Relationships between pressure, bathymetry, and wave-height

Katie Oliveras[†] Daniel Ferguson^{† U} Vishal Vasan[‡]

[†]Seattle University Department of Mathematics

[‡]International Centre for Theoretical Sciences Bangalore, India

Banff International Research Station October 31, 2016

Acknowledgements

We gratefully acknowledges support from:

- The National Science Foundation (DMS-1313049)
- ► The AMS-Simons Research Travel Grants
- Seattle University Faculty Research Grants

Warning System

Figure: Source: http://www.srh.noaa.gov/jetstream/tsunami/dart.htm

Overview of the Problem

Given the pressure at the bottom of a fluid, can we reconstruct the surface elevation?

The critical first step is measuring the wave.

Given p (pressure at the bottom), find the height of the water.

The critical first step is measuring the wave.

Given p (pressure at the bottom), find the height of the water.

The critical first step is measuring the wave.

Given p (pressure at the bottom), find the height of the water.

In physics, we learned

$$p = \rho g h$$

where ρ is density and g is acceleration due to gravity.

This is called the hydrostatic pressure.

The critical first step is measuring the wave.

Given p (pressure at the bottom), find the height of the water.

In physics, we learned

$$p = \rho g h$$

where ρ is density and g is acceleration due to gravity.

This is called the hydrostatic pressure. Given p, we could solve for h to find

$$h = \frac{p}{\rho g}.$$

The critical first step is measuring the wave.

Given p (pressure at the bottom), find the height of the water.

Is the hydrostatic approximation $p = \rho g(\eta + h)$ still a valid model?

Now, assume we know h as well. The only unknown is η . If this is a good model, then

$$\eta = \frac{p}{\rho g} - h$$

Collaborators

Experimental Set-Up

Experimental Data

Testing the Hydrostatic Approximation

Testing the Hydrostatic Approximation

Testing the Hydrostatic Approximation

$$\eta(x) = \frac{\mathcal{F}^{-1} \{\hat{p}(k) \mathsf{cosh}(\mu k)\}}{1 - \epsilon \mu \mathcal{F}^{-1} \{\hat{p}(k) \mathsf{sinh}(\mu k)\}}$$

We "achieved" our goal.

Movie Time!

Can we say something *new* relating the surface to the bathymetry?

Overview of the talk

Derivation of the Nonlinear Formulae

Asymptotic Expansions & Results

Summary & Future Work

Model Assumptions

We begin with Euler's equations for an invicid, irrotational fluid.

- One-dimensional
- Irrotational & Invicid
- Constant Density

- Stationary Flow
- No friction/boundary layer effects
- Zero Atmospheric Pressure

Equations of Motion

We begin with Euler's equations for irrotational free-surface flow given by

$$\begin{split} \phi_{xx} + \phi_{zz} &= 0, & (x, z) \in D, \\ \phi_{z} - b_{x} \phi_{x} &= 0, & z = b(x), \\ \phi_{z} - \eta_{x} \phi_{x} &= 0, & z = \eta(x), \\ \frac{1}{2} \phi_{x}^{2} + \frac{1}{2} \phi_{z}^{2} + g\eta &= \frac{B}{2}, & z = \eta(x), \end{split}$$

with the horizontal boundary conditions

$$\begin{aligned} \phi_z &= 0, & x = 0, \text{ and } x = L, \\ \phi_x &= U_a & x = 0, \\ \phi_x &= U_b & x = L. \end{aligned}$$

Equations of motion - at the free surface

At the free surface, we have

$$\phi_z\Big|_{z=\eta} = \eta_x \phi_x\Big|_{z=\eta}$$

and

$$\frac{1}{2}\phi_{x}^{2}\Big|_{z=\eta} + \frac{1}{2}\phi_{z}^{2}\Big|_{z=\eta} + g\eta = \frac{1}{2}B,$$

where B is the Bernoulli Constant.

Combining the two relationships, we find

$$\phi_x = \pm \frac{\sqrt{B - 2g\eta}}{\sqrt{1 + \eta_x^2}}.$$

Thus, we can express the velocity potential at the surface in terms of the Bernoulli constant, and the surface elevation.

