
Breaking and Modulational Instability

in full-dispersion shallow water models

Vera Mikyoung Hur

University of Illinois at Urbana-Champaign
and Brown University

verahur@math.uiuc.edu



In the 1880s, Stokes made many contributions about periodic
traveling waves at the surface of water, for instance, observing that
the crest of the wave of greatest possible height is a stagnation
point with a 120◦ corner.

In the 1920s, Levi-Civita and Nekrasov proved the existence of
Stokes waves when the amplitude is sufficiently small.

In the early 1960s, Krasov’skii proved the existence, subject to that
the maximum slope < 30◦.
In the early 1980s, Amick and Toland were finally able to prove
rigorously Stokes’ 120◦ conjecture at the crest.

Therefore, ”no doubt has remained that Stokes waves be
theoretically possible as states of dynamic equilibrium.”



But, in the mid 1960s, Benjamin had trouble producing Stokes
waves in the laboratory and believed that they might be unstable....



Benjamin’s experiments

An oscillating plunger generates a train of

waves, of wavelength 2.3m in water 7.6m deep,

traveling away from the observer in a large

towing basin at the Ship Division of the

National Physical Laboratory. The upper

photograph shows, close to the wave maker, a

regular pattern of plane waves except for

small-scale roughness. In the lower photograph,

some 60m (28 wavelengths) farther along the

tank, the same wave train has suffered drastic

distortion. The instability was triggered by

imposing on the motion of the wave maker a

slight modulation at the unstable side-band

frequencies; but the same disintegration occurs

naturally over a somewhat longer distance.

(photos and caption from Van Dyke, An Album of Fluid Motion)



In the mid 1960s, Benjamin and Feir and Whitham formally argued
that Stokes waves would be unstable to sideband perturbations, if

(carrier wave number)·(undisturbed water depth)> 1.363...

— the Benjamin-Feir or, modulational, instability.

Corroborating results arrived about the same time, but
independently, by Lighthill, Benney and Newell, Ostrovsky,
Zakharov,...“The idea was emerging when the time was ripe.”

[Bridges and Mielke; 1995] studied this in a rigorous fashion.
Original arguments, while correct, are hard to justify in an
appropriate functional setting.

But the proof breaks down in the infinite depth case.
Moreover, it leaves open some important issues, e.g. the full
structure of the spectrum of the associated linearized operator.



In the 2000s, huge effort has aimed at translating formal
modulation theories to rigorous mathematical theorems.
The arguments make strong use of the Evans function, or other
ODE techniques.

But they are not directly applicable, because the water wave
problem is inherently nonlocal. In fact, the phase speed in the
linear theory is

c2
ww (k) = g tanh(kh)

k

g =the gravity constant, h =the undisturbed fluid depth.

One may resort to simple approximate models to gain insights....
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The birth of the Whitham equation
Whitham said, “the breaking phenomenon is one of the most intriguing long-standing
problems of water wave theory.”

The nonlinear shallow water equations:

ηt + ux + (u(h + εη))x = 0, ut + gηx + εuux = 0

explain breaking. But it goes too far — all solutions carrying an
increase of elevation break.

Neglected dispersion effects inhibit breaking. Recall

cww (k) =
√

g tanh(kh)
k =

√
gh(1− 1

6 (kh)2) + · · · for kh� 1.

But the Korteweg-de Vries equation:

ut +
√
gh(1 + 1

6h
2∂2

x )ux + 3
2

√
g
h εuux = 0

in turn, goes too far — no solutions break.



Whitham in 1967 proposed

ut + cww (|D|)ux + 3
2

√
g
h εuux = 0,

combining the dispersion relation of surface water waves and the
nonlinearity of the shallow water equations.
He conjectured wave breaking — bounded solutions with
unbounded derivatives.

[Seliger; 1968] and [Constantin and Escher; 1998] proved gradient
blowup, under some extra assumptions. But they do not include
the Whitham equation.
[Naumkin and Shishmarev; 1994] made an alternative breaking
argument.

[H.; 2015] proved wave breaking for the Whitham equation,
provided that − inf ux(x , 0)� 1.



