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Overview of the Problem

x

z

Wave Height

Pressure Sensor

Given the pressure at the bottom of a fluid, can we reconstruct the
surface elevation?
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Objective - Measure the Wave

The critical first step is measuring the wave.

Given p (pressure at the bottom), find the height of the water.

z = −h

z = 0
z = η(x)

η(x) + h

Is the hydrostatic approximation p = ρg(η + h) still a valid model?

Now, assume we know h as well. The only unknown is η. If this is a good model, then

η =
p

ρg
− h
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Experimental Set-Up



Experimental Data



Testing the Hydrostatic Approximation

True Surface
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Testing the Hydrostatic Approximation

True Surface

Hydrostatic

New Formulation

η(x) =
F−1 {p̂(k)cosh(µk)}

1− εµF−1 {p̂(k)sinh(µk)}

We “achieved” our goal.



Movie Time!
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Overview of the talk

Derivation of the Nonlinear Formulae

Asymptotic Expansions & Results

Summary & Future Work



Model Assumptions

We begin with Euler’s equations for an invicid, irrotational fluid.

- One-dimensional - Stationary Flow

- Irrotational & Invicid - No friction/boundary layer effects

- Constant Density - Zero Atmospheric Pressure

x = 0 x = L

z = η(x)

z = b(x)Ua Ub



Equations of Motion

x = 0 x = L

z = η(x)

z = b(x)Ua Ub

We begin with Euler’s equations for irrotational free-surface flow given by

φxx + φzz = 0, (x, z) ∈ D,
φz − bxφx = 0, z = b(x),

φz − ηxφx = 0, z = η(x),

1

2
φ2
x +

1

2
φ2
z + gη =

B

2
, z = η(x),

with the horizontal boundary conditions

φz = 0, x = 0, and x = L,

φx = Ua x = 0,

φx = Ub x = L.



Equations of motion - at the free surface

At the free surface, we have

φz

∣∣∣
z=η

= ηxφx

∣∣∣
z=η

and

1

2
φ2
x

∣∣∣
z=η

+
1

2
φ2
z

∣∣∣
z=η

+ gη =
1

2
B,

where B is the Bernoulli Constant.

Combining the two relationships, we find

φx = ±
√
B − 2gη√
1 + η2x

.

Thus, we can express the velocity potential at the surface in terms of the Bernoulli
constant, and the surface elevation.



Equations of motion - at the bottom

At the bottom, we have

φz

∣∣∣
z=b

= bxφx

∣∣∣
z=b

and

1

2
φ2
x

∣∣∣
z=b

+
1

2
φ2
z

∣∣∣
z=b

+ g · b(x) + pb(x) =
1

2
B

where B is the Bernoulli Constant and pb(x) = p(x, b(x)).

Combining the two relationships, we find

φx = ±
√
B − 2 b(x)− 2 pb(x)√

1 + b2x

Thus, we can express the velocity potential at the bottom in terms of the Bernoulli
constant, the pressure along the bottom, and the surface elevation.



Equations of Motion: Boundary Conditions

At the Surface At the Bottom

φx = ±
√
B − 2gη√
1 + η2x

φx = ±
√
B − 2 b(x)− 2 pb(x)√

1 + b2x

φz = ±ηx
√
B − 2gη√
1 + η2x

φz = ±bx
√
B − 2 b(x)− 2 pb(x)√

1 + b2x
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Since we are assuming that the fluid is irrotational, then φx must be sign-definite
throughout the domain. For simplicity, we choose the + sign.
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Equations of Motion: Boundary Conditions

At the Surface At the Bottom

φx = ±
√
B − 2gη√
1 + η2x

φx = ±
√
B − 2 b(x)− 2 pb(x)√

1 + b2x

φz = ±ηx
√
B − 2gη√
1 + η2x

φz = ±bx
√
B − 2 b(x)− 2 pb(x)√

1 + b2x

To summarize, we have expressed the gradient of the velocity

- at the surface in terms of the surface elevation, and

- at the bottom in terms of the pressure and bathymetry.



