Singular Solutions for Systems of Conservation Laws

Henrik Kalisch

University of Bergen Norway

Thursday, July 7th, 2016

Joint work with Darko Mitrovic and Vincent Teyekpiti

Work supported by Research Council of Norway

Study conservation law

$$\left. \begin{array}{lll} \partial_t u + \partial_x f(u, v) &= 0\\ \partial_t v + \partial_x g(u, v) &= 0 \end{array} \right\}$$
 (*)

Study conservation law

$$\left. \begin{array}{lll} \partial_t u + \partial_x f(u,v) &= 0\\ \partial_t v + \partial_x g(u,v) &= 0 \end{array} \right\}$$
 (*)

Riemann problem:

$$u(x,0) = u_0(x) = \begin{cases} u_l, & x < 0\\ u_r, & x > 0 \end{cases}$$
$$v(x,0) = v_0(x) = \begin{cases} v_l, & x < 0\\ v_r, & x > 0 \end{cases}$$

Weak solutions:

$$\begin{split} &\int_{\mathbb{R}_{+}} \int_{\mathbb{R}} \left(u \partial_{t} \varphi + f(u, v) \partial_{x} \varphi \right) \ dx dt + \int_{\mathbb{R}} u_{0}(x) \varphi(x, 0) \ dx = 0 \\ &\int_{\mathbb{R}_{+}} \int_{\mathbb{R}} \left(v \partial_{t} \varphi + g(u, v) \partial_{x} \varphi \right) \ dx dt + \int_{\mathbb{R}} v_{0}(x) \varphi(x, 0) \ dx = 0 \end{split}$$

For some initial data, the Riemann problem may not have a solution.

• Korchinski (PhD thesis, Adelphi University, 1978)

$$u_t + \left(\frac{1}{2}u^2\right)_x = 0$$

$$v_t + \left(\frac{1}{2}uv\right)_x = 0$$

• Keyfitz & Kranzer (JDE, 1995)

$$u_t + (u^2 - v)_x = 0$$

$$v_t + (\frac{1}{3}u^3 - u)_x = 0$$

• Hayes & Le Floch (Nonlinearity, 1996)

$$u_t + \frac{1}{2} (u^2 + v^2)_x = 0$$

$$v_t + (uv - u)_x = 0$$

• Keyfitz & Kranzer (JDE, 1995)

$$u_t + (u^2 - v)_x = 0$$

$$v_t + (\frac{1}{3}u^3 - u)_x = 0$$

Introduce Rankine-Hugoniot deficit:

$$c[u] - [u^2 - v] = 0,$$

 $c[v] + \left[\frac{1}{3}u^3 - u\right] = \alpha'(t),$

• Keyfitz & Kranzer (JDE, 1995)

$$u_t + (u^2 - v)_x = 0$$

$$v_t + (\frac{1}{3}u^3 - u)_x = 0$$

Introduce Rankine-Hugoniot deficit:

$$c[u] - [u^{2} - v] = 0,$$
(1)
$$c[v] + \left[\frac{1}{3}u^{3} - u\right] = \alpha'(t),$$
(2)

• Hayes & Le Floch (Nonlinearity, 1996): Brio system

$$u_t + \frac{1}{2}(u^2 + v^2)_x = 0$$

 $v_t + (uv - u)_x = 0$

Not genuinly nonlinear at v = 0.

• Hayes & Le Floch (Nonlinearity, 1996): Brio system

$$u_t + \frac{1}{2}(u^2 + v^2)_x = 0$$

 $v_t + (uv - u)_x = 0$

• Hayes & Le Floch (Nonlinearity, 1996): Brio system

$$u_t + \frac{1}{2}(u^2 + v^2)_x = 0$$

 $v_t + (uv - u)_x = 0$

Similar system:

$$u_t + (\frac{1}{2}u^2)_x = 0$$
$$v_t + (uv - u)_x = 0$$

If $u_l > u_r + 2$, the solutions contains singular shocks with Dirac delta distributions:

$$u(x, t) = u_l + (u_r - u_l)H(x - ct)$$

$$v(x, t) = v_l + (v_r - v_l)H(x - ct) + \alpha(t)\delta(x - ct)$$

To understand the term uv, use theory of

Dal Maso et al. (J. Math. Pure Appl. 1995)

Generalized weak solution (Danilov & Shelkovich, JDE, 2005)

