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The SQG equation

The SQG equation

I Inviscid Surface Quasi-Geostrophic (SQG) equation introduced in
Constantin-Majda-Tabak (1994)

∂tθ + u · ∇θ = 0 ,

u = R⊥θ := ∇⊥Λ−1θ ,

I θ = θ(x , t), where (x , t) ∈ T2 × R = [−π, π]2 × R.

I Λ = (−∆)1/2, R = (R1,R2) is the vector of Riesz-transforms

I ∇⊥ = (−∂2, ∂1), and x⊥ = (−x2, x1) for any vector x = (x1, x2).

I example of “active scalar equation”
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The SQG equation

Geophysics

I Derivation in Held, Pierrehumbert, Garner, Swanson (1995)

I θ is temperature (or surface buoyancy)

I Model for rapidly rotating, stratified fluids

I Uniform potential vorticity

I Applications in meteorology and oceans
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The SQG equation

SQG and 2-D Euler

I Stream function ψ

I Velocity u = ∇⊥ψ
I SQG: −∆ψ = 0 in {z > 0} and θ = ∂ψ

∂z
= Λψ, θ = Λ−1ψ

x
y

z

∂tθ + u · ∇θ = 0 in {z = 0} , u = ∇⊥Λ−1θ

I 2-D Euler: −∆ψ = ω in R2, so ω = (−∆)−1ψ

x
y

∂tω + u · ∇ω = 0 in {z = 0} , u = ∇⊥(−∆)−1ω
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The SQG equation

SQG and 3-D Euler

I 3-D Euler: Let ω = curl u
I ∂tω + u · ∇ω = ∇u · ω

I 2-D SQG: Let W = ∇⊥θ
I ∂tW + u · ∇W = ∇u ·W

I SQG has a very similar behavior as 3-D Euler

I Global existence of smooth solutions?

I Finite-time blow-up?
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The SQG equation

A few prior results

I Local existence of smooth solutions, θ0 in Hs , s > 2, or C 1,α, α > 0,
Constantin-Majda-Tabak (1994)

I Numerical simulations indicated a collapsing hyperbolic saddle blow-up
scenario for θ-contours

I Cordoba (1998) and Cordoba-Fefferman (2002) ruled this out

I Constantin-Lai-Sharma-Tseng-Wu (2012) resolved numerical simulation well
past predicted blow-up time
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The SQG equation

SQG Hamiltonian and Conservation Laws

I Ḣ−1/2 Hamiltonian:
I Compute L2 inner product of SQG equation with Λ−1θ
I integrate by parts in nonlinear term and use that

u · ∇Λ−1θ = ∇⊥Λ−1θ · ∇Λ−1θ = 0
I Then,

H(t) := ‖θ(·, t)‖2
Ḣ−1/2(T2) = ‖θ0‖2

Ḣ−1/2(T2)

I Isett-Vicol (2015) showed θ ∈ L3
t,x(T2 × R) implies H(t) conserved

I Casamir functions:
I Since θ is transported by the incompressible vector field u, then

‖θ(·, t)‖Lp(T2) = ‖θ0‖Lp(T2) , 1 ≤ p ≤ ∞

Steve Shkoller (UCD) Nonuniqueness for SQG November 1, 2016 7 / 25



Nonuniqueness of the SQG equations

Weak solutions to inviscid SQG

I L2 weak solution
I Definition 1. θ ∈ L2

loc(R, L2(T2)) is weak solution if

ˆ ˆ
R×T2

(θ∂tφ+ θu · ∇φ) dx dt = 0 ∀φ ∈ C∞(T2 × R)

I Resnick (1995) proved existence of global L2 weak solutions

I Ḣ−1/2 distributional solution
I Definition 2. θ ∈ L2

loc(R; Ḣ−1/2(T2)) is weak solution if

ˆ
R
〈R⊥i θ, ∂tΛ

−1
φ
i 〉 + 〈R⊥j θ,R

⊥
i Λ−1

θ∂jφ
i 〉 −

1

2
〈RiR⊥j θ, [Λ, φi ]R⊥j Λ−1

θ〉 dt = 0

for any φ ∈ C∞0 (T2 × R) such that div φ = 0, where 〈·, ·〉 denotes the
Ḣ−1/2-Ḣ1/2 duality pairing.

