Counting unstable Eigenvalues in Hamiltonian spectral PROBLEMS VIA COMMUTING OPERATORS

Mariana Haragus, Jin Li, and Dmitry E. Pelinovsky

Banff, November, 2016

Hamiltonian spectral problems

Hamiltonian PDEs: linear operators of the form $\widehat{\mathcal{J L}}$

- \mathcal{J} skew-adjoint operator
- \mathcal{L} self-adjoint operator

Question: find the unstable spectrum of $\mathcal{J} \mathcal{L}$

Count unstable Eigenvalues

Hamiltonian structure: linear operator of the form $\mathcal{J} \mathcal{L}$

- \mathcal{J} skew-adjoint operator
- \mathcal{L} self-adjoint operator
\square Under suitable conditions:

$$
\mathbf{n}_{\mathrm{u}}(\mathcal{J L}) \leq \mathbf{n}_{\mathrm{s}}(\mathcal{L})
$$

- $\mathbf{n}_{\mathrm{u}}(\mathcal{J L})=$ number of unstable eigenvalues of $\mathcal{J} \mathcal{L}$
- $\mathbf{n}_{\mathrm{s}}(\mathcal{L})=$ number of negative eigenvalues of \mathcal{L}
[well-known result, extensively used in stability problems ...]
[does not work very well for periodic waves ...]

An extended eigenvalue count

Hamiltonian structure: linear operator of the form $\sqrt{\mathcal{L}}$
■ \mathcal{J} skew-adjoint operator

- \mathcal{L} self-adjoint operator

There exists a self-adjoint operator \mathcal{K} such that

$$
(\mathcal{J L})(\mathcal{J K})=(\mathcal{J K})(\mathcal{J L})
$$

Under suitable conditions:

$$
n_{u}(\mathcal{J L}) \leq n_{s}(\mathcal{K})
$$

- $\mathbf{n}_{\mathbf{u}}(\mathcal{J} \mathcal{L})=$ number of unstable eigenvalues of $\mathcal{J} \mathcal{L}$
- $\mathbf{n}_{\mathbf{s}}(\mathcal{K})=$ number of negative eigenvalues of \mathcal{K}

Stability of periodic waves

classical result: allows to show (orbital) stability of periodic waves with respect to co-periodic perturbations
\square particular case $\mathbf{n}_{\mathbf{s}}(\mathcal{K})=0$: used to show nonlinear (orbital) stability of periodic waves with respect to subharmonic perturbations (for the KdV and NLS equations)
[Deconinck, Kapitula, 2010; Gallay, Pelinovsky, 2015]

Stability of Periodic waves

classical result: allows to show (orbital) stability of periodic waves with respect to co-periodic perturbations
\square particular case $\mathbf{n}_{\mathbf{s}}(\mathcal{K})=0$: used to show nonlinear (orbital)
stability of periodic waves with respect to subharmonic perturbations (for the KdV and NLS equations)
[Deconinck, Kapitula, 2010; Gallay, Pelinovsky, 2015]
\square key step: construction of a nonnegative operator \mathcal{K}

- relies upon the existence of a higher order conserved functional (due to integrability)

General Result

Hypotheses

$\mathcal{J}, \mathcal{L}, \mathcal{K}$ closed linear operators acting in a Hilbert space \mathbf{H}

- \mathcal{J} skew-adjoint operator with bounded inverse
- \mathcal{L}, \mathcal{K} self-adjoint operators

$$
(\mathcal{J L})(\mathcal{J K}) \mathbf{u}=(\mathcal{J K})(\mathcal{J} \mathcal{L}) \mathbf{u}, \quad \forall \mathbf{u} \in \mathcal{D}
$$

- the nonpositive spectrum $\sigma_{\mathrm{s}}(\mathcal{K}) \cup \sigma_{\mathrm{c}}(\mathcal{K})$ consists of a finite number of isolated eigenvalues with finite multiplicities
- the unstable spectrum $\sigma_{\mathrm{u}}(\mathcal{J} \mathcal{L})$ consists of isolated eigenvalues with finite algebraic multiplicities