Riemann problem:

$$u(x,0) = u_0(x) = \begin{cases} u_l, & x < 0\\ u_r, & x > 0 \end{cases}$$
$$v(x,0) = v_0(x) = \begin{cases} v_l, & x < 0\\ v_r, & x > 0 \end{cases}$$

Weak solutions: u, $V \in L^\infty$, $v = V + lpha(t)\delta(x-ct)$

$$\begin{split} \int_{\mathbb{R}_{+}} \int_{\mathbb{R}} \left(u \partial_{t} \varphi + f(u, V) \partial_{x} \varphi \right) \, dx dt &+ \int_{\mathbb{R}} u_{0}(x) \varphi(x, 0) \, dx = 0 \\ \int_{\mathbb{R}_{+}} \int_{\mathbb{R}} \left(V \partial_{t} \varphi + g(u, V) \partial_{x} \varphi \right) \, dx dt \\ &+ \int_{\mathbb{R}} v_{0}(x) \varphi(x, 0) \, dx + \int_{\{x = ct\}} \alpha(t) \frac{\partial \varphi}{\partial t} + \alpha(0) \varphi(0, 0) = 0 \end{split}$$

Generalized weak solution (Danilov & Shelkovich, JDE, 2005)

Suppose $\Gamma = \{\gamma_i \mid i \in I\}$ is a graph in the upper half plane, containing arcs γ_i , $i \in I$. Let I_0 be the subset of I containing all indices of arcs that connect to the x-axis, and let $\Gamma_0 = \{x_k^0 \mid k \in I_0\}$ be the set of initial points of the arcs γ_k with $k \in I_0$.

Define the singular part by $\alpha(x, t)\delta(\Gamma) = \sum_{i \in I} \alpha_i(x, t)\delta(\gamma_i)$.

Let $u, V \in L^{\infty}(\mathbb{R} \times \mathbb{R}_+)$, and let $v(x, t) = V(x, t) + \alpha(x, t)\delta(\Gamma)$.

Definition 1

The pair of distributions u and $v = V + \alpha(x, t)\delta(\Gamma)$ are called a generalized δ -shock wave solution of system (*) with the initial data $u_0(x)$ and $V_0(x) + \sum_{l_0} \alpha_k(x_0^k, 0)\delta(x - x_k^0)$ if the integral identities

$$\begin{split} &\int_{\mathbb{R}_{+}} \int_{\mathbb{R}} \left(u \partial_{t} \varphi + f(u, V) \partial_{x} \varphi \right) \ dxdt + \int_{\mathbb{R}} u_{0}(x) \varphi(x, 0) \ dx = 0, \\ &\int_{\mathbb{R}_{+}} \int_{\mathbb{R}} \left(V \partial_{t} \varphi + g(u, V) \partial_{x} \varphi \right) \ dxdt \\ &\quad + \sum_{i \in I} \int_{\gamma_{i}} \alpha_{i}(x, t) \frac{\partial \varphi(x, t)}{\partial I} + \int_{\mathbb{R}} V^{0}(x) \varphi(x, 0) \ dx + \sum_{k \in I_{0}} \alpha_{k}(x_{k}^{0}, 0) \varphi(x_{k}^{0}, 0) = 0, \end{split}$$

hold for all test functions $\varphi \in \mathcal{D}(\mathbb{R} \times \mathbb{R}_+)$.

Definition 1 is quite general, allowing a combination of initial steps and delta distributions; but its effectiveness is already demonstrated by considering the Riemann problem with a single jump. Indeed, for this configuration it can be shown that a δ -shock wave solution exists for any 2 × 2 system of conservation laws. Consider the Riemann problem for (*) with initial data $u(x, 0) = u_0(x)$ and $v(x, 0) = v_0(x)$, where

$$u_0(x) = \begin{cases} u_l, & x < 0 \\ u_r, & x > 0 \end{cases}, \quad v_0(x) = \begin{cases} v_l, & x < 0 \\ v_r, & x > 0 \end{cases}$$

$$\left. \begin{array}{lll} \partial_t u + \partial_x f(u, v) &= 0 \\ \partial_t v + \partial_x g(u, v) &= 0 \end{array} \right\}$$
 (*)

Theorem 1 (K. and Mitrovic)

a) If $u_l \neq u_r$ then the pair of distributions

$$\begin{aligned} u(x,t) &= u_0(x-ct), \\ v(x,t) &= v_0(x-ct) + \alpha(t)\delta(x-ct), \end{aligned}$$

where

$$c = \frac{[f(u, V)]}{[u]} = \frac{f(u_r, v_r) - f(u_l, v_l)}{u_r - u_l}, \text{ and } \alpha(t) = (c[V] - [g(u, V)])t,$$

represents the δ -shock wave solution of (\star) with initial data $u_0(x)$ and $v_0(x)$ in the sense of Definition 1.

