $\gamma>1$ subcritical and semilinear - global regularity Constantin-Wu (1999)
- $\gamma=1$ critical and quasilinear - global regularity Kiselev-Nazarov-Volberg (2007), Cafarelli-Vasseur (2010), Constantin-Vicol (2012)
- $\gamma<1$ supercritical, open
- $\gamma>0$, weak solutions for $\theta_{0} \in \dot{H}^{-1 / 2}$, Marchand (2008)

Nonuniqueness of weak solutions to dissipative SQG

Theorem 2
Suppose $\mathfrak{h}: \mathbb{R} \rightarrow \mathbb{R}^{+}$is a smooth function with compact support. Then for every $1 / 2<\beta<4 / 5,0<\gamma<2-\beta$ and $\sigma<\beta /(2-\beta)$, there exists a weak solution θ, with $\Lambda^{-1} \theta \in C_{t}^{\sigma} C_{x}^{\beta}$, satisfying

$$
\int_{\mathbb{T}^{2}}\left|\Lambda^{-1 / 2} \theta(x, t)\right|^{2} d x=\mathfrak{h}(t) \quad \forall t \in \mathbb{R}
$$

- The restriction $\gamma+\beta<2$ is sharp, in the sense that the $C_{t}^{0} C_{x}^{\beta}$ norm for $\Lambda^{-1} \theta$ is scale invariant when $\gamma+\beta=2$.
- For supercritical scaling, parabolic smoothing does not hold.
- First instance of convex integration for subcritical semilinear equation $1<\gamma \leq 6 / 5$

Inviscid Hydrodynamical Systems via Arnold (1966)

- Inviscid hydrodynamical systems are geodesics with respect to right invariant metrics on

$$
\mathcal{D}_{\mu}=\text { group of volume-preserving diffeomorphisms }
$$

with

$$
\text { metric }=\int_{\mathbb{T}^{2}} A u \cdot v d x, \quad A>0 \text { linear, self-adjoint }
$$

- Apply Euler-Poincaré variational principle to find the system of PDE:

$$
\begin{aligned}
\partial_{t} v^{i}+\partial_{j} v^{i} u^{j}+\partial_{i} u^{j} v^{j} & =-\nabla \widetilde{p} \\
\operatorname{div} u & =0 \\
v & =A u
\end{aligned}
$$

Reformulation of SQG

- SQG: $A=\Lambda^{-1}$
- metric $=\int_{\mathbb{T}^{2}} \Lambda^{-1} u \cdot v d x$
- $v=\Lambda^{-1} u=$ potential velocity, $u=$ transport velocity

$$
\begin{aligned}
\partial_{t} v^{i}+\partial_{j} v^{i} u^{j}-\partial_{i} v^{j} u^{j} & =-\partial_{i} p \\
\operatorname{div} u & =0 \\
u & =\Lambda v
\end{aligned}
$$

- $\theta=-\nabla^{\perp} v \Longrightarrow \partial_{t} \theta+u \cdot \nabla \theta=0$
- Very nice form for convex integration - no odd (in frequency) multiplier

Onsager conjecture for SQG

Conjecture 1
(a) If $v \in C\left(\mathbb{R} ; C^{\alpha}\left(\mathbb{T}^{2}\right)\right)$ is a weak solution of the $S Q G$ equation with $\alpha>1$, then the Hamilitonian is conserved. (Isett-Vicol (2015) using θ formulation)
(b) For any $1 / 2<\alpha<1$, there exist infinitely many weak solutions of the SQG equation, with $v \in C\left(\mathbb{R} ; C^{\alpha}\left(\mathbb{T}^{2}\right)\right)$, such that the Hamiltonian is not conserved.