Main Result

The number $\mathbf{n}_{\mathbf{u}}(\mathcal{J} \mathcal{L})$ of unstable eigenvalues of the operator $\mathcal{J L}$ and the number $\mathbf{n}_{\mathbf{s c}}(\mathcal{K})$ of nonpositive eigenvalues of the self-adjoint operator \mathcal{K} satisfy

$$
\mathrm{n}_{\mathrm{u}}(\mathcal{J L}) \leq \mathrm{n}_{\mathrm{sc}}(\mathcal{K})
$$

Main Result

The number $\mathbf{n}_{\mathbf{u}}(\mathcal{J} \mathcal{L})$ of unstable eigenvalues of the operator $\mathcal{J L}$ and the number $\mathbf{n}_{\mathbf{s c}}(\mathcal{K})$ of nonpositive eigenvalues of the self-adjoint operator \mathcal{K} satisfy

$$
\mathrm{n}_{\mathrm{u}}(\mathcal{J L}) \leq \mathrm{n}_{\mathrm{sc}}(\mathcal{K})
$$

If, in addition, $\operatorname{ker}(\mathcal{K}) \subset \operatorname{ker}(\mathcal{J} \mathcal{L})$, then

$$
\mathbf{n}_{\mathrm{u}}(\mathcal{J} \mathcal{L}) \leq \mathbf{n}_{\mathrm{s}}(\mathcal{K})
$$

Corollary

Assume that \mathcal{K} is a nonnegative operator.
. $\mathrm{n}_{\mathrm{u}}(\mathcal{J} \mathcal{L}) \leq \mathrm{n}_{\mathrm{c}}(\mathcal{K})$
\square If, in addition, $\boldsymbol{\operatorname { k e r }}(\mathcal{K}) \subset \operatorname{ker}(\mathcal{J} \mathcal{L})$, then

$$
\mathrm{n}_{\mathrm{u}}(\mathcal{J} \mathcal{L})=0
$$

i.e., the spectrum of $\mathcal{J} \mathcal{L}$ is purely imaginary.

Proof

$\boldsymbol{\lambda}$ and σ isolated eigenvalues of $\mathcal{J} \mathcal{L}$; spectral subspaces $\mathbf{E}_{\boldsymbol{\lambda}}$ and $\mathbf{E}_{\boldsymbol{\sigma}}$

$$
(\lambda+\bar{\sigma})\langle\mathcal{K} \mathbf{u}, \mathbf{v}\rangle=0, \quad \forall \mathbf{u} \in \mathbf{E}_{\lambda}, \mathbf{v} \in \mathbf{E}_{\sigma}
$$

- E_{u} unstable spectral subspace of $\mathcal{J} \mathcal{L}$

$$
\langle\mathcal{K} \mathbf{u}, \mathbf{u}\rangle=\mathbf{0}, \quad \forall \mathbf{u} \in \mathbf{E}_{\mathbf{u}}
$$

Proof

$\boldsymbol{\lambda}$ and σ isolated eigenvalues of $\mathcal{J} \mathcal{L}$; spectral subspaces $\mathbf{E}_{\boldsymbol{\lambda}}$ and $\mathbf{E}_{\boldsymbol{\sigma}}$

$$
(\lambda+\bar{\sigma})\langle\mathcal{K} \mathbf{u}, \mathbf{v}\rangle=0, \quad \forall \mathbf{u} \in \mathbf{E}_{\lambda}, \mathbf{v} \in \mathbf{E}_{\sigma}
$$