Equations of motion - at the bottom

At the bottom, we have

$$\phi_z\Big|_{z=b} = b_x \phi_x\Big|_{z=b}$$

and

$$\frac{1}{2}\phi_x^2\Big|_{z=b} + \frac{1}{2}\phi_z^2\Big|_{z=b} + g \cdot b(x) + p_b(x) = \frac{1}{2}B$$

where B is the Bernoulli Constant and $p_b(x) = p(x, b(x))$.

Combining the two relationships, we find

$$\phi_x = \pm \frac{\sqrt{B - 2 b(x) - 2 p_b(x)}}{\sqrt{1 + b_x^2}}$$

Thus, we can express the velocity potential at the bottom in terms of the Bernoulli constant, the pressure along the bottom, and the surface elevation.

A note about the \pm signs:

A note about the \pm signs:

Since we are assuming that the fluid is irrotational, then ϕ_x must be sign-definite throughout the domain. For simplicity, we choose the + sign.

To summarize, we have expressed the gradient of the velocity

- at the surface in terms of the surface elevation, and
- at the bottom in terms of the pressure and bathymetry.

Recall that the connecting glue is

$$\phi_{xx} + \phi_{zz} = 0$$
, for $b(x) < z < \eta(x)$.

Recall that the connecting glue is

$$\phi_{xx} + \phi_{zz} = 0$$
, for $b(x) < z < \eta(x)$.

Imagine we have another function ψ that also solve Laplace's equation.

$$\psi_z(\phi_{xx} + \phi_{zz}) - \phi_z(\psi_{xx} + \psi_{zz}) = 0$$

Recall that the connecting glue is

$$\phi_{xx} + \phi_{zz} = 0$$
, for $b(x) < z < \eta(x)$.

Imagine we have another function ψ that also solve Laplace's equation.

$$\psi_z(\phi_{xx} + \phi_{zz}) - \phi_z(\psi_{xx} + \psi_{zz}) = 0$$

This can be arranged to

$$(\psi_z \phi_x + \psi_z \phi_x)_x - (\phi_x \psi_x - \phi_z \psi_z)_z = 0$$

Recall that the connecting glue is

$$\phi_{xx} + \phi_{zz} = 0$$
, for $b(x) < z < \eta(x)$.

Imagine we have another function ψ that also solve Laplace's equation.

$$\psi_z(\phi_{xx} + \phi_{zz}) - \phi_z(\psi_{xx} + \psi_{zz}) = 0$$

This can be arranged to

$$(\psi_z \phi_x + \psi_z \phi_x)_x - (\phi_x \psi_x - \phi_z \psi_z)_z = 0$$

Integrating over the entire domain yields:

$$\iint_D (\psi_z \phi_x + \psi_z \phi_x)_x - (\phi_x \psi_x - \phi_z \psi_z)_z dA = 0$$

Recall that the connecting glue is

$$\phi_{xx} + \phi_{zz} = 0$$
, for $b(x) < z < \eta(x)$.

Imagine we have another function ψ that also solve Laplace's equation.

$$\psi_z(\phi_{xx} + \phi_{zz}) - \phi_z(\psi_{xx} + \psi_{zz}) = 0$$

This can be arranged to

$$(\psi_z \phi_x + \psi_z \phi_x)_x - (\phi_x \psi_x - \phi_z \psi_z)_z = 0$$

Integrating over the entire domain yields:

$$\oint_{\partial D} \left[(\phi_x \psi_z + \phi_z \psi_x) dz + (\phi_x \psi_x - \phi_z \psi_z) dx \right] = 0$$

Evaluating the integral

$$\oint_{\partial D} \left[(\phi_x \psi_z + \phi_z \psi_x) dz + (\phi_x \psi_x - \phi_z \psi_z) dx \right] = 0$$

Evaluating the integral

$$\oint_{\partial D} \left[(\phi_x \psi_z + \phi_z \psi_x) dz + (\phi_x \psi_x - \phi_z \psi_z) dx \right] = 0$$