Link between RH-deficit and δ solutions?

Weak asymptotic method

Link between RH-deficit and δ solutions?

Weak asymptotic method

Definition 2

Let $f_{\varepsilon}(x) \in \mathcal{D}'(\mathbb{R})$ be a family of distributions depending on $\varepsilon \in (0, 1)$, We say that $f_{\varepsilon} = o_{\mathcal{D}'}(1)$ if for any test function $\phi(x) \in \mathcal{D}(\mathbb{R})$, we have

 $\langle f_{\varepsilon}, \phi
angle = o(1), \ \ ext{as} \ \ arepsilon o 0$

Link between RH-deficit and δ solutions?

Weak asymptotic method

Definition 2

Let $f_{\varepsilon}(x) \in \mathcal{D}'(\mathbb{R})$ be a family of distributions depending on $\varepsilon \in (0, 1)$, We say that $f_{\varepsilon} = o_{\mathcal{D}'}(1)$ if for any test function $\phi(x) \in \mathcal{D}(\mathbb{R})$, we have

$$\langle f_{\varepsilon}, \phi \rangle = o(1), \text{ as } \varepsilon \to 0$$

Definition 3 (K. and Mitrovic)

The collection of smooth **complex-valued** distributions (u_{ε}) and (v_{ε}) represent a weak asymptotic solution to (\star) if there exist real-valued distributions $u, v \in C(\mathbb{R}_+; \mathcal{D}'(\mathbb{R}))$, such that for every fixed $t \in \mathbb{R}_+$

$$u_{\varepsilon} \rightharpoonup u, \quad v_{\varepsilon} \rightharpoonup v \quad \text{as} \quad \varepsilon \to 0,$$

in the sense of distributions in $\mathcal{D}'(\mathbb{R})$, and

$$\begin{array}{lll} \partial_t u_{\varepsilon} + \partial_x f(u_{\varepsilon}, v_{\varepsilon}) &=& o_{\mathcal{D}'}(1), \\ \partial_t v_{\varepsilon} + \partial_x g(u_{\varepsilon}, v_{\varepsilon}) &=& o_{\mathcal{D}'}(1). \end{array}$$

In addition, we need

 $u_{\epsilon}(x,0) \rightharpoonup u(x,0) \ \ \text{and} \ \ v_{\epsilon}(x,0) \rightharpoonup v(x,0).$

Example: shallow-water equations

Shallow-water equations:

$$\eta_t + h_0 u_x + (\eta u)_x = 0$$
(1)
$$u_t + \mathbf{g} \eta_x + u u_x = 0$$
(2)

Assumptions:

• $p = \rho \mathbf{g}(\eta - z)$ (hydrostatic)

Example: shallow-water equations

Shallow-water equations:

$$\eta_t + h_0 u_x + (\eta u)_x = 0$$
(1)
$$u_t + \mathbf{g} \eta_x + u u_x = 0$$
(2)

Assumptions:

• $p = \rho \mathbf{g}(\eta - z)$ (hydrostatic) • u = u(x, t) (no vertical acceleration)

Momentum conservation:

$$\left[(h_0 + \eta)u\right]_t + \left[(h_0 + \eta)u^2 + \frac{1}{2}\mathbf{g}(h_0 + \eta)^2\right]_x = 0$$

Energy conservation:

$$\frac{1}{2}\left[(h_0+\eta)u^2+(h_0+\eta)^2\right]_t + \left[\frac{1}{2}(h_0+\eta)u^3+\mathbf{g}u(h_0+\eta)^2\right]_x = 0$$

Shallow-water equations with bottom topography

Mass conservation:

$$\begin{bmatrix} h \end{bmatrix}_t + \begin{bmatrix} uh \end{bmatrix}_x = 0$$

Conservation of total head:

$$[u]_t + [\mathbf{g}(h+b) + \frac{u^2}{2}]_x = 0$$

Momentum balance:

$$\left[hu\right]_{t} + \left[hu^{2} + \frac{1}{2}\mathbf{g}h^{2}\right]_{x} = -ghb_{x}$$
(3)

Energy conservation:

$$\left[\frac{1}{2}hu^{2} + \frac{1}{2}h^{2} + bh\right]_{t} + \left[\frac{1}{2}u^{3} + guh(h+b)\right]_{x} = 0$$
(4)

Traveling hydraulic jump

A traveling hydraulic jump over an even bottom must respect conservation of mass and momentum.

