Relationships between pressure, bathymetry, and wave-height

Katie Oliveras ${ }^{\dagger} \quad$ Daniel Ferguson ${ }^{\dagger} \mathrm{U}$ Vishal Vasan ${ }^{\ddagger}$

${ }^{\dagger}$ Seattle University
Department of Mathematics
\ddagger International Centre for Theoretical Sciences
Bangalore, India
Banff International Research Station
October 31, 2016

Acknowledgements

We gratefully acknowledges support from:

- The National Science Foundation (DMS-1313049)
- The AMS-Simons Research Travel Grants
- Seattle University Faculty Research Grants

Warning System

Figure: Source: http://www.srh.noaa.gov/jetstream/tsunami/dart.htm

Overview of the Problem

Given the pressure at the bottom of a fluid, can we reconstruct the surface elevation?

Objective - Measure the Wave

The critical first step is measuring the wave.
Given p (pressure at the bottom), find the height of the water.

Objective - Measure the Wave

The critical first step is measuring the wave.
Given p (pressure at the bottom), find the height of the water.

$$
\begin{array}{r}
z=0 \\
z=-h
\end{array}
$$

Objective - Measure the Wave

The critical first step is measuring the wave.
Given p (pressure at the bottom), find the height of the water.

In physics, we learned

$$
p=\rho g h
$$

where ρ is density and g is acceleration due to gravity.
This is called the hydrostatic pressure.

Objective - Measure the Wave

The critical first step is measuring the wave.
Given p (pressure at the bottom), find the height of the water.

In physics, we learned

$$
p=\rho g h
$$

where ρ is density and g is acceleration due to gravity.
This is called the hydrostatic pressure. Given p, we could solve for h to find

$$
h=\frac{p}{\rho g} .
$$

Objective - Measure the Wave

The critical first step is measuring the wave.
Given p (pressure at the bottom), find the height of the water.

Is the hydrostatic approximation $p=\rho g(\eta+h)$ still a valid model?
Now, assume we know h as well. The only unknown is η. If this is a good model, then

$$
\eta=\frac{p}{\rho g}-h
$$

Collaborators

Experimental Set-Up

Experimental Data

Testing the Hydrostatic Approximation

Testing the Hydrostatic Approximation

Testing the Hydrostatic Approximation

$$
\begin{gathered}
\eta(x)=\frac{\mathcal{F}^{-1}\{\hat{p}(k) \cosh (\mu k)\}}{1-\epsilon \mu \mathcal{F}^{-1}\{\hat{p}(k) \sinh (\mu k)\}} \\
\text { We "achieved" our goal. }
\end{gathered}
$$

Movie Time!

Can we say something new relating the surface to the bathymetry?

Overview of the talk

Derivation of the Nonlinear Formulae

Asymptotic Expansions \& Results

Summary \& Future Work

Model Assumptions

We begin with Euler's equations for an invicid, irrotational fluid.

- One-dimensional
- Irrotational \& Invicid
- Constant Density
- Stationary Flow
- No friction/boundary layer effects
- Zero Atmospheric Pressure

Equations of Motion

We begin with Euler's equations for irrotational free-surface flow given by

$$
\begin{array}{ll}
\phi_{x x}+\phi_{z z}=0, & (x, z) \in D, \\
\phi_{z}-b_{x} \phi_{x}=0, & z=b(x), \\
\phi_{z}-\eta_{x} \phi_{x}=0, & z=\eta(x), \\
\frac{1}{2} \phi_{x}^{2}+\frac{1}{2} \phi_{z}^{2}+g \eta=\frac{B}{2}, & z=\eta(x),
\end{array}
$$

with the horizontal boundary conditions

$$
\begin{array}{ll}
\phi_{z}=0, & x=0, \text { and } x=L, \\
\phi_{x}=U_{a} & x=0, \\
\phi_{x}=U_{b} & x=L .
\end{array}
$$

Equations of motion - at the free surface
At the free surface, we have

$$
\left.\phi_{z}\right|_{z=\eta}=\left.\eta_{x} \phi_{x}\right|_{z=\eta}
$$

and

$$
\left.\frac{1}{2} \phi_{x}^{2}\right|_{z=\eta}+\left.\frac{1}{2} \phi_{z}^{2}\right|_{z=\eta}+g \eta=\frac{1}{2} B
$$

where B is the Bernoulli Constant.
Combining the two relationships, we find

$$
\phi_{x}= \pm \frac{\sqrt{B-2 g \eta}}{\sqrt{1+\eta_{x}^{2}}} .
$$

Thus, we can express the velocity potential at the surface in terms of the Bernoulli constant, and the surface elevation.