Connecting the dots

Recall that the connecting glue is

φxx + φzz = 0, for b(x) < z < η(x).

Imagine we have another function ψ that also solve Laplace’s equation.

ψz(φxx + φzz)− φz(ψxx + ψzz) = 0

This can be arranged to

(ψzφx + ψzφx)x − (φxψx − φzψz)z = 0

Integrating over the entire domain yields:
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Connecting the dots

Recall that the connecting glue is

φxx + φzz = 0, for b(x) < z < η(x).

Imagine we have another function ψ that also solve Laplace’s equation.

ψz(φxx + φzz)− φz(ψxx + ψzz) = 0

This can be arranged to

(ψzφx + ψzφx)x − (φxψx − φzψz)z = 0

Integrating over the entire domain yields:∮
∂D

[
(φxψz + φzψx)dz + (φxψx − φzψz)dx

]
= 0



Evaluating the integral

x = 0 x = L

z = η(x)

z = b(x)Ua Ub

∮
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At the Surface At the Bottom

φx =

√
B − 2gη√
1 + η2x

φx =

√
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Evaluating the integral

x = 0 x = L

z = η(x)

z = b(x)Ua Ub

∮
∂D

[
(φxψz + φzψx)dz + (φxψx − φzψz)dx

]
= 0

Using the boundary conditions, the above integral becomes

∫ L

0

[√
(1 + b2x)(B − 2gb(x)− pb(x)) ψx

∣∣∣
z=η

]
dx+ Ua ψ

∣∣∣(0,η(0))
(0,b(0))

−
∫ L

0

[√
(1 + η2x)(B − 2gη(x)) ψx

∣∣∣
z=η

]
dx− Ub ψ

∣∣∣(L,η(L))

(L,b(L))
= 0,



To summarize...

We can related the quantities of interest via the equation∫ L
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where the only restriction is that ψ satisfies ∆ψ = 0.
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At this point, assume that we know b(x), so that p(x), η(x), and B are all unknown.
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Conservation of Mass
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To summarize...

We can related the quantities of interest via the equation∫ L

0

[√
(1 + b2x)(B − 2gb(x)− pb(x)) ψx

∣∣∣
z=η

]
dx+ Ua ψ

∣∣∣(0,η(0))
(0,b(0))

−
∫ L

0

[√
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If we choose ψ = x,∫ L

0

[√
(1 + b2x)(B − 2gb(x)− 2pb(x))−

√
(1 + η2x)(B − 2gη)

]
dx = 0

Average value of tangential velocity along the surface and bathymetry.



To summarize...

We can related the quantities of interest via the equation∫ L

0

[√
(1 + b2x)(B − 2gb(x)− pb(x)) ψx

∣∣∣
z=η

]
dx+ Ua ψ

∣∣∣(0,η(0))
(0,b(0))

−
∫ L

0

[√
(1 + η2x)(B − 2gη(x)) ψx

∣∣∣
z=η

]
dx− Ub ψ

∣∣∣(L,η(L))

(L,b(L))
= 0,

where the only restriction is that ψ satisfies ∆ψ = 0.

How many relationships are enough to
directly relate b(x) and η(x)?



Relating the quantities of interest

Following the work of [Ablowitz, et. al ], [O., Vasan, Deconinck& Henderson], let

ψ1 = e−ikxsinh(kz), and ψ2 = e−ikxcosh(kz).

Then for ψ1, we find,

S(b(x), k)
{√

(1 + b2x)(B − 2gb(x)− 2pb(x))
}

+ Ua (sinh (kη(0))− sinh (kb(0)))

− S(η(x), k){
√

(1 + η2x)(B − 2gη(x))} − Ub (sinh (kη(L))− sinh (kb(L))) = 0

where

S(f(x), k){g(x)} = −ik
∫ L

0

[
e−ikxsinh(kf(x))g(x)

]
dx.