In shallow-water theory, it is useful to consider the jump as having a discontinuity at the bore front. Rankine-Hugoniot conditions

$$c[h] = [uh]$$
$$c[uh] = \left[u^2h + \frac{1}{2}gh^2\right]$$

The velocity can be expressed as

$$c = \frac{u_r h_r - u_l h_l}{h_r - h_l} = \frac{\left(u_r^2 h_r + \frac{1}{2} \mathbf{g} h_r^2\right) - \left(u_l^2 h_l + \frac{1}{2} \mathbf{g} h_l^2\right)}{u_r h_r - u_l h_l}$$

Surface profile of a traveling hydraulic jump

Shallow-water approximation

Relative veclocity:

$$m = h_r(u_r - c) = h_l(u_l - c) = \mp h_r h_l \sqrt{\frac{\mathbf{g}}{2} \left(\frac{1}{h_r} + \frac{1}{h_l}\right)}$$

Energy loss:

$$\frac{1}{\rho Y}\Delta E = -\frac{m\mathbf{g}(h_r - h_l)^3}{4h_r h_l}$$

Head loss:

$$\Delta H = \frac{(h_l - h_r)^3}{4h_l h_r}$$

Traveling hydraulic jump over flat bottom

Mass conservation:

$$c[h] - [uh] = 0$$

Head loss:

$$c[u] - [\mathbf{g}(h+b) + \frac{u^2}{2}] = \mathbf{g}\Delta H$$

Momentum balance:

$$c[hu] - \left[hu^2 + \frac{1}{2}\mathbf{g}h^2\right] = 0$$

Energy loss:

$$c\left[\frac{1}{2}hu^2 + \frac{1}{2}h^2 + bh\right] - \left[\frac{1}{2}u^3 + \mathbf{g}uh(h+b)\right] = \frac{1}{\rho Y}\Delta E$$

Weak asymptotics for traveling hydraulic jump

Let $\rho \in C_c^{\infty}(\mathbb{R})$ be non-negative, smooth, compactly supported even function with $\operatorname{supp} \rho \subset (-1,1)$ and $\int_{\mathbb{R}} \rho(z) dz = 1$ Define $C = \int_{\mathbb{R}} \rho^2(z) dz$, and

$$\begin{split} \delta_{\varepsilon}(x,t) &= \frac{1}{2\varepsilon} \rho\left(\frac{x-ct-4\varepsilon}{\varepsilon}\right) + \frac{1}{2\varepsilon} \rho\left(\frac{x-ct+4\varepsilon}{\varepsilon}\right), \\ R_{\varepsilon}(x,t) &= \frac{i}{2\varepsilon} \rho\left(\frac{x-ct-2\varepsilon}{\varepsilon}\right) - \frac{i}{2\varepsilon} \rho\left(\frac{x-ct+2\varepsilon}{\varepsilon}\right), \\ S_{\varepsilon}(x,t) &= \frac{1}{\sqrt{\varepsilon}} \frac{1}{\sqrt{\varepsilon}} \rho\left(\frac{x-ct}{\varepsilon}\right) \end{split}$$

$$U_{\varepsilon}(x,t) = \begin{cases} u_{l}, & x < ct - 20\varepsilon, \\ 0, & ct - 10\varepsilon \le x \le ct + 10\varepsilon, \\ u_{r}, & x \ge ct + 20\varepsilon, \end{cases}$$
$$H_{\varepsilon}(x,t) = \begin{cases} h_{l}, & x < ct - 20\varepsilon, \\ 0, & ct - 10\varepsilon \le x \le ct + 10\varepsilon, \\ h_{r}, & x \ge ct + 20\varepsilon. \end{cases}$$