I Marchand (2008) proved existence of global Lp weak solutions, p > 4/3

I θ ∈ Ḣ−1/2 remains open
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Nonuniqueness of the SQG equations

Nonuniqueness of weak solutions to inviscid SQG

I Uniqueness remained open and was Challenge Problem 11 in De
Lellis-Székelyhidi (2002), Bulletin AMS

Theorem 1
Suppose h : R→ R+ is a smooth function with compact support. Then for every
1/2 < β < 4/5 and σ < β/(2− β), there exist weak solution θ, with Λ−1θ ∈ Cσt C

β
x ,

satisfying

H(t) =

ˆ
T2

∣∣∣Λ−1/2θ(x , t)
∣∣∣2

dx = h(t) ∀t ∈ R.

I θ ≡ 0 not the only weak solution

t
θ(t)
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Nonuniqueness of the SQG equations

Dissipative SQG equation

∂tθ + u · ∇θ + Λγ = 0 , γ > 0

u = R⊥θ := ∇⊥Λ−1θ ,

I The distribution θ ∈ L2
loc(R; Ḣ−1/2(T2)) is a weak solution of the dissipative SQG

equation if
ˆ
R
〈R⊥i θ, ∂tΛ−1φi 〉+ 〈R⊥j θ,R⊥i Λ−1θ∂jφ

i 〉

− 1

2
〈RiR⊥j θ, [Λ, φi ]R⊥j Λ−1θ〉 − 〈R⊥i θ,Λγ−1φi 〉 dt = 0

for any φ ∈ C∞0 (T2 × R) such that div φ = 0, where 〈·, ·〉 denotes the Ḣ−1/2-Ḣ1/2

duality pairing.
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Nonuniqueness of the SQG equations

Natural scaling symmetry

I θλ(x , t) = λγ−1θ(λx , λγt) is a [−πλ ,
π
λ ]2-periodic solution with initial datum

θ0,λ(x) = λγ−1θ0(λx)

I L∞x -norm scale invariant for γ = 1

I γ > 1 subcritical and semilinear – global regularity Constantin-Wu (1999)

I γ = 1 critical and quasilinear – global regularity Kiselev-Nazarov-Volberg
(2007), Cafarelli-Vasseur (2010), Constantin-Vicol (2012)

I γ < 1 supercritical, open

I γ > 0, weak solutions for θ0 ∈ Ḣ−1/2, Marchand (2008)

Steve Shkoller (UCD) Nonuniqueness for SQG November 1, 2016 11 / 25



Nonuniqueness of the SQG equations

Nonuniqueness of weak solutions to dissipative SQG

Theorem 2
Suppose h : R→ R+ is a smooth function with compact support. Then for every
1/2 < β < 4/5, 0 < γ < 2− β and σ < β/(2− β), there exists a weak solution θ, with
Λ−1θ ∈ Cσt C

β
x , satisfyingˆ

T2

∣∣∣Λ−1/2θ(x , t)
∣∣∣2

dx = h(t) ∀t ∈ R .

I The restriction γ + β < 2 is sharp, in the sense that the C 0
t C

β
x norm for Λ−1θ

is scale invariant when γ + β = 2.

I For supercritical scaling, parabolic smoothing does not hold.