At the SurfaceAt the Bottom $\phi_x = \frac{\sqrt{B - 2g\eta}}{\sqrt{1 + \eta_x^2}}$ $\phi_x = \frac{\sqrt{B - 2gb(x) - 2p_b(x)}}{\sqrt{1 + b_x^2}}$ $\phi_z = \eta_x \frac{\sqrt{B - 2g\eta}}{\sqrt{1 + \eta_x^2}}$ $\phi_z = \frac{b_x \sqrt{B - 2gb(x) - 2p_b(x)}}{\sqrt{1 + b_x^2}}$

Evaluating the integral

$$\oint_{\partial D} \left[(\phi_x \psi_z + \phi_z \psi_x) dz + (\phi_x \psi_x - \phi_z \psi_z) dx \right] = 0$$

Using the boundary conditions, the above integral becomes

$$\begin{split} \int_{0}^{L} \left[\sqrt{(1+b_{x}^{2})(B-2gb(x)-p_{b}(x))} \psi_{x} \Big|_{z=\eta} \right] \, dx + U_{a} \, \psi \Big|_{(0,\theta(0))}^{(0,\eta(0))} \\ & - \int_{0}^{L} \left[\sqrt{(1+\eta_{x}^{2})(B-2g\eta(x))} \, \psi_{x} \Big|_{z=\eta} \right] \, dx - U_{b} \, \psi \Big|_{(L,\theta(L))}^{(L,\eta(L))} = 0, \end{split}$$

We can related the quantities of interest via the equation

$$\begin{split} \int_{0}^{L} \left[\sqrt{(1+b_{x}^{2})(B-2gb(x)-p_{b}(x))} \psi_{x} \Big|_{z=\eta} \right] \, dx + U_{a} \, \psi \Big|_{(0,\eta(0))}^{(0,\eta(0))} \\ & - \int_{0}^{L} \left[\sqrt{(1+\eta_{x}^{2})(B-2g\eta(x))} \, \psi_{x} \Big|_{z=\eta} \right] \, dx - U_{b} \, \psi \Big|_{(L,\theta(L))}^{(L,\eta(L))} = 0, \end{split}$$

where the only restriction is that ψ satisfies $\Delta \psi = 0$.

We can related the quantities of interest via the equation

$$\begin{split} \int_{0}^{L} \left[\sqrt{(1+b_{x}^{2})(B-2gb(x)-p_{b}(x))} \psi_{x} \Big|_{z=\eta} \right] \, dx + U_{a} \, \psi \Big|_{(0,\eta(0))}^{(0,\eta(0))} \\ & - \int_{0}^{L} \left[\sqrt{(1+\eta_{x}^{2})(B-2g\eta(x))} \, \psi_{x} \Big|_{z=\eta} \right] \, dx - U_{b} \, \psi \Big|_{(L,\theta(L))}^{(L,\eta(L))} = 0, \end{split}$$

where the only restriction is that ψ satisfies $\Delta \psi = 0.$

At this point, assume that we know b(x), so that p(x), $\eta(x)$, and B are all unknown.

We can related the quantities of interest via the equation

$$\begin{split} \int_{0}^{L} \left[\sqrt{(1+b_{x}^{2})(B-2gb(x)-p_{b}(x))} \psi_{x} \Big|_{z=\eta} \right] \, dx + U_{a} \, \psi \Big|_{(0,\eta(0))}^{(0,\eta(0))} \\ & - \int_{0}^{L} \left[\sqrt{(1+\eta_{x}^{2})(B-2g\eta(x))} \, \psi_{x} \Big|_{z=\eta} \right] \, dx - U_{b} \, \psi \Big|_{(L,b(L))}^{(L,\eta(L))} = 0, \end{split}$$

where the only restriction is that ψ satisfies $\Delta \psi = 0$.