- Euler Onsager with Hölder exponent 1/3
- For Euler, part a) was proven by Constantin-E-Titi (1994) (cf. Eyink 1994, Cheskidov-Constantin-Friedlander- Shvydkoy 2008)
- Part b) was recently resolved: $C_{x, t}^{0}$ De Lellis-Székelyhidi Jr. (2012); $C_{x, t}^{1 / 10-}$ DeSz (2012); $C_{x, t}^{1 / 5-}$ Isett (2013); $C_{x, t}^{1 / 5-}$ BuDeSz (2013); $C_{x}^{1 / 3-}$ a.e. in time; Bu (2015); $L_{t}^{1} C_{x}^{1 / 3-}$ BuDeSz (2016); 3-D $C_{x, t}^{1 / 3-}$ Isett (2016)
- SQG regularity gap $\alpha \in[4 / 5,1)$ is similar to 2-D Euler gap $\alpha \in[1 / 5,1 / 3)$

Regularity exponents

- Consider a scale of Banach spaces $B^{\alpha}=C_{t} C_{x}^{\alpha}$

$$
\begin{array}{rlrl}
\alpha_{W P} & =\text { well-posedness } & \alpha_{*}=\text { scale invariant } \\
\alpha_{U} & =\text { uniqueness } & \alpha_{O}=\text { Onsager scale } \\
\alpha_{N} & =\text { Nash scale } . & &
\end{array}
$$

- Expectation of ordering: $\alpha_{*} \leq \alpha_{O} \leq \alpha_{N} \leq \alpha_{U} \leq \alpha_{W P}$ (Klainerman (2016))
- Euler: $\alpha_{W P}=1, \alpha_{O}=1 / 3, \alpha_{*}=0$, conjectured that $\alpha_{U}=1$
- Inviscid SQG (for v): $\alpha_{O}=1, \alpha_{W P}=2$
- Critical SQG $(\gamma=1)$: Conjecture that $1=\alpha_{*}=\alpha_{O}=\alpha_{N}=\alpha_{U}=\alpha_{W P}$
- First fluids equation where α are the same!

SQG Momentum Equation

- Stong form: $\partial_{t} v^{i}+\partial_{j} v^{i} \Lambda v^{j}-\partial_{i} v^{j} \Lambda v^{j}+\Lambda^{\gamma} v^{i}=-\partial_{i} p$ with $\operatorname{div} v=0$
- Weak form: $v \in L_{t, l o c}^{2} \dot{H}^{1 / 2}$ is a weak solution of SQG if

$$
\int_{\mathbb{R}}\left\{\left\langle v^{i}, \partial_{t} \phi^{i}\right\rangle+\left\langle\Lambda v^{j}, v^{i} \partial_{j} \phi^{i}\right\rangle+\frac{1}{2}\left\langle\partial_{j} v^{i},\left[\Lambda, \phi^{i}\right] v^{j}\right\rangle+\int_{\mathbb{T}^{2}} v^{i} \Lambda^{\gamma} \phi^{i} d x\right\} d t=0
$$

for all $\phi \in C_{0}^{\infty}\left(\mathbb{T}^{2} \times \mathbb{R}\right)$ such that $\operatorname{div} \phi=0$

- $L_{t}^{\infty} \dot{H}_{x}^{1 / 2}$ global weak solutions for v, Marchand (2008)

Convex integration scheme

- We construct a sequence of solutions $\left(v_{q}, p_{q}, \stackrel{\circ}{R}_{q}\right)$ to the relaxed $S Q G$ momentum equation

$$
\begin{aligned}
\partial_{t} v_{q}+u_{q} \cdot \nabla v_{q}-\left(\nabla v_{q}\right)^{T} \cdot u_{q}+\nabla p_{q}+\Lambda^{\gamma} v_{q} & =\operatorname{div} \stackrel{\circ}{R}_{q} \\
\operatorname{div} v_{q} & =0 \\
u_{q} & =\Lambda v_{q}
\end{aligned}
$$

- \dot{R}_{q} is a symmetric trace-free 2×2 matrix (Reynolds stress)
- The goal is to obtain $\dot{R}_{q} \rightarrow 0$ as $q \rightarrow \infty$ (in a suitable topology), and show that a limiting function $v_{q} \rightarrow v$ exists, and solves SQG.