Equations of motion - at the bottom

At the bottom, we have

$$
\left.\phi_{z}\right|_{z=b}=\left.b_{x} \phi_{x}\right|_{z=b}
$$

and

$$
\left.\frac{1}{2} \phi_{x}^{2}\right|_{z=b}+\left.\frac{1}{2} \phi_{z}^{2}\right|_{z=b}+g \cdot b(x)+p_{b}(x)=\frac{1}{2} B
$$

where B is the Bernoulli Constant and $p_{b}(x)=p(x, b(x))$.
Combining the two relationships, we find

$$
\phi_{x}= \pm \frac{\sqrt{B-2 b(x)-2 p_{b}(x)}}{\sqrt{1+b_{x}^{2}}}
$$

Thus, we can express the velocity potential at the bottom in terms of the Bernoulli constant, the pressure along the bottom, and the surface elevation.

Equations of Motion: Boundary Conditions

At the Surface	At the Bottom
$\phi_{x}= \pm \frac{\sqrt{B-2 g \eta}}{\sqrt{1+\eta_{x}^{2}}}$	$\phi_{x}= \pm \frac{\sqrt{B-2 b(x)-2 p_{b}(x)}}{\sqrt{1+b_{x}^{2}}}$
$\phi_{z}= \pm \eta_{x} \frac{\sqrt{B-2 g \eta}}{\sqrt{1+\eta_{x}^{2}}}$	$\phi_{z}= \pm b_{x} \frac{\sqrt{B-2 b(x)-2 p_{b}(x)}}{\sqrt{1+b_{x}^{2}}}$

Equations of Motion: Boundary Conditions

At the Surface	At the Bottom
$\phi_{x}= \pm \frac{\sqrt{B-2 g \eta}}{\sqrt{1+\eta_{x}^{2}}}$	$\phi_{x}= \pm \frac{\sqrt{B-2 b(x)-2 p_{b}(x)}}{\sqrt{1+b_{x}^{2}}}$
$\phi_{z}= \pm \eta_{x} \frac{\sqrt{B-2 g \eta}}{\sqrt{1+\eta_{x}^{2}}}$	$\phi_{z}= \pm b_{x} \frac{\sqrt{B-2 b(x)-2 p_{b}(x)}}{\sqrt{1+b_{x}^{2}}}$

A note about the \pm signs:

Equations of Motion: Boundary Conditions

At the Surface	At the Bottom
$\phi_{x}= \pm \frac{\sqrt{B-2 g \eta}}{\sqrt{1+\eta_{x}^{2}}}$	$\phi_{x}= \pm \frac{\sqrt{B-2 b(x)-2 p_{b}(x)}}{\sqrt{1+b_{x}^{2}}}$
$\phi_{z}= \pm \eta_{x} \frac{\sqrt{B-2 g \eta}}{\sqrt{1+\eta_{x}^{2}}}$	$\phi_{z}= \pm b_{x} \frac{\sqrt{B-2 b(x)-2 p_{b}(x)}}{\sqrt{1+b_{x}^{2}}}$

A note about the \pm signs:
Since we are assuming that the fluid is irrotational, then ϕ_{x} must be sign-definite throughout the domain. For simplicity, we choose the + sign.

Equations of Motion: Boundary Conditions

At the Surface	At the Bottom
$\phi_{x}= \pm \frac{\sqrt{B-2 g \eta}}{\sqrt{1+\eta_{x}^{2}}}$	$\phi_{x}= \pm \frac{\sqrt{B-2 b(x)-2 p_{b}(x)}}{\sqrt{1+b_{x}^{2}}}$
$\phi_{z}= \pm \eta_{x} \frac{\sqrt{B-2 g \eta}}{\sqrt{1+\eta_{x}^{2}}}$	$\phi_{z}= \pm b_{x} \frac{\sqrt{B-2 b(x)-2 p_{b}(x)}}{\sqrt{1+b_{x}^{2}}}$

To summarize, we have expressed the gradient of the velocity

- at the surface in terms of the surface elevation, and
- at the bottom in terms of the pressure and bathymetry.