We can related the quantities of interest via the equation

$$\begin{split} \int_{0}^{L} \left[\sqrt{(1+b_{x}^{2})(B-2gb(x)-p_{b}(x))} \psi_{x} \Big|_{z=\eta} \right] \, dx + U_{a} \, \psi \Big|_{(0,\eta(0))}^{(0,\eta(0))} \\ & - \int_{0}^{L} \left[\sqrt{(1+\eta_{x}^{2})(B-2g\eta(x))} \, \psi_{x} \Big|_{z=\eta} \right] \, dx - U_{b} \, \psi \Big|_{(L,b(L))}^{(L,\eta(L))} = 0, \end{split}$$

where the only restriction is that ψ satisfies $\Delta \psi = 0.$

If we choose $\psi = z$,

$$U_a \cdot (\eta(0) - b(0)) - U_b \cdot (\eta(L) - b(L)) = 0.$$

We can related the quantities of interest via the equation

$$\begin{split} \int_{0}^{L} \left[\sqrt{(1+b_{x}^{2})(B-2gb(x)-p_{b}(x))} \psi_{x} \Big|_{z=\eta} \right] \, dx + U_{a} \, \psi \Big|_{(0,\eta(0))}^{(0,\eta(0))} \\ & - \int_{0}^{L} \left[\sqrt{(1+\eta_{x}^{2})(B-2g\eta(x))} \, \psi_{x} \Big|_{z=\eta} \right] \, dx - U_{b} \, \psi \Big|_{(L,b(L))}^{(L,\eta(L))} = 0, \end{split}$$

where the only restriction is that ψ satisfies $\Delta \psi = 0.$

If we choose $\psi = z$,

$$U_a \cdot (\eta(0) - b(0)) - U_b \cdot (\eta(L) - b(L)) = 0.$$

Conservation of Mass

We can related the quantities of interest via the equation

$$\begin{split} \int_{0}^{L} \left[\sqrt{(1+b_{x}^{2})(B-2gb(x)-p_{b}(x))} \psi_{x} \Big|_{z=\eta} \right] \, dx + U_{a} \, \psi \Big|_{(0,\eta(0))}^{(0,\eta(0))} \\ & - \int_{0}^{L} \left[\sqrt{(1+\eta_{x}^{2})(B-2g\eta(x))} \, \psi_{x} \Big|_{z=\eta} \right] \, dx - U_{b} \, \psi \Big|_{(L,\theta(L))}^{(L,\eta(L))} = 0, \end{split}$$

where the only restriction is that ψ satisfies $\Delta \psi = 0.$

If we choose $\psi = x$,

$$\int_0^L \left[\sqrt{(1+b_x^2)(B-2gb(x)-2p_b(x))} - \sqrt{(1+\eta_x^2)(B-2g\eta)} \right] \, dx = 0$$

We can related the quantities of interest via the equation

$$\begin{split} \int_{0}^{L} \left[\sqrt{(1+b_{x}^{2})(B-2gb(x)-p_{b}(x))} \psi_{x} \Big|_{z=\eta} \right] \, dx + U_{a} \, \psi \Big|_{(0,\eta(0))}^{(0,\eta(0))} \\ & - \int_{0}^{L} \left[\sqrt{(1+\eta_{x}^{2})(B-2g\eta(x))} \, \psi_{x} \Big|_{z=\eta} \right] \, dx - U_{b} \, \psi \Big|_{(L,\theta(L))}^{(L,\eta(L))} = 0, \end{split}$$

where the only restriction is that ψ satisfies $\Delta \psi = 0.$

If we choose $\psi = x$,

$$\int_0^L \left[\sqrt{(1+b_x^2)(B-2gb(x)-2p_b(x))} - \sqrt{(1+\eta_x^2)(B-2g\eta)} \right] \, dx = 0$$

Average value of tangential velocity along the surface and bathymetry.