Iteration Scheme

- Iteration: potential velocity: $v_{q+1}=v_{q}+w_{q+1}$
- Each v_{q} is localized at frequency λ_{q}
- Given $\lambda_{0} \gg 1, \lambda_{q}=\lambda_{0}^{q}$
- Each v_{q} has amplitude $\lambda_{0}^{1-q \beta}$
- We fix $\beta=\frac{4}{5}-\epsilon$ to be the Hölder exponent that we expect for our weak solution
- Perturbation w_{q+1} lives at frequency λ_{0}^{q+1} and must be chosen to cancel low frequency Reynolds stress R_{q} error, and $\left|w_{q+1}\right| \sim \lambda_{0}^{1-\beta(q+1)}$

Decomposition of Reynolds Stress error

Setting $w_{q+1}:=v_{q+1}-v_{q}$ we have

$$
\begin{aligned}
\operatorname{div} \stackrel{\circ}{R}_{q+1}= & \left(\partial_{t} w_{q+1}+u_{q} \cdot \nabla w_{q+1}\right) \\
& +\left(\Lambda w_{q+1} \cdot \nabla v_{q}-\left(\nabla v_{q}\right)^{T} \cdot \Lambda w_{q+1}-\left(\nabla u_{q}\right)^{T} \cdot w_{q+1}\right) \\
& +\Lambda^{\gamma} w_{q+1} \\
& +\left(\operatorname{div} \dot{R}_{q}+\Lambda w_{q+1} \cdot \nabla w_{q+1}-\left(\nabla w_{q+1}\right)^{T} \cdot \Lambda w_{q+1}\right) \\
& +\nabla \widetilde{p}_{q+1} \\
= & \operatorname{div} R_{T}+\operatorname{div} R_{N}+\operatorname{div} R_{D}+\operatorname{div} R_{O}+\nabla \widetilde{p}_{q+1}
\end{aligned}
$$

Heuristic estimates for one term of Nash error

- Assume w_{q+1} is of frequency $\sim \lambda_{0}^{q+1}$ and $\left|w_{q+1}\right| \sim \lambda_{0}^{-\beta(q+1)}$ for $\frac{1}{2}<\beta<1$, so that $v_{q} \rightarrow v \in C^{\beta}$.
- Then

$$
\begin{aligned}
\left\|\operatorname{div}^{-1}\left(\left(\nabla u_{q}\right)^{T} \cdot w_{q+1}\right)\right\|_{C^{0}} & \lesssim \lambda_{0}^{-(q+1)}\left\|u_{q}\right\|_{C^{1}}\left\|w_{q+1}\right\|_{C^{0}} \\
& \lesssim \lambda_{0}^{-(q+1)}\left\|v_{q}\right\|_{C^{2}}\left\|w_{q+1}\right\|_{C^{0}} \\
& \lesssim \lambda_{0}^{-(q+1)} \lambda_{0}^{q(2-\beta)} \lambda_{0}^{-(q+1) \beta}=\lambda_{0}^{(q+2)(1-2 \beta)} \lambda_{0}^{3(\beta-1)}
\end{aligned}
$$

- The allowable error must be proportional to $\left|\Lambda w_{q+1} \otimes w_{q+1}\right| \sim \lambda_{0}^{(q+2)(1-2 \beta)}$. Thus we obtain the restriction $\beta<1$.