Connecting the dots

Recall that the connecting glue is

$$
\phi_{x x}+\phi_{z z}=0, \text { for } b(x)<z<\eta(x)
$$

Connecting the dots

Recall that the connecting glue is

$$
\phi_{x x}+\phi_{z z}=0, \text { for } b(x)<z<\eta(x) .
$$

Imagine we have another function ψ that also solve Laplace's equation.

$$
\psi_{z}\left(\phi_{x x}+\phi_{z z}\right)-\phi_{z}\left(\psi_{x x}+\psi_{z z}\right)=0
$$

Connecting the dots

Recall that the connecting glue is

$$
\phi_{x x}+\phi_{z z}=0, \text { for } b(x)<z<\eta(x) .
$$

Imagine we have another function ψ that also solve Laplace's equation.

$$
\psi_{z}\left(\phi_{x x}+\phi_{z z}\right)-\phi_{z}\left(\psi_{x x}+\psi_{z z}\right)=0
$$

This can be arranged to

$$
\left(\psi_{z} \phi_{x}+\psi_{z} \phi_{x}\right)_{x}-\left(\phi_{x} \psi_{x}-\phi_{z} \psi_{z}\right)_{z}=0
$$

Connecting the dots

Recall that the connecting glue is

$$
\phi_{x x}+\phi_{z z}=0, \text { for } b(x)<z<\eta(x) .
$$

Imagine we have another function ψ that also solve Laplace's equation.

$$
\psi_{z}\left(\phi_{x x}+\phi_{z z}\right)-\phi_{z}\left(\psi_{x x}+\psi_{z z}\right)=0
$$

This can be arranged to

$$
\left(\psi_{z} \phi_{x}+\psi_{z} \phi_{x}\right)_{x}-\left(\phi_{x} \psi_{x}-\phi_{z} \psi_{z}\right)_{z}=0
$$

Integrating over the entire domain yields:

$$
\iint_{D}\left(\psi_{z} \phi_{x}+\psi_{z} \phi_{x}\right)_{x}-\left(\phi_{x} \psi_{x}-\phi_{z} \psi_{z}\right)_{z} d A=0
$$

Connecting the dots

Recall that the connecting glue is

$$
\phi_{x x}+\phi_{z z}=0, \text { for } b(x)<z<\eta(x) .
$$

Imagine we have another function ψ that also solve Laplace's equation.

$$
\psi_{z}\left(\phi_{x x}+\phi_{z z}\right)-\phi_{z}\left(\psi_{x x}+\psi_{z z}\right)=0
$$

This can be arranged to

$$
\left(\psi_{z} \phi_{x}+\psi_{z} \phi_{x}\right)_{x}-\left(\phi_{x} \psi_{x}-\phi_{z} \psi_{z}\right)_{z}=0
$$

Integrating over the entire domain yields:

$$
\oint_{\partial D}\left[\left(\phi_{x} \psi_{z}+\phi_{z} \psi_{x}\right) d z+\left(\phi_{x} \psi_{x}-\phi_{z} \psi_{z}\right) d x\right]=0
$$

Evaluating the integral

Evaluating the integral

At the Bottom

$$
\begin{aligned}
\phi_{x} & =\frac{\sqrt{B-2 g \eta}}{\sqrt{1+\eta_{x}^{2}}} \\
\phi_{z} & =\eta_{x} \frac{\sqrt{B-2 g \eta}}{\sqrt{1+\eta_{x}^{2}}}
\end{aligned}
$$

$$
\begin{aligned}
& \phi_{x}=\frac{\sqrt{B-2 g b(x)-2 p_{b}(x)}}{\sqrt{1+b_{x}^{2}}} \\
& \phi_{z}=\frac{b_{x} \sqrt{B-2 g b(x)-2 p_{b}(x)}}{\sqrt{1+b_{x}^{2}}}
\end{aligned}
$$

Evaluating the integral

Using the boundary conditions, the above integral becomes

$$
\begin{aligned}
& \int_{0}^{L}\left[\left.\sqrt{\left(1+b_{x}^{2}\right)\left(B-2 g b(x)-p_{b}(x)\right)} \psi_{x}\right|_{z=\eta}\right] d x+\left.U_{a} \psi\right|_{(0, b(0))} ^{(0, \eta(0))} \\
&-\int_{0}^{L}\left[\left.\sqrt{\left(1+\eta_{x}^{2}\right)(B-2 g \eta(x))} \psi_{x}\right|_{z=\eta}\right] d x-\left.U_{b} \psi\right|_{(L, b(L))} ^{(L, \eta(L))}=0
\end{aligned}
$$

To summarize...