We can related the quantities of interest via the equation

$$\begin{split} \int_{0}^{L} \left[\sqrt{(1+b_{x}^{2})(B-2gb(x)-p_{b}(x))} \psi_{x} \Big|_{z=\eta} \right] \, dx + U_{a} \, \psi \Big|_{(0,\eta(0))}^{(0,\eta(0))} \\ & - \int_{0}^{L} \left[\sqrt{(1+\eta_{x}^{2})(B-2g\eta(x))} \, \psi_{x} \Big|_{z=\eta} \right] \, dx - U_{b} \, \psi \Big|_{(L,b(L))}^{(L,\eta(L))} = 0, \end{split}$$

where the only restriction is that ψ satisfies $\Delta \psi = 0.$

How many relationships are enough to directly relate b(x) and $\eta(x)$?

Following the work of [Ablowitz, et. al], [O., Vasan, Deconinck& Henderson], let

Following the work of [Ablowitz, et. al], [O., Vasan, Deconinck& Henderson], let

$$\psi_1 = e^{-ikx} \sinh(kz)$$
, and $\psi_2 = e^{-ikx} \cosh(kz)$.

Then for ψ_1 , we find,

$$\begin{split} \mathcal{S}(b(x),k) \left\{ \sqrt{(1+b_x^2)(B-2gb(x)-2p_b(x))} \right\} &+ U_a \left(\sinh\left(k\eta(0)\right) - \sinh\left(kb(0)\right)\right) \\ &- \mathcal{S}(\eta(x),k) \{ \sqrt{(1+\eta_x^2)(B-2g\eta(x))} \} - U_b \left(\sinh\left(k\eta(L)\right) - \sinh\left(kb(L)\right)\right) = 0 \end{split}$$

where

$$\mathcal{S}(f(x),k)\{g(x)\} = -ik \int_0^L \left[e^{-ikx} \sinh(kf(x))g(x) \right] \, dx$$

We can find a similar expression for ψ_2 where we introduce the operator $\mathcal{C}(f(x),k)\{g(x)\}.$

$$\begin{split} \mathcal{S}(b(x),k) \left\{ \sqrt{(1+b_x^2)(B-2gb(x)-2p_b(x))} \right\} &+ U_a \left(\sinh\left(k\eta(0)\right) - \sinh\left(kb(0)\right)\right) \\ &- \mathcal{S}(\eta(x),k) \{ \sqrt{(1+\eta_x^2)(B-2g\eta(x))} \} - U_b \left(\sinh\left(k\eta(L)\right) - \sinh\left(kb(L)\right)\right) = 0 \end{split}$$

$$\begin{split} \mathcal{C}(b(x),k) \left\{ \sqrt{(1+b_x^2)(B-2gb(x)-2p_b(x))} \right\} &+ U_a \left(\cosh\left(k\eta(0)\right) - \sinh\left(kb(0)\right)\right) \\ &- \mathcal{C}(\eta(x),k) \{ \sqrt{(1+\eta_x^2)(B-2g\eta(x))} \} - U_b \left(\cosh\left(k\eta(L)\right) - \sinh\left(kb(L)\right)\right) = 0 \end{split}$$

$$\begin{split} \mathcal{S}(b(x),k) \left\{ \sqrt{(1+b_x^2)(B-2gb(x)-2p_b(x))} \right\} &+ U_a \left(\sinh\left(k\eta(0)\right) - \sinh\left(kb(0)\right)\right) \\ &- \mathcal{S}(\eta(x),k) \{ \sqrt{(1+\eta_x^2)(B-2g\eta(x))} \} - U_b \left(\sinh\left(k\eta(L)\right) - \sinh\left(kb(L)\right)\right) = 0 \end{split}$$

$$\begin{split} \mathcal{C}(b(x),k) \left\{ \sqrt{(1+b_x^2)(B-2gb(x)-2p_b(x))} \right\} &+ U_a \left(\cosh\left(k\eta(0)\right) - \sinh\left(kb(0)\right)\right) \\ &- \mathcal{C}(\eta(x),k) \{ \sqrt{(1+\eta_x^2)(B-2g\eta(x))} \} - U_b \left(\cosh\left(k\eta(L)\right) - \sinh\left(kb(L)\right)\right) = 0 \end{split}$$

These equations form a "system" of 2 equations for 3 unknowns $(p_b(x), \eta(x))$, and B.