- E_{u} unstable spectral subspace of $\mathcal{J} \mathcal{L}$

$$
\langle\mathcal{K} \mathbf{u}, \mathbf{u}\rangle=\mathbf{0}, \quad \forall \mathbf{u} \in \mathbf{E}_{\mathbf{u}}
$$

spectral decomposition of the Hilbert space \mathbf{H}

$$
\mathrm{H}=\mathrm{F}_{\mathrm{sc}} \oplus \mathrm{~F}_{\mathrm{u}}, \quad \sigma\left(\left.\mathcal{K}\right|_{\mathrm{F}_{\mathrm{sc}}}\right)=\sigma_{\mathrm{sc}}(\mathcal{K}), \quad \sigma\left(\left.\mathcal{K}\right|_{\mathrm{F}_{\mathrm{u}}}\right)=\sigma_{\mathrm{u}}(\mathcal{K})
$$

- spectral projector $\left.\mathrm{P}_{\mathrm{sc}}\right|_{\mathrm{E}_{\mathrm{u}}}: \mathrm{E}_{\mathrm{u}} \rightarrow \mathrm{F}_{\mathrm{sc}}$ is injective

$$
\operatorname{dim}\left(\mathrm{E}_{\mathrm{u}}\right)=\mathrm{n}_{\mathrm{u}}(\mathcal{J L}) \leq \operatorname{dim}\left(\mathrm{F}_{\mathrm{sc}}\right)=\mathrm{n}_{\mathrm{sc}}(\mathcal{K})
$$

Proof

$\square \boldsymbol{\lambda}$ and $\boldsymbol{\sigma}$ isolated eigenvalues of $\mathcal{J} \mathcal{L}$; spectral subspaces $\mathbf{E}_{\boldsymbol{\lambda}}$ and $\mathbf{E}_{\boldsymbol{\sigma}}$

$$
(\lambda+\bar{\sigma})\langle\mathcal{K} \mathbf{u}, \mathbf{v}\rangle=0, \quad \forall \mathbf{u} \in \mathbf{E}_{\lambda}, \mathbf{v} \in \mathbf{E}_{\sigma}
$$

- E_{u} unstable spectral subspace of $\mathcal{J} \mathcal{L}$

$$
\langle\mathcal{K} \mathbf{u}, \mathbf{u}\rangle=\mathbf{0}, \quad \forall \mathbf{u} \in \mathbf{E}_{\mathbf{u}}
$$

\square If $\boldsymbol{\operatorname { k e r }}(\mathcal{K}) \subset \boldsymbol{\operatorname { k e r }}(\mathcal{J} \mathcal{L})$: spectral decomposition

$$
\mathrm{H}=\mathrm{F}_{\mathrm{s}} \oplus \mathbf{F}_{\mathrm{cu}}, \quad \sigma\left(\left.\mathcal{K}\right|_{\mathrm{F}_{\mathrm{s}}}\right)=\sigma_{\mathrm{s}}(\mathcal{K}), \quad \sigma\left(\left.\mathcal{K}\right|_{\mathrm{F}_{\mathrm{cu}}}\right)=\sigma_{\mathrm{cu}}(\mathcal{K})
$$

- spectral projector $P_{S_{\left.\right|_{u}}}: E_{u} \rightarrow F_{s}$ is injective

$$
\operatorname{dim}\left(\mathrm{E}_{\mathrm{u}}\right)=\mathrm{n}_{\mathrm{u}}(\mathcal{J} \mathcal{L}) \leq \operatorname{dim}\left(\mathrm{F}_{\mathrm{s}}\right)=\mathrm{n}_{\mathrm{s}}(\mathcal{K})
$$

Application

KP-II EQUATION

Kadomtsev-Petviashivili equation

$$
\left(u_{t}+6 u u_{x}+u_{x x x}\right)_{x}+u_{y y}=0
$$

- model equation for water waves (small surface tension)
- two-dimensional extension of the KdV equation

$$
u_{t}+6 u u_{x}+u_{x x x}=0
$$

Q Question: transverse stability of one-dimensional periodic traveling waves (spectral, linear, nonlinear)

- the classical counting criterion does not allow to fully understand transverse stability for periodic waves

$1 D$ PERIODIC TRAVELING WAVES

one-parameter family of one-dimensional periodic traveling waves (up to symmetries)

$$
\mathbf{u}(\mathrm{x}, \mathrm{t})=\phi_{\mathrm{c}}(\mathrm{x}+\mathrm{ct})
$$

- speed c >1
- 2π-periodic, even profile ϕ_{c} satisfying the KdV equation

$$
v^{\prime \prime}(x)+c v(x)+3 v^{2}(x)=0
$$

- known explicitly!