We can find a similar expression for ψ2 where we introduce the operator
C(f(x), k){g(x)}.
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While B can be considered an unknown, we can relate B to the values of η(x), b(x)
and pb(x) at x = 0 and x = L via the Bernoulli Equation.
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The question you may be asking...

free surface

bathymetry

Given b(x), is this system of equations actually solvable for the other two
parameters? Specifically, given b(x), will you find the correct pb(x) and η(x)?



Outline of the Proof (for traveling waves/flat bottom)

The principle idea behind the proof is to use the implicit function theorem.

- We define the appropriate Banach spaces.

- Use the implicit function theorem to determine the existence of a map.

- Establish that if the pressure corresponds to a true solution of the water-wave
problem, then the maps gives the true surface elevation as a function of the
pressure.

In other words, given small amplitude true pressure data, we can determine the
true surface elevation for a fixed wave speed.

We are currently working to extend these results to this problem.
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Asymptotic Formulae

We can non-dimensionalize the equations of motion by introducing the dimensionless
parameters:

ε =
a

h
, µ =

h

L

where h =
1

L

∫ L

0

η(x)− b(x) dx. This yields

S(εb̃(x)− 1)

{√
(1 + ε2µ2b2x)(B − 2ε(b̃(x)− p̃b(x))

}
−S(εη(x)){

√
(1 + ε2µ2η2x)(B − 2εη(x))}

+ Ua
(

sinh (µkη̃(0))− sinh
(
µk(εb̃(0)− 1)

))
− Ub (sinh (εµkη(2π))− sinh (µk(εb(2π)− 1))) = 0

where we have defined p̃b(x) = gh− agpb(x̃), b(x) = −h+ ab(x̃) and η(x) = aη(x̃).

We find a simlar equation for the cosh equation.



Asymptotics (KdV Limit)

If we assume shallow-water conditions where µ2 = ε and expand in powers of ε we find
the leading order behavior

p̃b(x) = η̃(x)− b̃(x) +O(ε),

along with

ik

∫ 2π

0

e−ikxη̃(x) dx =
ik

B − 1

∫ 2π

0

e−ikxb̃(x) dx+
6
√
B (Ub − Ua)

B − 1
+O(ε)

If we assume Ua = Ub = U , then we find

η̃(x) =
b̃(x)

B − 1
+O(ε)
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Asymptotics (KdV Limit)

If we assume shallow-water conditions where µ2 = ε and expand in powers of ε we find
the leading order behavior

p̃b(x) = η̃(x)− b̃(x) +O(ε),

along with

ik

∫ 2π

0

e−ikxη̃(x) dx =
ik

B − 1

∫ 2π

0

e−ikxb̃(x) dx+
6
√
B (Ub − Ua)

B − 1
+O(ε)

If we assume Ua = Ub = U , then we find

η̃(x) =
b̃(x)

B − 1
+O(ε)

x = 0 x = L

z = η(x)

z = b(x)

B < 1
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Small Amplitude

∞∑
k=−∞

η̂1ne
ikx =

∞∑
k=−∞
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a

kU2
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Figure: Square wave with subcritical flow



Small Amplitude

∞∑
k=−∞

η̂1ne
ikx =

∞∑
k=−∞

b̂1ne
ikx kU2

a

kU2
acosh(hk)− gsinh(hk)

.

Figure: Square wave with supercritical flow
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Summary & Future Work

Summary:

We have developed a relationship between η, b(x), and pb(x) based on the
fully-nonlinear model.

This formulation provides an easy mechanism for asymptotic reductions.

Unfortunately, you need to know too much information.

Future Work:

Investigate various asymptotic models and compare with experimental results.

Aim to eliminate various quantities from the formulation.

Investigate higher dimensional versions of this formulation.



Thank you for your attention!
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