$$\begin{split} \mathcal{S}(b(x),k) \left\{ \sqrt{(1+b_x^2)(B-2gb(x)-2p_b(x))} \right\} &+ U_a \left(\sinh\left(k\eta(0)\right) - \sinh\left(kb(0)\right)\right) \\ &- \mathcal{S}(\eta(x),k) \{ \sqrt{(1+\eta_x^2)(B-2g\eta(x))} \} - U_b \left(\sinh\left(k\eta(L)\right) - \sinh\left(kb(L)\right)\right) = 0 \end{split}$$

$$\begin{split} \mathcal{C}(b(x),k) \left\{ \sqrt{(1+b_x^2)(B-2gb(x)-2p_b(x))} \right\} &+ U_a \left(\cosh\left(k\eta(0)\right) - \sinh\left(kb(0)\right)\right) \\ &- \mathcal{C}(\eta(x),k) \{ \sqrt{(1+\eta_x^2)(B-2g\eta(x))} \} - U_b \left(\cosh\left(k\eta(L)\right) - \sinh\left(kb(L)\right)\right) = 0 \end{split}$$

These equations form a "system" of 2 equations for 3 unknowns $(p_b(x), \eta(x), \text{ and } B$. While B can be considered an unknown, we can relate B to the values of $\eta(x), b(x)$ and $p_b(x)$ at x = 0 and x = L via the Bernoulli Equation.

The question you may be asking...

Given b(x), is this system of equations actually solvable for the other two parameters? Specifically, given b(x), will you find the *correct* $p_b(x)$ and $\eta(x)$?

Outline of the Proof (for traveling waves/flat bottom)

The principle idea behind the proof is to use the implicit function theorem.

- We define the appropriate Banach spaces.
- Use the implicit function theorem to determine the existence of a map.
- Establish that if the pressure corresponds to a true solution of the water-wave problem, then the maps gives the true surface elevation as a function of the pressure.

In other words, given small amplitude true pressure data, we can determine the true surface elevation for a fixed wave speed.

Outline of the Proof (for traveling waves/flat bottom)

The principle idea behind the proof is to use the implicit function theorem.

- We define the appropriate Banach spaces.
- Use the implicit function theorem to determine the existence of a map.
- Establish that if the pressure corresponds to a true solution of the water-wave problem, then the maps gives the true surface elevation as a function of the pressure.

In other words, given small amplitude true pressure data, we can determine the true surface elevation for a fixed wave speed.

We are currently working to extend these results to this problem.

Overview of the talk

Derivation of the Nonlinear Formulae

Asymptotic Expansions & Results

Summary & Future Work

Asymptotic Formulae

We can non-dimensionalize the equations of motion by introducing the dimensionless parameters:

$$\epsilon = \frac{a}{h}, \qquad \mu = \frac{h}{L}$$

where $h = \frac{1}{L} \int_0^L \eta(x) - b(x) \, dx$. This yields

$$\begin{split} \mathcal{S}(\epsilon \tilde{b}(x) - 1) \left\{ \sqrt{(1 + \epsilon^2 \mu^2 b_x^2)(B - 2\epsilon(\tilde{b}(x) - \tilde{p}_b(x)))} \right\} \\ -\mathcal{S}(\epsilon \eta(x)) \{ \sqrt{(1 + \epsilon^2 \mu^2 \eta_x^2)(B - 2\epsilon \eta(x))} \} \\ + U_a \left(\sinh\left(\mu k \tilde{\eta}(0)\right) - \sinh\left(\mu k (\epsilon \tilde{b}(0) - 1)\right) \right) \\ - U_b \left(\sinh\left(\epsilon \mu k \eta(2\pi)\right) - \sinh\left(\mu k (\epsilon b(2\pi) - 1)\right) \right) = 0 \end{split}$$

where we have defined $\tilde{p}_b(x) = gh - agp_b(\tilde{x})$, $b(x) = -h + ab(\tilde{x})$ and $\eta(x) = a\eta(\tilde{x})$. We find a simlar equation for the cosh equation.