LINEARIZED EQUATION

\square linearized KP-II equation

$$
\left(w_{t}+w_{x x x}+c w_{x}+6\left(\phi_{c}(x) w\right)_{x}\right)_{x}+w_{y y}=0
$$

- 2π-periodic coefficients in x
- Ansatz

$$
w(x, y, t)=e^{\lambda t+i p y} W(x), \quad \lambda \in \mathbb{C}, p \in \mathbb{R}
$$

\square linearized equation for $W(x)$

$$
\lambda W_{x}+W_{x x x x}+c W_{x x}+6\left(\phi_{c}(x) W\right)_{x x}-p^{2} W=0
$$

Spectral stability problem

\square linearized equation for $W(x)$

$$
\lambda W_{x}+W_{x x x x}+c W_{x x}+6\left(\phi_{c}(x) W\right)_{x x}-p^{2} W=0
$$

the periodic wave ϕ_{c} is spectrally stable iff the linear operator

$$
\mathcal{A}_{\mathrm{c}, \mathrm{p}}(\lambda)=\lambda \partial_{\mathrm{x}}+\partial_{\mathrm{x}}^{4}+\mathrm{c} \partial_{\mathrm{x}}^{2}+6 \partial_{\mathrm{x}}^{2}\left(\phi_{\mathrm{c}}(\mathrm{x}) \cdot\right)-\mathrm{p}^{2}
$$

is invertible for $\operatorname{Re} \boldsymbol{\lambda}>0$.

- 2 D bounded perturbations: space $\mathbf{C}_{\mathbf{b}}(\mathbb{R})$ and $\mathbf{p} \in \mathbb{R}$.
- continuous spectrum ...

Floquet/Bloch Decomposition

. $\mathcal{A}_{\mathbf{c}, \mathrm{p}}(\lambda)$ is invertible in $\mathbf{C}_{\mathbf{b}}(\mathbb{R})$ iff the operators

$$
\mathcal{A}_{\mathrm{c}, \mathrm{p}}(\lambda, \gamma)=\lambda\left(\partial_{\mathrm{x}}+\mathrm{i} \gamma\right)+\left(\partial_{\mathrm{x}}+\mathbf{i} \gamma\right)^{4}+\mathrm{c}\left(\partial_{\mathrm{x}}+\mathbf{i} \gamma\right)^{2}+6\left(\partial_{\mathrm{x}}+\mathrm{i} \gamma\right)^{2}\left(\phi_{\mathrm{c}}(\mathrm{x}) \cdot\right)-\mathrm{p}^{2}
$$

are invertible in $\mathbf{L}_{\mathbf{p e r}}^{\mathbf{2}}(\mathbf{0}, \mathbf{2 \pi})$, for any $\gamma \in[\mathbf{0}, \mathbf{1})$.

- $\gamma \in(0,1)$: study the spectrum of the operator

$$
\mathcal{B}_{\mathrm{c}, \mathrm{p}}(\gamma)=-\left(\partial_{\mathrm{x}}+\mathrm{i} \gamma\right)^{3}-\mathrm{c}\left(\partial_{\mathrm{x}}+\mathrm{i} \gamma\right)-\mathbf{6}\left(\partial_{\mathrm{x}}+\mathrm{i} \gamma\right)\left(\phi_{\mathrm{c}}(\mathrm{x}) \cdot\right)+\mathrm{p}^{2}\left(\partial_{\mathrm{x}}+\mathrm{i} \gamma\right)^{-1}
$$