BF instability in the Whitham equation
1. Existence of small-amplitude periodic traveling waves

The Whitham equation, after normalization of parameters,

ut + cww (|D|)ux + (u2)x = 0

admits a one-parameter family of smooth small-amplitude,
2π/k-periodic solutions:

u(x) =a cos(kx) +
1

2
a2
( 1

cww(k)− cww(0)
+

cos(2kx)

cww(k)− cww(2k)

)
+ · · ·

for |a| � 1, traveling without change of form at the constant speed

c =cww(k) + a2
( 1

cww(k)− cww(0)
+

1

cww(k)− cww(2k)

)
+ · · ·



BF instability in the Whitham equation
2. The notion of stability

Consider the growing mode problem for the linearized equation

λv = ∂x(cww (|D|)− 2u − c)v =: L(u)v .

We say u is spectrally unstable if specL2(R)(L) 6⊂ iR.

NB. v needs not be 2π/k-periodic.

From Floquet theory,

specL2(R)(L) =
⋃

ξ∈(−1/2k,1/2k]

specL2([0,2π/k])(Lξ), Lξ = e−iξxLe iξx .

The spectrum of Lξ consists merely of discrete eigenvalues.

The strategy is: (1) to study the spectrum of L0 at the origin, and
(2) to examine how the spectrum of Lξ varies for |ξ| � 1.



BF instability in the Whitham equation
3. Spectrum of L0 = L

For ξ = 0, zero is a generalized eigenvalue of L0 = L with algebraic
multiplicity three and geometric multiplicity two. Moreover,

φ1(x) = cos(kx) + a
−1/2 + cos(2kx)

cww(k)− cww(2k)
+ · · · ,

φ2(x) = sin(kx) + a
sin(2kx)

cww(k)− cww(2k)
+ · · · ,

φ3(x) =1

are the generalized eigenfunctions for |a| � 1.

For a = 0, Lξ has eigenvalues i(n + ξ)(cww(k)− cww(k(n + ξ)),
n ∈ Z. For |n| > 2, they come with positive Krein signature and do
not contribute to instability.



BF instability in the Whitham equation
4. Perturbation calculation for |ξ| � 1

For |ξ| � 1, Lξ = L0 + iξ[L0, x ]− 1
2ξ

2[[L0, x ], x ] + · · · .
Spectra of Lξ near the origin agrees with eigenvalues of the 3× 3
matrix (

〈(Lξ − λI )φm, φn〉
)
m,n=1,2,3

up to terms of order ξ2.

[H. and Johnson, 2015] proved that a sufficiently small,
2π/k-periodic traveling wave is modulationally unstable, if

ind(k) =
(kcww(k))′′((kcww(k))′ − cww(0))

cww(k)− cww(2k)
i4(k) < 0,

where i4(k) = 2(cww(k)− cww(2k)) + (kcww(k))′ − cww(0).

It happens when k > 1.145...; otherwise spectrally stable to square
integrable perturbations.



A few words about the Whitham equation

The Whitham equation seems to successfully explain some high
frequency phenomena of water waves.

But the Whitham equation is a heuristic model, combining the full
range of dispersion and a nonlinearity of the shallow water theory.
It seems difficult to justify the model beyond the KdV scaling
regime.

The tools developed here may be potentially useful to the water
wave problem and other related ones.



Revisit

ind(k) =
(kcww(k))′′((kcww(k))′ − cww(0))

cww(k)− cww(2k)
i4(k) =:

( i1i2
i3

i4
)

(k),

and i4(k) = 2i3(k) + i2(k).

Note that cww (k)=the phase speed, (kcww (k))′=the group speed.

Modulational stability changes when

(1) i1(k) = 0; the group speed is an extremum,
(2) i2(k) = 0; the group speed matches the limiting phase speed,
(3) i3(k) = 0; the fundamental harmonic is resonant with the
second harmonic.
(4) i4(k) = 0; the dispersion and nonlinear effects are “resonant.”

For the Benajmin-Bona-Mahony equation
ut − uxxt + ux + uux = 0, i4(k) = 2i3(k) + c(2k)i2(k).



Effects of surface tension

Let c(k ;T ) =

√(
g + Tk2

) tanh(kh)

k
, T > 0 is the coefficient of

surface tension.