We can related the quantities of interest via the equation

$$
\begin{aligned}
& \int_{0}^{L}\left[\left.\sqrt{\left(1+b_{x}^{2}\right)\left(B-2 g b(x)-p_{b}(x)\right)} \psi_{x}\right|_{z=\eta}\right] d x+\left.U_{a} \psi\right|_{(0, b(0))} ^{(0, \eta(0))} \\
& \quad-\quad \int_{0}^{L}\left[\left.\sqrt{\left(1+\eta_{x}^{2}\right)(B-2 g \eta(x))} \psi_{x}\right|_{z=\eta}\right] d x-\left.U_{b} \psi\right|_{(L, b(L))} ^{(L, \eta(L))}=0,
\end{aligned}
$$

where the only restriction is that ψ satisfies $\Delta \psi=0$.

To summarize...

We can related the quantities of interest via the equation

$$
\begin{aligned}
& \int_{0}^{L}\left[\left.\sqrt{\left(1+b_{x}^{2}\right)\left(B-2 g b(x)-p_{b}(x)\right)} \psi_{x}\right|_{z=\eta}\right] d x+\left.U_{a} \psi\right|_{(0, b(0))} ^{(0, \eta(0))} \\
& \quad-\quad \int_{0}^{L}\left[\left.\sqrt{\left(1+\eta_{x}^{2}\right)(B-2 g \eta(x))} \psi_{x}\right|_{z=\eta}\right] d x-\left.U_{b} \psi\right|_{(L, b(L))} ^{(L, \eta(L))}=0,
\end{aligned}
$$

where the only restriction is that ψ satisfies $\Delta \psi=0$.
At this point, assume that we know $b(x)$, so that $p(x), \eta(x)$, and B are all unknown.

To summarize...

We can related the quantities of interest via the equation

$$
\begin{aligned}
& \int_{0}^{L}\left[\left.\sqrt{\left(1+b_{x}^{2}\right)\left(B-2 g b(x)-p_{b}(x)\right)} \psi_{x}\right|_{z=\eta}\right] d x+\left.U_{a} \psi\right|_{(0, b(0))} ^{(0, \eta(0))} \\
& \quad-\int_{0}^{L}\left[\left.\sqrt{\left(1+\eta_{x}^{2}\right)(B-2 g \eta(x))} \psi_{x}\right|_{z=\eta}\right] d x-\left.U_{b} \psi\right|_{(L, b(L))} ^{(L, \eta(L))}=0,
\end{aligned}
$$

where the only restriction is that ψ satisfies $\Delta \psi=0$.

To summarize...

We can related the quantities of interest via the equation

$$
\begin{aligned}
& \int_{0}^{L}\left[\left.\sqrt{\left(1+b_{x}^{2}\right)\left(B-2 g b(x)-p_{b}(x)\right)} \psi_{x}\right|_{z=\eta}\right] d x+\left.U_{a} \psi\right|_{(0, b(0))} ^{(0, \eta(0))} \\
& \quad-\quad \int_{0}^{L}\left[\left.\sqrt{\left(1+\eta_{x}^{2}\right)(B-2 g \eta(x))} \psi_{x}\right|_{z=\eta}\right] d x-\left.U_{b} \psi\right|_{(L, b(L))} ^{(L, \eta(L))}=0,
\end{aligned}
$$

where the only restriction is that ψ satisfies $\Delta \psi=0$.
If we choose $\psi=z$,

$$
U_{a} \cdot(\eta(0)-b(0))-U_{b} \cdot(\eta(L)-b(L))=0 .
$$

To summarize...