- $\gamma=0$: restrict to functions with zero mean

Counting criterion

. apply the counting criterion to

$$
\mathcal{B}_{\mathrm{c}, \mathrm{p}}(\gamma)=\mathcal{J}(\gamma) \mathcal{L}_{\mathrm{c}, \mathrm{p}}(\gamma)
$$

■ skew-adjoint operator $\mathcal{J}(\gamma)=\left(\partial_{\mathrm{x}}+\mathrm{i} \gamma\right)$
■ self-adjoint operator

$$
\mathcal{L}_{\mathrm{c}, \mathrm{p}}(\gamma)=-\left(\partial_{\mathrm{x}}+\mathrm{i} \gamma\right)^{2}-\mathrm{c}-\mathbf{6} \phi_{\mathrm{c}}(\mathrm{x})+\mathrm{p}^{2}\left(\partial_{\mathrm{x}}+\mathrm{i} \gamma\right)^{-2}
$$

\square construct positive commuting operators $\mathcal{K}_{\mathbf{c}, \mathrm{p}}(\gamma)$
■ find commuting operators $\mathcal{M}_{\mathrm{c}, \mathrm{p}}(\gamma)$
■ show that suitable linear combination of $\mathcal{M}_{\mathbf{c}, \mathrm{p}}(\gamma)$ and $\mathcal{L}_{\mathrm{c}, \mathrm{p}}(\gamma)$ is a positive operator

Commuting operators

natural candidate: use a higher-order conserved functional

- resulting operator satisfies the commutativity relation
- cannot obtain positive operators ...

Commuting operators

natural candidate: use a higher-order conserved functional

- resulting operator satisfies the commutativity relation
- cannot obtain positive operators ...
second option: use the operators from the KdV equation
- $\mathbf{p}=\mathbf{0}$ corresponds to the KdV equation
- decompose:

$$
\mathcal{L}_{\mathrm{c}, \mathrm{p}}=\mathcal{L}_{\mathrm{KdV}}+\mathrm{p}^{2} \mathcal{L}_{\mathrm{KP}}, \mathcal{M}_{\mathrm{c}, \mathrm{p}}=\mathcal{M}_{\mathrm{KdV}}+\mathrm{p}^{2} \mathcal{M}_{\mathrm{KP}}
$$

- $\mathcal{M}_{\mathrm{KdV}}$ is obtained from a higher order conserved functional:

$$
\mathcal{M}_{\mathrm{KdV}}=\partial_{\mathrm{x}}^{4}+10 \partial_{\mathrm{x}} \phi_{\mathrm{c}}(\mathrm{x}) \partial_{\mathrm{x}}-10 \mathrm{c} \phi_{\mathrm{c}}(\mathrm{x})-\mathrm{c}^{2}
$$

- compute $\boldsymbol{\mathcal { M }}_{\mathbf{K P}}$ directly from the commutativity relation:

$$
\mathcal{M}_{\mathrm{KP}}=\frac{5}{3}\left(1+\mathrm{c} \partial_{\mathrm{x}}^{-2}\right)
$$

Main Result

Transverse spectral stability of periodic waves (with respect to bounded perturbations):

- there exist constants \mathbf{b} such that the operators

$$
\mathcal{K}_{\mathrm{c}, \mathrm{p}, \mathrm{~b}}(\gamma)=\mathcal{M}_{\mathrm{c}, \mathrm{p}}(\gamma)-\mathbf{b} \mathcal{L}_{\mathrm{c}, \mathrm{p}}(\gamma) \text { are positive }{ }^{1}
$$

- the commutativity relation holds
- the general counting criterion implies that the spectra of

$$
\mathcal{B}_{\mathrm{c}, \mathrm{p}}(\gamma)=\mathcal{J}(\gamma) \mathcal{L}_{\mathrm{c}, \mathrm{p}}(\gamma) \text { are purely imaginary }
$$

