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Model equation for shallow water.



background

I Formulated by Green and Naghdi, 1976.

I (Miyata 85,87) generalized the (GN) equations to a two layer setting.

I (Lannes, Ming 2015) showed that the (GN)-equations overestimates the
Kelvin-Helmholtz instabilities, meaning that the threshold for the velocity jump
across the interface is smaller for (GN) then for the full Euler equations.

I (Duchêne, Israwi, Talhouk, 2015) suggested a modified (GN) system of equations
which solves the problem with the Kelvin-Helmholtz instabilities, and which has
the same dispersion relation as the full Euler equations.
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and
F̂{φ}(ξ) = F (ξ)φ̂(ξ).



Current work

Admissible class of Fourier multipliers

1. F (ξ) = F (|ξ|) and 0 ≤ F (ξ) ≤ 1.

2. F (0) = 1, F ′(0) = 0.

3. There exists 0 ≤ θ < 1 and c, c′ > 0 such that

c|ξ|−θ ≤ F (ξ) ≤ c′|ξ|−θ, for |ξ| >> 1.



Examples:

I F = 1 yields the original (GN) equation.

I

F (ξ) =

√
3

ξ tanh(ξ)
− 3

ξ2
,

yields a system with the same dispersion relation as the full Euler equations.
Suggested by (Duchêne, Israwi, Talhouk, 2015).



Traveling waves

Traveling wave equation:
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Constrained minimization problem
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Consider
argminζ∈Ω⊂X{E(ζ), ‖ζ‖2L2 = q},

X ⊂ H1(R), Ω open subset of X and q ∈ (0, q0). The solutions of this minimization
problem will satisfy

dE(ζ) + 2αζ = 0,

where α is a Lagrange multiplier. This is the traveling wave equation with α = − 1
c2

.
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Strategy

I Solve the constrained minimization problem.

I Use the same methods as in (Buffoni 2004), (Ehrnström, Groves, Wahlén 2012).

I Show that there exist solutions to the corresponding periodic problem.

I Construct a special minimizing sequence for the problem on the real line by using
the minimizers from the periodic problem.

I Conclude by using the concentration compactness principle.
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Penalized periodic problem

Penalization function: ϕ : [0, R)→ [0,∞) such that

ϕ(t) = 0, 0 ≤ t ≤ R

2
,
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ϕ′(t) ≤M1ϕ(t)a1 +M2ϕ(t)a2 , 0 < a1 < 1, a2 > 0, M1,M2 > 0.
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Penalized periodic problem

Want to solve the minimization problem

argminζ∈VP,q,REP,ϕ(ζ)

Lemma
The functional EP,ϕ is weakly lower semi continuous, bounded from below and
EP,ϕ →∞ as ‖ζ‖HP

1
↗ R. In particular it has a minimizer ζP ∈ VP,q,R which satisfies

2ϕ′(‖ζP ‖2H1
P

)(ζP − ∂2
xζP ) + dEP (ζP ) + 2αP ζP = 0,

for some Lagrange multiplier αP (ζP ) ∈ R.



Periodic problem

Want to show that ζP ∈ VP,q,R
2

.

Lemma
The inequality

‖ζP ‖2H1
P
≤ cq

holds uniformly over the minimizers of EP,ϕ over VP,q,R, where q ∈ (0, q0), P ≥ Pq.
Choose q0 small enough so that ζP ∈ VP,q,R

2
.



Periodic problem

Want to show that ζP ∈ VP,q,R
2

.

Lemma
The inequality

‖ζP ‖2H1
P
≤ cq

holds uniformly over the minimizers of EP,ϕ over VP,q,R, where q ∈ (0, q0), P ≥ Pq.
Choose q0 small enough so that ζP ∈ VP,q,R

2
.



Minimizers of the periodic problem

Theorem
There exists R > 0, q0 > 0 such that for any q ∈ (0, q0) one can define Pq > 0 so that
the following holds. For each P ≥ Pq there exist ζP ∈ VP,q,R

2
such that

EP (ζP ) = inf
ζ∈H1

P

{
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P
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2

}
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Special minimizing sequence

A special minimizing sequence for the problem on the real line can be constructed from
the minimizers of the periodic problem.

Theorem
There exists q0 > 0 such that for any q ∈ (0, q0) one can define α < 0 and a sequence
{ζn} satisfying

‖ζn‖2L2 = q, ‖ζn‖2H1 ≤ cq, lim
n→∞

‖dE(ζn) + 2αζn‖H1 = 0,

and
lim
n→∞

E(ζn) = Iq := inf
ζ∈H1
{E(ζ), ‖ζ‖2L2 = q}.

Want to extract a convergent subsequence from his minimizing sequence.



Concentration Compactness principle

Theorem
Any sequence {en}n∈N ∈ L1(R) of non-negative functions such that

∫
R en = q > 0

admits a subsequence, denoted again {en}n∈N, for which one of the following holds.

I (Vanishing) For each r > 0, one has

lim
n→∞

(
sup
x∈R

∫
Br(x)

en dx

)
= 0.

I (Dichotomy) There are real sequences {xn}n∈N, {Mn}n∈N, {Nn}n∈N and
λ ∈ (0, q) such that

Mn , Nn →∞,
Mn

Nn
→ 0,

∫
BMn (xn)

en dx→ λ and

∫
BNn (xn)

en dx→ λ.

I (Concentration) There exists a sequence {xn}n∈N such that for each ε > 0 there
exist r > 0 such that ∫

Br(xn)
en dx ≥ q − ε



Existence of minimizer

I Apply concentration compactness to {ζ2
n}∞n , where ζn

∞
n is the special minimizing

sequence, and assume that concentration holds.

I Then there exists a sequence {xn} such that

‖ηn‖2L2(|x|>r) < ε, where ηn = ζn(·+ xn).

I Have that ‖ηn‖2H1 ≤ cq, so we may assume that ηn ⇀ η in H1(R), which implies
that ηn → η in L2(|x| ≤ r).

I Follows that ηn → η in L2(R).

I By interpolating we then have that ηn → η in Hs(R) for all s ∈ [0, 1).

I In particular this is true for s = 1− θ and E(ζ) ∼ ‖ζ‖2H1−θ , and so
Iq = limn→∞ E(ηn) = E(η).



Excluding dichotomy

I Show that the map q → Iq, where Iq = infζ∈H1{E(ζ) : ‖ζ‖2L2 = q} is strictly
subadditive.

I Assume that dichotomy occurs. Can the construct sequences η
(1)
n , η

(2)
n such that∥∥∥η(1)

n

∥∥∥2
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(E(ηn)− E(η(1)
n )− E(η(2)

n )) = 0

where ηn(x) = ζn(x+ xn).

I By definition:
E(η̃(1)

n ) ≥ Iλ and E(η̃(2)
n ) ≥ Iq−λ.



Excluding dichotomy

Use these properties to obtain a contradiction:

Iq < Iλ + Iq−λ

≤ lim
n→∞

E(η̃(1)
n ) + E(η̃(2)

n )

= lim
n→∞

E(ηn)

= Iq



Thanks!