If we assume shallow-water conditions where $\mu^2=\epsilon$ and expand in powers of ϵ we find the leading order behavior

$$\tilde{p}_b(x) = \tilde{\eta}(x) - \tilde{b}(x) + \mathcal{O}(\epsilon),$$

along with

$$ik \int_{0}^{2\pi} e^{-ikx} \tilde{\eta}(x) \, dx = \frac{ik}{B-1} \int_{0}^{2\pi} e^{-ikx} \tilde{b}(x) \, dx + \frac{6\sqrt{B} \left(U_b - U_a\right)}{B-1} + \mathcal{O}(\epsilon)$$

$$\tilde{\eta}(x) = \frac{\dot{b}(x)}{B-1} + \mathcal{O}(\epsilon)$$

If we assume shallow-water conditions where $\mu^2=\epsilon$ and expand in powers of ϵ we find the leading order behavior

$$\tilde{p}_b(x) = \tilde{\eta}(x) - \tilde{b}(x) + \mathcal{O}(\epsilon),$$

along with

$$ik \int_{0}^{2\pi} e^{-ikx} \tilde{\eta}(x) \, dx = \frac{ik}{B-1} \int_{0}^{2\pi} e^{-ikx} \tilde{b}(x) \, dx + \frac{6\sqrt{B} \left(U_b - U_a\right)}{B-1} + \mathcal{O}(\epsilon)$$

$$\tilde{\eta}(x) = \frac{\dot{b}(x)}{B-1} + \mathcal{O}(\epsilon)$$

If we assume shallow-water conditions where $\mu^2=\epsilon$ and expand in powers of ϵ we find the leading order behavior

$$\tilde{p}_b(x) = \tilde{\eta}(x) - \tilde{b}(x) + \mathcal{O}(\epsilon),$$

along with

$$ik \int_{0}^{2\pi} e^{-ikx} \tilde{\eta}(x) \, dx = \frac{ik}{B-1} \int_{0}^{2\pi} e^{-ikx} \tilde{b}(x) \, dx + \frac{6\sqrt{B} \left(U_b - U_a\right)}{B-1} + \mathcal{O}(\epsilon)$$

$$\tilde{\eta}(x) = \frac{\tilde{b}(x)}{B-1} + \mathcal{O}(\epsilon)$$

If we assume shallow-water conditions where $\mu^2=\epsilon$ and expand in powers of ϵ we find the leading order behavior

$$\tilde{p}_b(x) = \tilde{\eta}(x) - \tilde{b}(x) + \mathcal{O}(\epsilon),$$

along with

$$ik \int_{0}^{2\pi} e^{-ikx} \tilde{\eta}(x) \, dx = \frac{ik}{B-1} \int_{0}^{2\pi} e^{-ikx} \tilde{b}(x) \, dx + \frac{6\sqrt{B} \left(U_b - U_a\right)}{B-1} + \mathcal{O}(\epsilon)$$

$$\tilde{\eta}(x) = \frac{b(x)}{B-1} + \mathcal{O}(\epsilon)$$

Small Amplitude

$$\sum_{k=-\infty}^{\infty} \hat{\eta}_{1_n} e^{ikx} = \sum_{k=-\infty}^{\infty} \hat{b}_{1_n} e^{ikx} \frac{kU_a^2}{kU_a^2 \cosh(hk) - g \sinh(hk)}.$$

Small Amplitude

Figure: Square wave with subcritical flow

Small Amplitude

Figure: Square wave with supercritical flow

Overview of the talk

Derivation of the Nonlinear Formulae

Asymptotic Expansions & Results

Summary & Future Work

Summary & Future Work

Summary:

We have developed a relationship between η , b(x), and $p_b(x)$ based on the fully-nonlinear model.

This formulation provides an easy mechanism for asymptotic reductions.

Unfortunately, you need to know too much information.

Future Work:

Investigate various asymptotic models and compare with experimental results.

Aim to eliminate various quantities from the formulation.

Investigate higher dimensional versions of this formulation.

Thank you for your attention!