${ }^{1}$ except for $p=\gamma=0$ when the operator is nonnegative with 1D kernel (spanned by the derivative of the wave)

Transverse Linear stability

\square linearized problem

$$
\mathbf{w}_{\mathrm{t}}=\mathcal{B}_{\mathrm{c}} \mathbf{w}
$$

- $\mathcal{B}_{\mathrm{c}}=\mathcal{J} \mathcal{L}_{\mathrm{c}}, \mathcal{J}=\partial_{\mathrm{x}}, \mathcal{L}_{\mathrm{c}}=-\partial_{\mathrm{x}}^{2}-\mathrm{c}-\mathbf{6} \phi_{\mathrm{c}}(\mathrm{x})-\partial_{\mathrm{x}}^{-2} \partial_{\mathrm{y}}^{2}$
- $\mathcal{B}_{\mathbf{c}}$ acts in $\dot{\mathbf{L}}^{2}(\mathbf{N}, \mathbf{p})$ (the space of locally square-integrable functions on \mathbb{R}^{2} which are $2 \pi N$-periodic and have zero mean in x, and are $2 \pi / p$-periodic in y)

TRANSVERSE LINEAR STABILITY

linearized problem

$$
\mathbf{w}_{\mathrm{t}}=\mathcal{B}_{\mathrm{c}} \mathbf{w}
$$

- $\mathcal{B}_{\mathrm{c}}=\mathcal{J} \mathcal{L}_{\mathrm{c}}, \mathcal{J}=\partial_{\mathrm{x}}, \mathcal{L}_{\mathrm{c}}=-\partial_{\mathrm{x}}^{2}-\mathrm{c}-\mathbf{6} \phi_{\mathrm{c}}(\mathrm{x})-\partial_{\mathrm{x}}^{-2} \partial_{\mathrm{y}}^{2}$
- $\mathcal{B}_{\mathbf{c}}$ acts in $\dot{L}^{2}(\mathbf{N}, \mathbf{p})$ (the space of locally square-integrable functions on \mathbb{R}^{2} which are $2 \pi N$-periodic and have zero mean in x, and are $2 \pi / p$-periodic in y)
linear operator

$$
\mathcal{K}_{\mathrm{c}}=\mathcal{M}_{\mathrm{c}}-\mathbf{b} \mathcal{L}_{\mathrm{c}}
$$

- nonnegative operator with point spectrum and 1D kernel (spanned by the derivative of the periodic wave)
- the operators $\mathcal{J} \mathcal{K}_{\mathrm{c}}$ and \mathcal{J}_{c} commute

TRANSVERSE LINEAR STABILITY

Lyapunov functional $\mathbf{w} \mapsto\left\langle\mathbf{K}_{\mathbf{c}} \mathbf{w}, \mathbf{w}\right\rangle$

- $\frac{\mathbf{d}}{\mathbf{d t}}\left\langle\mathbf{K}_{\mathrm{c}} \mathbf{w}(\mathbf{t}), \mathbf{w}(\mathbf{t})\right\rangle=\mathbf{0}$ (from commutativity)
- $\left\langle\mathbf{K}_{\mathbf{c}} \mathbf{w}, \mathbf{w}\right\rangle \geq \mathbf{c}\|\mathbf{w}\|^{2}$, when $\left\langle\mathbf{w}, \partial_{\mathbf{x}} \phi_{\mathbf{c}}\right\rangle=\mathbf{0}$ (from positivity)
\square implies transverse linear stability of the periodic waves (with respect to doubly periodic perturbations)

TRANSVERSE NONLINEAR STABILITY

Open problem ...

- the nonnegative linear operator \mathcal{K}_{c} is not the Hessian operator of some conserved higher-order energy functional of the KP-II equation...
- find a conserved higher-order energy functional of the KP-II equation for which the Hessian operator (at the periodic wave) is nonnegative?
23