We can related the quantities of interest via the equation

$$
\begin{aligned}
& \int_{0}^{L}\left[\left.\sqrt{\left(1+b_{x}^{2}\right)\left(B-2 g b(x)-p_{b}(x)\right)} \psi_{x}\right|_{z=\eta}\right] d x+\left.U_{a} \psi\right|_{(0, b(0))} ^{(0, \eta(0))} \\
& \quad-\quad \int_{0}^{L}\left[\left.\sqrt{\left(1+\eta_{x}^{2}\right)(B-2 g \eta(x))} \psi_{x}\right|_{z=\eta}\right] d x-\left.U_{b} \psi\right|_{(L, b(L))} ^{(L, \eta(L))}=0,
\end{aligned}
$$

where the only restriction is that ψ satisfies $\Delta \psi=0$.
If we choose $\psi=z$,

$$
U_{a} \cdot(\eta(0)-b(0))-U_{b} \cdot(\eta(L)-b(L))=0 .
$$

Conservation of Mass

To summarize...

We can related the quantities of interest via the equation

$$
\begin{aligned}
& \int_{0}^{L}\left[\left.\sqrt{\left(1+b_{x}^{2}\right)\left(B-2 g b(x)-p_{b}(x)\right)} \psi_{x}\right|_{z=\eta}\right] d x+\left.U_{a} \psi\right|_{(0, b(0))} ^{(0, \eta(0))} \\
& \quad-\int_{0}^{L}\left[\left.\sqrt{\left(1+\eta_{x}^{2}\right)(B-2 g \eta(x))} \psi_{x}\right|_{z=\eta}\right] d x-\left.U_{b} \psi\right|_{(L, b(L))} ^{(L, \eta(L))}=0,
\end{aligned}
$$

where the only restriction is that ψ satisfies $\Delta \psi=0$.
If we choose $\psi=x$,

$$
\int_{0}^{L}\left[\sqrt{\left(1+b_{x}^{2}\right)\left(B-2 g b(x)-2 p_{b}(x)\right)}-\sqrt{\left(1+\eta_{x}^{2}\right)(B-2 g \eta)}\right] d x=0
$$

To summarize...

We can related the quantities of interest via the equation

$$
\begin{aligned}
& \int_{0}^{L}\left[\left.\sqrt{\left(1+b_{x}^{2}\right)\left(B-2 g b(x)-p_{b}(x)\right)} \psi_{x}\right|_{z=\eta}\right] d x+\left.U_{a} \psi\right|_{(0, b(0))} ^{(0, \eta(0))} \\
& \quad-\int_{0}^{L}\left[\left.\sqrt{\left(1+\eta_{x}^{2}\right)(B-2 g \eta(x))} \psi_{x}\right|_{z=\eta}\right] d x-\left.U_{b} \psi\right|_{(L, b(L))} ^{(L, \eta(L))}=0,
\end{aligned}
$$

where the only restriction is that ψ satisfies $\Delta \psi=0$.
If we choose $\psi=x$,

$$
\int_{0}^{L}\left[\sqrt{\left(1+b_{x}^{2}\right)\left(B-2 g b(x)-2 p_{b}(x)\right)}-\sqrt{\left(1+\eta_{x}^{2}\right)(B-2 g \eta)}\right] d x=0
$$

Average value of tangential velocity along the surface and bathymetry.

To summarize...

We can related the quantities of interest via the equation

$$
\begin{aligned}
& \int_{0}^{L}\left[\left.\sqrt{\left(1+b_{x}^{2}\right)\left(B-2 g b(x)-p_{b}(x)\right)} \psi_{x}\right|_{z=\eta}\right] d x+\left.U_{a} \psi\right|_{(0, b(0))} ^{(0, \eta(0))} \\
& \quad-\quad \int_{0}^{L}\left[\left.\sqrt{\left(1+\eta_{x}^{2}\right)(B-2 g \eta(x))} \psi_{x}\right|_{z=\eta}\right] d x-\left.U_{b} \psi\right|_{(L, b(L))} ^{(L, \eta(L))}=0,
\end{aligned}
$$

where the only restriction is that ψ satisfies $\Delta \psi=0$.

How many relationships are enough to directly relate $b(x)$ and $\eta(x)$?