[H. and Johnson, 2015] proved that
If T/gh2 < 1/3, in(k), n = 1, 2, 3, 4, changes its sign once.
If T/gh2 > 1/3, i1(k), i2(k), i3(k) > 0, i4(k) vanishes once.



Effects of constant vorticity

Let cγ(k) =
γ tanh(kh)

2k
±

√
g tanh(kh)

k
+
γ2 tanh2(kh)

4k2
,

γ is the constant vorticity.
For any γ, i1(k), i2(k), i3(k) do not vanish, i4(k) vanishes once.

The result agrees with Kharif and collaborators’ from formal
asymptotic expansion for the water wave problem.



Wave breaking for fKdV

Consider ut + |D|αux + uux = 0 .

α = 2 is the KdV equation;
α = 1 is the Benjamin-Ono equation;
α = 0 is the inviscid Burgers equation;
α = −1 is the Burgers-Hilbert equation. (See the works of Hunter,
Ifrim, Tataru, and collaborators.)

[Dong, Du and Li; 2009] proved wave breaking for
ut − |D|α+1u + uux = 0 for −1 < α < 0.
[Castro, Córdoba, Gancedo; 2010], [H.; 2012] proved gradient
blowup for −1 < α < 0.

[H.; 2015] proved wave breaking for −1 < α < −1/3.
[H.; in progress] proved norm inflation in Hs , 5/6 < s < 1/2− α
for −1 < α < −1/3.



MI of strongly nonlinear waves?

Conserved quantities for are

H =

∫
( 1

2u|D|
αu − 1

3u
3) dx (Hamiltonian),

= K + U

P =

∫
1
2u

2 dx (momentum),

M =

∫
u dx (mass).



Assume a four-parameter family of smooth, even, and periodic
traveling waves u = u(x − x0; c , a,T ) exists, where c is the wave
speed, x0 is the spatial translate, u is T -periodic, and

|D|αu − u2 − cu − a = 0 for some a.

Under certain nondegeneracy conditions, zero is a generalized
eigenvalue of L0 = L, and

Lv1 := Lua = 0, L†w1 := L†(Mcu − Pc) = 0,
Lv2 := Lux = 0, L†w2 := L†(∂−1

x (Mauc −Mcua)) = w3,
Lv3 := Luc = v2, L†w3 := L†(Pa −Mau) = 0,

and 〈wj , vk〉 = (McPa −MaPc)δjk .



[Bronski and H.; 2014] proved that u is modulationally unstable, if

D :=

〈w3, L1v3〉 ∗ 〈w3, L1v1〉
1 〈w2, L1v2〉 0

〈w1, L1v3〉 ∗∗ 〈w1, L1v1〉


admits a complex eigenvalue, where L1 = [L, x ],

〈w1, L1v1〉 = Mc((1− α)Ua + αcPa + (α + 1)aMa) + Pc(2Pa + cMa),

〈w1, L1v3〉 = Mc((1− α)Uc + αcPc + (α + 1)aMc) + Pc(2Pc + cMc),

〈w3, L1v1〉 = −Ma((1− α)Ua + αcPa + (α + 1)aMa)− Pa(2Pa + cMa),

〈w3, L1v3〉 = −Ma((1− α)Uc + αcPc + (α + 1)aMc)− Pa(2Pc + cMc),

and

〈w2, L1v2〉 = −α(McUa −MaUc − c(McPa −MaPc)).



In the case of the Benjamin-Ono equation (α = 1), using
Benjamin’s explicit form of the solution

u(x ; c , a,T ) =

(2π/T )2√
c2−4a−(2π/T )2√

c2−4a
c2−4a−(2π/T )2 − cos(2πx/T )

− 1
2 (
√
c2 − 4a + c),

where c < 0 and c2 − 4a− (2π/T )2 > 0,

D =

−πT (πT )2(1− (2π/cT )2) 0
1 πT 0

2π2 0 πT

 .

Eigenvalues are πT and ±πT
√

2− (2π/cT )2.
Therefore all periodic traveling waves are modulationally stable.