The construction of w_{q+1}

- The perturbation will be a sum of approximate Beltrami plane waves (similar to the convex integration scheme for 2D Euler: Choffrut-De Lellis-Székelyhidi (2012), Choffrut (2012)):

$$
w_{q+1} \approx \sum_{k} a_{k}(x, t) b_{k}\left(\lambda^{q+1} x\right)
$$

- finite number of $k=\left(k_{1}, k_{1}\right)$ in \mathbb{S}^{1}
- $k:=(1,0),(3 / 5,4 / 5),(3 / 5,-4 / 5)$, etc.
- Beltrami plane waves $b_{k}(\xi):=i k^{\perp} e^{i k \cdot \xi}$ are eigenfunctions of Λ

The oscillation error

Recall

$$
\operatorname{div} R_{O}=\operatorname{div} \check{R}_{q}+\Lambda w_{q+1} \cdot \nabla w_{q+1}-\left(\nabla w_{q+1}\right)^{T} \cdot \Lambda w_{q+1}
$$

Setting $w_{k}:=a_{k}(x, t) b_{k}\left(\lambda^{q+1} x\right)$ so that $w_{q+1} \approx \sum_{k} w_{k}$.

$$
\begin{aligned}
\operatorname{div} R_{O}= & \underbrace{\operatorname{div} \AA_{q}+\sum_{k}\left(\Lambda w_{k} \cdot \nabla w_{-k}-\left(\nabla w_{k}\right)^{T} \cdot \Lambda w_{-k}\right)}_{\operatorname{div} R_{o, \text { low }}} \\
& +\underbrace{\sum_{k+k^{\prime} \neq 0}\left(\Lambda w_{k} \cdot \nabla w_{k^{\prime}}-\left(\nabla w_{k}\right)^{T} \cdot \Lambda w_{k^{\prime}}\right)}_{\operatorname{div} R_{o, \text { high }}}
\end{aligned}
$$

It is not difficult to show that div $R_{O, \text { high }}$ is a gradient of pressure plus a small error.

The low frequency oscillation error

We wish to write

$$
\operatorname{div} \stackrel{\circ}{R}_{q}+\sum_{k}\left(\Lambda w_{k} \cdot \nabla w_{-k}-\left(\nabla w_{k}\right)^{T} \cdot \Lambda w_{-k}\right)=\operatorname{div}\left(\stackrel{\circ}{R}_{q}+\sum_{k} \mathcal{Q}_{k}\right)+\nabla \mathcal{P}_{k}
$$

(Easy for the Euler equations, but complicated for SQG.) Setting $\vartheta_{j, k}=\nabla^{\perp} \cdot w_{k}$. With quite a bit of work, one can show

$$
Q_{k}^{m \ell}=\mathcal{S}^{m}\left(\Lambda^{-1} \vartheta_{k}, \mathcal{R}^{\prime} \vartheta_{-k}\right)
$$

for some bilinear integral operator \mathcal{S}. Using the structure of w_{k}, expanding in frequency

$$
Q_{k}^{m \ell}=\frac{\lambda^{q+1}}{2}\left|a_{k}\right|^{2} k^{\perp} \otimes k^{\perp}+\text { error } .
$$

(If a_{k} was a constant then there would be no error.)

Transport Error

Recall

$$
\operatorname{div} R_{T}=\partial_{t} w_{q+1}+u_{q} \cdot \nabla w_{q+1}
$$

To ensure the transport error is small, we replace our previous ansatz

$$
w_{q+1} \approx \sum_{k} a_{k}(x, t) b_{k}\left(\lambda^{q+1} x\right)
$$

with

$$
w_{q+1} \approx \sum_{j, k} a_{j, k}(x, t) b_{k}\left(\lambda^{q+1} \Phi_{j}(x, t)\right)
$$

where $a_{j, k}(x, t)$ is zero outside the range $(j-1) \tau_{q+1}<t<(j+2) \tau_{q+1}$ and

$$
\left\{\begin{array}{l}
\partial_{t} \Phi_{j}+u \cdot \nabla \Phi_{j}=0 \\
\Phi_{j}\left(x, j \tau_{q+1}\right)=x .
\end{array}\right.
$$