Relating the quantities of interest

Following the work of [Ablowitz, et. al], [O., Vasan, Deconinck\& Henderson], let

Relating the quantities of interest

Following the work of [Ablowitz, et. al], [O., Vasan, Deconinck\& Henderson], let

$$
\psi_{1}=e^{-i k x} \sinh (k z), \quad \text { and } \quad \psi_{2}=e^{-i k x} \cosh (k z) .
$$

Then for ψ_{1}, we find,

$$
\begin{aligned}
& \mathcal{S}(b(x), k)\left\{\sqrt{\left(1+b_{x}^{2}\right)\left(B-2 g b(x)-2 p_{b}(x)\right)}\right\}+U_{a}(\sinh (k \eta(0))-\sinh (k b(0))) \\
& \quad-\mathcal{S}(\eta(x), k)\left\{\sqrt{\left(1+\eta_{x}^{2}\right)(B-2 g \eta(x))}\right\}-U_{b}(\sinh (k \eta(L))-\sinh (k b(L)))=0
\end{aligned}
$$

where

$$
\mathcal{S}(f(x), k)\{g(x)\}=-i k \int_{0}^{L}\left[e^{-i k x} \sinh (k f(x)) g(x)\right] d x
$$

We can find a similar expression for ψ_{2} where we introduce the operator $\mathcal{C}(f(x), k)\{g(x)\}$.

Relating the quantities of interest

$$
\begin{aligned}
& \mathcal{S}(b(x), k)\left\{\sqrt{\left(1+b_{x}^{2}\right)\left(B-2 g b(x)-2 p_{b}(x)\right)}\right\}+U_{a}(\sinh (k \eta(0))-\sinh (k b(0))) \\
& \quad-\mathcal{S}(\eta(x), k)\left\{\sqrt{\left(1+\eta_{x}^{2}\right)(B-2 g \eta(x))}\right\}-U_{b}(\sinh (k \eta(L))-\sinh (k b(L)))=0
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{C}(b(x), k)\left\{\sqrt{\left(1+b_{x}^{2}\right)\left(B-2 g b(x)-2 p_{b}(x)\right)}\right\}+U_{a}(\cosh (k \eta(0))-\sinh (k b(0))) \\
& \quad-\mathcal{C}(\eta(x), k)\left\{\sqrt{\left(1+\eta_{x}^{2}\right)(B-2 g \eta(x))}\right\}-U_{b}(\cosh (k \eta(L))-\sinh (k b(L)))=0
\end{aligned}
$$

Relating the quantities of interest

$$
\begin{aligned}
& \mathcal{S}(b(x), k)\left\{\sqrt{\left(1+b_{x}^{2}\right)\left(B-2 g b(x)-2 p_{b}(x)\right)}\right\}+U_{a}(\sinh (k \eta(0))-\sinh (k b(0))) \\
& \quad-\mathcal{S}(\eta(x), k)\left\{\sqrt{\left(1+\eta_{x}^{2}\right)(B-2 g \eta(x))}\right\}-U_{b}(\sinh (k \eta(L))-\sinh (k b(L)))=0
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{C}(b(x), k)\left\{\sqrt{\left(1+b_{x}^{2}\right)\left(B-2 g b(x)-2 p_{b}(x)\right)}\right\}+U_{a}(\cosh (k \eta(0))-\sinh (k b(0))) \\
& \quad-\mathcal{C}(\eta(x), k)\left\{\sqrt{\left(1+\eta_{x}^{2}\right)(B-2 g \eta(x))}\right\}-U_{b}(\cosh (k \eta(L))-\sinh (k b(L)))=0
\end{aligned}
$$

These equations form a "system" of 2 equations for 3 unknowns ($p_{b}(x), \eta(x)$, and B.

Relating the quantities of interest

$$
\begin{aligned}
& \mathcal{S}(b(x), k)\left\{\sqrt{\left(1+b_{x}^{2}\right)\left(B-2 g b(x)-2 p_{b}(x)\right)}\right\}+U_{a}(\sinh (k \eta(0))-\sinh (k b(0))) \\
& \quad-\mathcal{S}(\eta(x), k)\left\{\sqrt{\left(1+\eta_{x}^{2}\right)(B-2 g \eta(x))}\right\}-U_{b}(\sinh (k \eta(L))-\sinh (k b(L)))=0
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{C}(b(x), k)\left\{\sqrt{\left(1+b_{x}^{2}\right)\left(B-2 g b(x)-2 p_{b}(x)\right)}\right\}+U_{a}(\cosh (k \eta(0))-\sinh (k b(0))) \\
& \quad-\mathcal{C}(\eta(x), k)\left\{\sqrt{\left(1+\eta_{x}^{2}\right)(B-2 g \eta(x))}\right\}-U_{b}(\cosh (k \eta(L))-\sinh (k b(L)))=0
\end{aligned}
$$

These equations form a "system" of 2 equations for 3 unknowns ($p_{b}(x), \eta(x)$, and B. While B can be considered an unknown, we can relate B to the values of $\eta(x), b(x)$ and $p_{b}(x)$ at $x=0$ and $x=L$ via the Bernoulli Equation.