Now make the ansatz

$$\begin{split} h_{\varepsilon}(x,t) &= H_{\varepsilon}(x-ct), \\ u_{\varepsilon}(x,t) &= U_{\varepsilon}(x-ct) + \alpha(t)(\delta_{\varepsilon}(x-ct) + R_{\varepsilon}(x-ct)) + \sqrt{c\alpha(t)}S_{\varepsilon}(x-ct) \end{split}$$

We can show that

$$\partial_{t} U_{\varepsilon} + \frac{1}{2} \partial_{x} U_{\varepsilon}^{2} + \mathbf{g} \partial_{x} H_{\varepsilon} + \alpha'(t) \delta_{\varepsilon} \underbrace{-c\alpha(t)\delta' + c\alpha\partial_{x} S_{\varepsilon}^{2}}_{\varepsilon} = o_{\mathcal{D}'}(1)$$
$$\partial_{\varepsilon} U_{\varepsilon} + \frac{1}{2} \partial_{x} U_{\varepsilon}^{2} + \mathbf{g} \partial_{x} H_{\varepsilon} + \alpha'(t) \delta_{\varepsilon} = o_{\mathcal{D}'}(1)$$

Choosing

$$\alpha'(t) = (u_r - u_l)c + \frac{1}{2}(u_l^2 - u_r^2) + g(h_r - h_l)$$

 h_{ε} and u_{ε} are solutions of shallow water (1), (2) in the sense of Definition 3.

Note that the Rankine-Hugoniot deficit is nonzero:

$$\alpha'(t) = \mathbf{g} \Delta H \neq 0$$

We can show that

$$\partial_{t} U_{\varepsilon} + \frac{1}{2} \partial_{x} U_{\varepsilon}^{2} + \mathbf{g} \partial_{x} H_{\varepsilon} + \alpha'(t) \delta_{\varepsilon} \underbrace{-c\alpha(t)\delta' + c\alpha\partial_{x} S_{\varepsilon}^{2}}_{\varepsilon} = o_{\mathcal{D}'}(1)$$
$$\partial_{t} U_{\varepsilon} + \frac{1}{2} \partial_{x} U_{\varepsilon}^{2} + \mathbf{g} \partial_{x} H_{\varepsilon} + \alpha'(t) \delta_{\varepsilon} = o_{\mathcal{D}'}(1)$$

Choosing

$$\alpha'(t) = (u_r - u_l)c + \frac{1}{2}(u_l^2 - u_r^2) + g(h_r - h_l)$$

 h_{ε} and u_{ε} are solutions of shallow water (1), (2) in the sense of Definition 3.

Note that the Rankine-Hugoniot deficit is nonzero:

$$\alpha'(t) = \mathbf{g}\Delta H \neq 0$$

For a bottom step, mass and energy need to be conserved. Rankine-Hugoniot conditions are

$$[uh] = 0 \tag{5}$$

$$\left[guh(h+b) + h\frac{u_{i}^{2}}{2}\right] = 0$$
(6)

The second condition can be replaced by the simpler condition

$$\left[g(h+b) + \frac{u^2}{2}\right] = 0$$
(7)

These are standard relations in hydraulic theory (Henderson, 1966).

Mass conservation:

$$c[h] - [uh] = 0$$

Conservation of total head:

$$c[u] - [g(h+b) + \frac{u^2}{2}] = 0$$

Momentum loss:

$$c[hu] - \left[hu^2 + \frac{1}{2}gh^2\right] \neq 0$$

Energy balance:

$$\left[\frac{1}{2}hu^2 + \frac{1}{2}h^2 + bh\right] - \left[\frac{1}{2}u^3 + guh(h+b)\right] = 0$$

Initial configuration: Shock approaching a bottom step

Solve this using conservation of mass and total head:

$$h_t + (hu)_x = 0 \tag{1}$$

$$u_t + g(h+b)_x + uu_x = 0 \tag{2}$$

Initial configuration: Shock approaching a bottom step

Solve this using conservation of mass and total head:

$$h_t + (hu)_x = 0 \tag{1}$$

$$u_t + g(h+b)_x + uu_x = 0$$
 (2)

Solution of Riemann problem over bottom step can be solved by requiring

- Energy conservation across bottom step
- Momentum conservation across flat bottom

Alcrudo and Benkhaldoun, Computers and Fluids, 2001

Shock trajectories

Initial configuration

Riemann problem over bottom step

Solution of Riemann problem for Brio systen

$$\begin{array}{c} u_t + \frac{1}{2} \left(u^2 + v^2 \right)_x = 0 & = \\ v_t + \left(uv - u \right)_x = 0 & = \end{array} \right\}$$
(8)

Definition

A δ -shock solution of the Brio system (8), connecting a left state $L = (u_1, v_1)$ and a right state $R = (u_2, v_2)$ is *i*-admissible if

$$\lambda_i(u_2, v_2) \le c \le \lambda_i(u_1, v_1), \tag{9}$$

for i = 1 or i = 2. For such δ shock wave we say that it is compressive.