We examined for c = −5, a = 0, T = π/2, and for parameter
values in the range 1 < α < 2 (BO-KdV) and, interestingly,
found a modulationally unstable wave at α ≈ 1.025.

the imaginary part of the

eigenvalue as a function of α

the wave profile at α ≈ 1.025, the

onset of instability

Compare:
ut + |D|αux + uux = 0 ut + uxxx + upux = 0

L2 critical α = 1/2 p = 4
“L1” critical α = 1 p = 2



Bi-directional or Boussinesq-Whitham equations
In the 1980s, MacKay and Saffman, and others, numerically found other types of
instabilities. Explain!

Take the (singular) Boussinesq equation
ηtt = gh(1− 1

3ε∂
2
x )ηxx + ε(η2)xx and “whithamize”:

ηtt = c2
ww (|D|)ηxx + ε(η2)xx .

It is linearly ill-posed in the periodic setting. Some nonzero
constant solutions are spectrally unstable.
[Deconinck and Trichtchenko; 2015] numerically found high
frequency instabilities, though.

Take (1 + 1
3ε∂

2
x )ηtt = gh(ηxx + ε(η2)xx) and “whithamize”:

c−2
ww (|D|)ηtt = ηxx + ε(η2)xx .

It is well-posed for short time, but it fails the BF instability.
[H. and Pandey; 2016] proved modulational stability of the
(regularized) Boussinesq equation.



I propose the full-dispersion shallow water equations:

ηt + ux + (u(h + εη))x = 0, ut + cww (|D|)2ηx + εuux = 0

Recalling c2
ww (k) = gh(1− 1

3 (kh)2) + · · · for kh� 1, they
approximate the shallow water equations:

ηt + ux + (u(h + εη))x = 0, ut + gηx + εuux = 0,

(all solutions break), and also Boussinesq equations

ηt + ux + (u(h + εη))x = 0, (1 + 1
3ε∂

2
x )ut + gηx + εuux = 0

(no solutions break).

[H. and Tao; 2015] proved breaking for

ηt + ux + u(h + ηx) = 0, ut + cww (|D|)2ηx + uux = 0.



[H. and Pandey; 2016] proved that a sufficiently small,
2π/k-periodic traveling wave of is modulationally unstable, if

ind(k) =
(kcww(k))′′(((kcww(k))′)2 − c2

ww
(0))

c2
ww

(k)− c2
ww

(2k)
i4(k) < 0,

where i4(k) = 3cww(k)(c2
ww

(k) + 5c4
ww

(k)− 2c2
ww

(2k)(c2
ww

(k) + 2))
+18kc4

ww
(k)c ′

ww
(k) + k2cww(k)(c ′

ww
(k))2(4c2

ww
(2k) + 5c2

ww
(k)).

It happens when k > 1.610...; otherwise modulationally stable.



Including the effects of surface tension,

bi-directional Whitham uni-directional Whitham the water wave problem

the result agrees with [Kawahara;1975], [Djordjevic and Redekopp;
1977] via formal multi scale expansion.



Around the no-wave solution, infinitely many collisions of pairs of
purely imaginary eigenvalues away from the origin.

They do not lead to high frequency instabilities up to |a|.

The result agrees with those by Akers and Nicholls, and others,
via a formal argument.



Effects of higher order nonlinearities
[Lannes; 2013] proposed the full-dispersion Camass-Holm equation

ηt + cww(|D|)ηx +
3η

1 +
√

1 + η
ηx = −

( 5

12
ηηxxx +

23

24
ηxηxx

)
.

[H. and Pandey; in progress] proved that a small-amplitude 2π/k
periodic traveling wave is modulationally unstable if k > 1.42....

Including the effects of surface tension,

T = 1 /3
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Effects of three dimensions

[Lannes; 2013] proposed the full-dispersion Kadomtsev-Petviashvili
equation

ut +H
√
|Dx |2 + |Dy |2cww(|Dx |2 + |Dy |2)u + uux = 0

[Pandey; in progress] proved that a small-amplitude 2π/k-periodic
traveling wave of the Whitham equation is transversally unstable if

ind(k) = cww(k)− cww(2k) < 0.

If T = 0, stability.
If 0 < T < 1/3, instability for k > kc for some kc .
If T > 1/3, instability for all k > 0.