The question you may be asking...

Given $b(x)$, is this system of equations actually solvable for the other two parameters? Specifically, given $b(x)$, will you find the correct $p_{b}(x)$ and $\eta(x)$?

Outline of the Proof (for traveling waves/flat bottom)

The principle idea behind the proof is to use the implicit function theorem.

- We define the appropriate Banach spaces.
- Use the implicit function theorem to determine the existence of a map.
- Establish that if the pressure corresponds to a true solution of the water-wave problem, then the maps gives the true surface elevation as a function of the pressure.

In other words, given small amplitude true pressure data, we can determine the true surface elevation for a fixed wave speed.

Outline of the Proof (for traveling waves/flat bottom)

The principle idea behind the proof is to use the implicit function theorem.

- We define the appropriate Banach spaces.
- Use the implicit function theorem to determine the existence of a map.
- Establish that if the pressure corresponds to a true solution of the water-wave problem, then the maps gives the true surface elevation as a function of the pressure.

In other words, given small amplitude true pressure data, we can determine the true surface elevation for a fixed wave speed.

We are currently working to extend these results to this problem.

Overview of the talk

Derivation of the Nonlinear Formulae

Asymptotic Expansions \& Results

Summary \& Future Work

Asymptotic Formulae

We can non-dimensionalize the equations of motion by introducing the dimensionless parameters:

$$
\epsilon=\frac{a}{h}, \quad \mu=\frac{h}{L}
$$

where $h=\frac{1}{L} \int_{0}^{L} \eta(x)-b(x) d x$. This yields

$$
\begin{aligned}
& \mathcal{S}(\epsilon \tilde{b}(x)-1)\left\{\sqrt{\left(1+\epsilon^{2} \mu^{2} b_{x}^{2}\right)\left(B-2 \epsilon\left(\tilde{b}(x)-\tilde{p}_{b}(x)\right)\right.}\right\} \\
& -\mathcal{S}(\epsilon \eta(x))\left\{\sqrt{\left(1+\epsilon^{2} \mu^{2} \eta_{x}^{2}\right)(B-2 \epsilon \eta(x))}\right\} \\
& + \\
& U_{a}(\sinh (\mu k \tilde{\eta}(0))-\sinh (\mu k(\epsilon \tilde{b}(0)-1))) \\
& \quad-U_{b}(\sinh (\epsilon \mu k \eta(2 \pi))-\sinh (\mu k(\epsilon b(2 \pi)-1)))=0
\end{aligned}
$$

where we have defined $\tilde{p}_{b}(x)=g h-a g p_{b}(\tilde{x}), b(x)=-h+a b(\tilde{x})$ and $\eta(x)=a \eta(\tilde{x})$.
We find a simlar equation for the cosh equation.

Asymptotics (KdV Limit)

If we assume shallow-water conditions where $\mu^{2}=\epsilon$ and expand in powers of ϵ we find the leading order behavior

$$
\tilde{p}_{b}(x)=\tilde{\eta}(x)-\tilde{b}(x)+\mathcal{O}(\epsilon)
$$

along with

$$
i k \int_{0}^{2 \pi} e^{-i k x} \tilde{\eta}(x) d x=\frac{i k}{B-1} \int_{0}^{2 \pi} e^{-i k x} \tilde{b}(x) d x+\frac{6 \sqrt{B}\left(U_{b}-U_{a}\right)}{B-1}+\mathcal{O}(\epsilon)
$$

If we assume $U_{a}=U_{b}=U$, then we find

$$
\tilde{\eta}(x)=\frac{\tilde{b}(x)}{B-1}+\mathcal{O}(\epsilon)
$$

Asymptotics (KdV Limit)