Lemma

Assume Riemann data are such that $u_1 = u_2 = \tilde{u}$, $v_1 = 0$ and $v_2 < 0$. Then, the δ -shock solution

$$u(x, t) = \tilde{u} + \alpha(t)\delta(x - ct),$$

$$v(x, t) = 0,$$
(10)

where $\alpha(t)$ and c are given by Thm 1, is a 1-admissible δ -shock solution of (8).

Proof.

The functions given by (10) represent δ shock solution to (8), (9) according to Theorem 1, b). In order to prove that the solution is 1-admissible, recall that $c = \frac{v_2(u_2-1)-v_1(u_1-1)}{v_2-v_1}$. Then, due to (9), we need to show:

$$\begin{split} \lambda_1(u_2,v_2) &= u_2 - 1/2 - \sqrt{1/4 + v_2^2} \leq \frac{v_2(u_2 - 1) - v_1(u_1 - 1)}{v_2 - v_1} \\ &\leq u_1 - 1/2 - \sqrt{1/4 + v_1^2} = \lambda_1(u_1,v_1). \end{split}$$

Since $u_1 = u_2 = u$ and $v_1 = 0$, the latter reduces to

$$u - 1/2 - \sqrt{1/4 + v_2^2} \le u - 1 \quad \Leftarrow \quad 1/2 - \sqrt{1/4 + v_2^2} \le 0,$$

which is clearly true.

Solution of Riemann problem for Brio systen

H. K. and D. Mitrovic, Proc. Edinburgh Math. Soc., 2012

Solution of Cauchy problem for $n \times n$ system

- a) We split the x-axis into the intervals $(x_{\Delta x}^{j}, x_{\Delta x}^{j+1})$ of length Δx .
- b) We approximate the functions U_1^0 and U_2^0 by the functions $U_{01,\Delta x}(x) = \sum_{j=1}^{\infty} v_{1,\Delta x}^j \chi_{(x_{\Delta x}^j, x_{\Delta x}^{j+1})}(x) \text{ and } U_{2,\Delta x}^0(x) = \sum_{j=1}^{\infty} v_{2,\Delta x}^j \chi_{(x_{\Delta x}^j, x_{\Delta x}^{j+1})}(x),$ respectively, which are piecewise constant on the intervals defined in item a
 - respectively, which are piecewise constant on the intervals defined in item a). For $j \in \mathbb{N},$ denote by

$$C_{j}^{i} = \frac{f_{i}(v_{1,\Delta x}^{j+1}, v_{2,\Delta x}^{j+1}) - f_{i}(v_{1,\Delta x}^{j}, v_{2,\Delta x}^{j})}{v_{i,\Delta x}^{j} - v_{i,\Delta x}^{j}} = \frac{[f_{i}]^{j}}{[v_{i}]^{j}}, \quad i = 1, 2$$

i.e. the speeds given by the Rankine-Hugoniot conditions of the first and second equations (i = 1, 2).

c) We thus obtain series of Riemann problems (at the edge of each interval from item a)) which we solve using Definition 1 such that c_j , satisfies the minimum amplitude condition

$$c_{j} = \begin{cases} C_{j}^{1}, & |C_{j}^{1}[v_{2}]^{j} - [f_{2}]^{j}| \leq |C_{j}^{2}[v_{1}]^{j} - [f_{1}]^{j}| \\ C_{j}^{2}, & \textit{else} \end{cases}$$

The $\delta\text{-distribution}$ is adjoined to the function for which the minimum is not reached.

d) We obtain the family $(u_{\Delta x}^1, u_{\Delta x}^2)$ of distributions which can be represented as a sum of bounded functions $U'_{\Delta x}$ and δ -distributions, satisfying Definition 1