I First instance of convex integration for subcritical semilinear equation
1 < γ ≤ 6/5
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Nonuniqueness of the SQG equations

Inviscid Hydrodynamical Systems via Arnold (1966)

I Inviscid hydrodynamical systems are geodesics with respect to right invariant
metrics on

Dµ = group of volume-preserving diffeomorphisms

with

metric =

ˆ
T2

Au · vdx , A > 0 linear, self-adjoint

I Apply Euler-Poincaré variational principle to find the system of PDE:

∂tv
i + ∂jv

iuj + ∂iu
jv j = −∇p̃

div u = 0

v = Au
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Nonuniqueness of the SQG equations

Reformulation of SQG

I SQG: A = Λ−1

I metric =
´
T2 Λ−1u · vdx

I v = Λ−1u = potential velocity, u = transport velocity

∂tv
i + ∂jv

iuj − ∂iv juj = −∂ip
div u = 0

u = Λv

I θ = −∇⊥v =⇒ ∂tθ + u · ∇θ = 0

I Very nice form for convex integration – no odd (in frequency) multiplier
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Nonuniqueness of the SQG equations

Onsager conjecture for SQG

Conjecture 1

(a) If v ∈ C (R;Cα(T2)) is a weak solution of the SQG equation with α > 1,
then the Hamilitonian is conserved. (Isett-Vicol (2015) using θ formulation)

(b) For any 1/2 < α < 1, there exist infinitely many weak solutions of the SQG
equation, with v ∈ C (R;Cα(T2)), such that the Hamiltonian is not
conserved.

I Euler Onsager with Hölder exponent 1/3

I For Euler, part a) was proven by Constantin-E-Titi (1994) (cf. Eyink 1994,
Cheskidov-Constantin-Friedlander- Shvydkoy 2008)

I Part b) was recently resolved: C 0
x,t De Lellis-Székelyhidi Jr. (2012); C

1/10−
x,t DeSz

(2012); C
1/5−
x,t Isett (2013); C

1/5−
x,t BuDeSz (2013); C

1/3−
x a.e. in time; Bu (2015);

L1
tC

1/3−
x BuDeSz (2016); 3-D C

1/3−
x,t Isett (2016)

I SQG regularity gap α ∈ [4/5, 1) is similar to 2-D Euler gap α ∈ [1/5, 1/3)
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Nonuniqueness of the SQG equations

Regularity exponents

I Consider a scale of Banach spaces Bα = CtC
α
x

αWP = well-posedness α∗ = scale invariant ,

αU = uniqueness αO = Onsager scale ,

αN = Nash scale .

I Expectation of ordering: α∗ ≤ αO ≤ αN ≤ αU ≤ αWP (Klainerman (2016))

I Euler: αWP = 1, αO = 1/3, α∗ = 0, conjectured that αU = 1

I Inviscid SQG (for v): αO = 1, αWP = 2

I Critical SQG (γ = 1): Conjecture that 1 = α∗ = αO = αN = αU = αWP

I First fluids equation where α are the same!
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Nonuniqueness of the SQG equations

SQG Momentum Equation

I Stong form: ∂tv
i + ∂jv

i Λv j − ∂iv jΛv j + Λγv i = −∂ip with div v = 0

I Weak form: v ∈ L2
t,loc Ḣ

1/2 is a weak solution of SQG if

ˆ
R

{
〈v i , ∂tφ

i 〉+ 〈Λv j , v i∂jφ
i 〉+

1

2
〈∂jv i , [Λ, φi ]v j〉+

ˆ
T2

v i Λγφidx

}
dt = 0

for all φ ∈ C∞0 (T2 × R) such that div φ = 0

I L∞t Ḣ
1/2
x global weak solutions for v , Marchand (2008)
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Convex integration

Convex integration scheme

I We construct a sequence of solutions (vq, pq, R̊q) to the relaxed SQG
momentum equation

∂tvq + uq · ∇vq − (∇vq)T · uq +∇pq + Λγvq = div R̊q

div vq = 0

uq = Λvq

I R̊q is a symmetric trace-free 2× 2 matrix (Reynolds stress)

I The goal is to obtain R̊q → 0 as q →∞ (in a suitable topology), and show
that a limiting function vq → v exists, and solves SQG.
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Convex integration

Iteration Scheme

I Iteration: potential velocity: vq+1 = vq + wq+1

I Each vq is localized at frequency λq
I Given λ0 � 1, λq = λq0

I Each vq has amplitude λ1−qβ
0

I We fix β = 4
5 − ε to be the Hölder exponent that we expect for our weak

solution

I Perturbation wq+1 lives at frequency λq+1
0 and must be chosen to cancel low

frequency Reynolds stress Rq error, and |wq+1| ∼ λ1−β(q+1)
0
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Convex integration