If we assume shallow-water conditions where $\mu^{2}=\epsilon$ and expand in powers of ϵ we find the leading order behavior

$$
\tilde{p}_{b}(x)=\tilde{\eta}(x)-\tilde{b}(x)+\mathcal{O}(\epsilon)
$$

along with

$$
i k \int_{0}^{2 \pi} e^{-i k x} \tilde{\eta}(x) d x=\frac{i k}{B-1} \int_{0}^{2 \pi} e^{-i k x} \tilde{b}(x) d x+\frac{6 \sqrt{B}\left(U_{b}-U_{a}\right)}{B-1}+\mathcal{O}(\epsilon)
$$

If we assume $U_{a}=U_{b}=U$, then we find

$$
\tilde{\eta}(x)=\frac{\tilde{b}(x)}{B-1}+\mathcal{O}(\epsilon)
$$

Asymptotics (KdV Limit)

If we assume shallow-water conditions where $\mu^{2}=\epsilon$ and expand in powers of ϵ we find the leading order behavior

$$
\tilde{p}_{b}(x)=\tilde{\eta}(x)-\tilde{b}(x)+\mathcal{O}(\epsilon)
$$

along with

$$
i k \int_{0}^{2 \pi} e^{-i k x} \tilde{\eta}(x) d x=\frac{i k}{B-1} \int_{0}^{2 \pi} e^{-i k x} \tilde{b}(x) d x+\frac{6 \sqrt{B}\left(U_{b}-U_{a}\right)}{B-1}+\mathcal{O}(\epsilon)
$$

If we assume $U_{a}=U_{b}=U$, then we find

$$
\tilde{\eta}(x)=\frac{\tilde{b}(x)}{B-1}+\mathcal{O}(\epsilon)
$$

Asymptotics (KdV Limit)

If we assume shallow-water conditions where $\mu^{2}=\epsilon$ and expand in powers of ϵ we find the leading order behavior

$$
\tilde{p}_{b}(x)=\tilde{\eta}(x)-\tilde{b}(x)+\mathcal{O}(\epsilon)
$$

along with

$$
i k \int_{0}^{2 \pi} e^{-i k x} \tilde{\eta}(x) d x=\frac{i k}{B-1} \int_{0}^{2 \pi} e^{-i k x} \tilde{b}(x) d x+\frac{6 \sqrt{B}\left(U_{b}-U_{a}\right)}{B-1}+\mathcal{O}(\epsilon)
$$

If we assume $U_{a}=U_{b}=U$, then we find

$$
\tilde{\eta}(x)=\frac{\tilde{b}(x)}{B-1}+\mathcal{O}(\epsilon)
$$

Small Amplitude

$$
\sum_{k=-\infty}^{\infty} \hat{\eta}_{1_{n}} e^{i k x}=\sum_{k=-\infty}^{\infty} \hat{b}_{1_{n}} e^{i k x} \frac{k U_{a}^{2}}{k U_{a}^{2} \cosh (h k)-g \sinh (h k)}
$$

Small Amplitude

$$
\sum_{k=-\infty}^{\infty} \hat{\eta}_{1_{n}} e^{i k x}=\sum_{k=-\infty}^{\infty} \hat{b}_{1_{n}} e^{i k x} \frac{k U_{a}^{2}}{k U_{a}^{2} \cosh (h k)-g \sinh (h k)}
$$

Figure: Square wave with subcritical flow

Small Amplitude

$$
\sum_{k=-\infty}^{\infty} \hat{\eta}_{1_{n}} e^{i k x}=\sum_{k=-\infty}^{\infty} \hat{b}_{1_{n}} e^{i k x} \frac{k U_{a}^{2}}{k U_{a}^{2} \cosh (h k)-g \sinh (h k)}
$$

Figure: Square wave with supercritical flow

Overview of the talk

Derivation of the Nonlinear Formulae

Asymptotic Expansions \& Results

Summary \& Future Work

Summary \& Future Work

Summary:

We have developed a relationship between $\eta, b(x)$, and $p_{b}(x)$ based on the fully-nonlinear model.

This formulation provides an easy mechanism for asymptotic reductions.

Unfortunately, you need to know too much information.

Future Work:

Investigate various asymptotic models and compare with experimental results.

Aim to eliminate various quantities from the formulation.

Investigate higher dimensional versions of this formulation.

Thank you for your attention!