Decomposition of Reynolds Stress error

Setting wq+1 := vq+1 − vq we have

div R̊q+1 =
(
∂twq+1 + uq · ∇wq+1

)
+
(

Λwq+1 · ∇vq − (∇vq)T · Λwq+1 − (∇uq)T · wq+1

)
+ Λγwq+1

+
(
div R̊q + Λwq+1 · ∇wq+1 − (∇wq+1)T · Λwq+1

)
+∇p̃q+1

=: divRT + divRN + divRD + divRO +∇p̃q+1
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Convex integration

Heuristic estimates for one term of Nash error

I Assume wq+1 is of frequency ∼ λq+1
0 and |wq+1| ∼ λ−β(q+1)

0 for 1
2 < β < 1,

so that vq → v ∈ Cβ .

I Then∥∥∥div−1
(

(∇uq)T · wq+1

)∥∥∥
C0

.λ−(q+1)
0 ‖uq‖C1 ‖wq+1‖C0

.λ−(q+1)
0 ‖vq‖C2 ‖wq+1‖C0

.λ−(q+1)
0 λ

q(2−β)
0 λ

−(q+1)β
0 = λ

(q+2)(1−2β)
0 λ

3(β−1)
0

I The allowable error must be proportional to |Λwq+1 ⊗ wq+1| ∼ λ(q+2)(1−2β)
0 .

Thus we obtain the restriction β < 1.
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Convex integration

The construction of wq+1

I The perturbation will be a sum of approximate Beltrami plane waves (similar
to the convex integration scheme for 2D Euler: Choffrut-De Lellis-Székelyhidi
(2012), Choffrut (2012)):

wq+1 ≈
∑
k

ak(x , t)bk(λq+1x)

I finite number of k = (k1, k1) in S1

I k := (1, 0) , (3/5, 4/5) , (3/5,−4/5), etc.

I Beltrami plane waves bk(ξ) := ik⊥e ik·ξ are eigenfunctions of Λ
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Convex integration

The oscillation error

Recall

divRO = div R̊q + Λwq+1 · ∇wq+1 − (∇wq+1)T · Λwq+1

Setting wk := ak(x , t)bk(λq+1x) so that wq+1 ≈
∑

k wk .

divRO = div R̊q +
∑
k

(
Λwk · ∇w−k − (∇wk)T · Λw−k

)
︸ ︷︷ ︸

div RO,low

+
∑

k+k′ 6=0

(
Λwk · ∇wk′ − (∇wk)T · Λwk′

)
︸ ︷︷ ︸

div RO,high

It is not difficult to show that divRO,high is a gradient of pressure plus a small
error.
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Convex integration

The low frequency oscillation error

We wish to write

div R̊q +
∑
k

(
Λwk · ∇w−k − (∇wk)T · Λw−k

)
= div

(
R̊q +

∑
k

Qk

)
+∇Pk

(Easy for the Euler equations, but complicated for SQG.) Setting ϑj,k = ∇⊥ · wk .
With quite a bit of work, one can show

Qm`
k = Sm(Λ−1ϑk ,Rlϑ−k)

for some bilinear integral operator S. Using the structure of wk , expanding in
frequency

Qm`
k =

λq+1

2
|ak |2 k⊥ ⊗ k⊥ + error .

(If ak was a constant then there would be no error.)
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Convex integration

Transport Error

Recall
divRT = ∂twq+1 + uq · ∇wq+1

To ensure the transport error is small, we replace our previous ansatz

wq+1 ≈
∑
k

ak(x , t)bk(λq+1x)

with
wq+1 ≈

∑
j,k

aj,k(x , t)bk(λq+1Φj(x , t))

where aj,k(x , t) is zero outside the range (j − 1)τq+1 < t < (j + 2)τq+1 and ∂tΦj + u · ∇Φj = 0

Φj(x , jτq+1) = x .
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