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Hamiltonian spectral problems

Hamiltonian PDEs: linear operators of the form JL

� J skew-adjoint operator

� L self-adjoint operator

Question: find the unstable spectrum of JL



Count unstable eigenvalues

Hamiltonian structure: linear operator of the form JL
� J skew-adjoint operator

� L self-adjoint operator

Under suitable conditions:

nu(JL) ≤ ns(L)

� nu(JL) = number of unstable eigenvalues of JL
� ns(L) = number of negative eigenvalues of L

[well-known result, extensively used in stability problems . . . ]

[does not work very well for periodic waves . . . ]



An extended eigenvalue count

Hamiltonian structure: linear operator of the form JL
� J skew-adjoint operator

� L self-adjoint operator

There exists a self-adjoint operator K such that

(JL)(JK) = (JK)(JL)

Under suitable conditions:

nu(JL) ≤ ns(K)

� nu(JL) = number of unstable eigenvalues of JL
� ns(K) = number of negative eigenvalues of K



Stability of periodic waves

classical result: allows to show (orbital) stability of periodic

waves with respect to co-periodic perturbations

particular case ns(K) = 0: used to show nonlinear (orbital)

stability of periodic waves with respect to subharmonic

perturbations (for the KdV and NLS equations)

[Deconinck, Kapitula, 2010; Gallay, Pelinovsky, 2015]

key step: construction of a nonnegative operator K
� relies upon the existence of a higher order conserved functional

(due to integrability)
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General result



Hypotheses

J , L, K closed linear operators acting in a Hilbert space H

� J skew-adjoint operator with bounded inverse

� L, K self-adjoint operators

(JL)(JK)u = (JK)(JL)u, ∀ u ∈ D

� the nonpositive spectrum σs(K) ∪ σc(K) consists of a finite

number of isolated eigenvalues with finite multiplicities

� the unstable spectrum σu(JL) consists of isolated

eigenvalues with finite algebraic multiplicities



Main result

The number nu(JL) of unstable eigenvalues of the operator

JL and the number nsc(K) of nonpositive eigenvalues of the

self-adjoint operator K satisfy

nu(JL) ≤ nsc(K).

If, in addition, ker(K) ⊂ ker(JL), then

nu(JL) ≤ ns(K).



Main result

The number nu(JL) of unstable eigenvalues of the operator

JL and the number nsc(K) of nonpositive eigenvalues of the

self-adjoint operator K satisfy

nu(JL) ≤ nsc(K).

If, in addition, ker(K) ⊂ ker(JL), then

nu(JL) ≤ ns(K).



Corollary

Assume that K is a nonnegative operator.

nu(JL) ≤ nc(K)

If, in addition, ker(K) ⊂ ker(JL), then

nu(JL) = 0

i.e., the spectrum of JL is purely imaginary.



Proof

λ and σ isolated eigenvalues of JL; spectral subspaces Eλ and Eσ

(λ + σ)〈Ku, v〉 = 0, ∀ u ∈ Eλ, v ∈ Eσ

� Eu unstable spectral subspace of JL

〈Ku, u〉 = 0, ∀ u ∈ Eu

If ker(K) ⊂ ker(JL): spectral decomposition

H = Fs ⊕ Fcu, σ(K
∣∣
Fs

) = σs(K), σ(K
∣∣
Fcu

) = σcu(K)

� spectral projector Ps

∣∣
Eu

: Eu → Fs is injective

dim(Eu) = nu(JL) ≤ dim(Fs) = ns(K)
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Application



KP-II equation

Kadomtsev-Petviashivili equation

(ut + 6uux + uxxx)x + uyy = 0

� model equation for water waves (small surface tension)

� two-dimensional extension of the KdV equation

ut + 6uux + uxxx = 0

Question: transverse stability of one-dimensional periodic

traveling waves (spectral, linear, nonlinear)

� the classical counting criterion does not allow to fully

understand transverse stability for periodic waves



1D periodic traveling waves

one-parameter family of one-dimensional periodic

traveling waves (up to symmetries)

u(x, t) = φc(x + ct)

� speed c > 1

� 2π-periodic, even profile φc satisfying the KdV equation

v′′(x) + cv(x) + 3v2(x) = 0

� known explicitly!



Linearized equation

linearized KP-II equation

(wt + wxxx + cwx + 6(φc(x)w)x)x + wyy = 0

� 2π-periodic coefficients in x

� Ansatz

w(x, y, t) = eλt+ipyW(x), λ ∈ C, p ∈ R

linearized equation for W(x)

λWx + Wxxxx + cWxx + 6(φc(x)W)xx − p2W = 0



Spectral stability problem

linearized equation for W(x)

λWx + Wxxxx + cWxx + 6(φc(x)W)xx − p2W = 0

the periodic wave φc is spectrally stable iff the linear

operator

Ac,p(λ) = λ∂x + ∂4
x + c∂2

x + 6∂2
x (φc(x) ·)− p2

is invertible for Reλ > 0.

� 2D bounded perturbations: space Cb(R) and p ∈ R.
� continuous spectrum . . .



Floquet/Bloch decomposition

Ac,p(λ) is invertible in Cb(R) iff the operators

Ac,p(λ, γ) = λ(∂x + iγ) + (∂x + iγ)4 + c(∂x + iγ)2 + 6(∂x + iγ)2(φc(x) ·)− p2

are invertible in L2
per(0, 2π), for any γ ∈ [0, 1).

� γ ∈ (0, 1) : study the spectrum of the operator

Bc,p(γ) = −(∂x + iγ)3 − c(∂x + iγ)− 6(∂x + iγ)(φc(x) ·) + p2(∂x + iγ)−1

� γ = 0 : restrict to functions with zero mean



Counting criterion

apply the counting criterion to

Bc,p(γ) = J (γ)Lc,p(γ)

� skew-adjoint operator J (γ) = (∂x + iγ)

� self-adjoint operator

Lc,p(γ) = −(∂x + iγ)2 − c− 6φc(x) + p2(∂x + iγ)−2

construct positive commuting operators Kc,p(γ)

� find commuting operators Mc,p(γ)

� show that suitable linear combination ofMc,p(γ) and

Lc,p(γ) is a positive operator



Commuting operators

natural candidate: use a higher-order conserved functional

� resulting operator satisfies the commutativity relation

� cannot obtain positive operators . . .

second option: use the operators from the KdV equation

� p = 0 corresponds to the KdV equation

� decompose:

Lc,p = LKdV + p2LKP, Mc,p =MKdV + p2MKP

� MKdV is obtained from a higher order conserved functional:

MKdV = ∂4
x + 10∂xφc(x)∂x − 10cφc(x)− c2

� computeMKP directly from the commutativity relation:

MKP =
5

3

(
1 + c∂−2

x

)



Commuting operators

natural candidate: use a higher-order conserved functional

� resulting operator satisfies the commutativity relation

� cannot obtain positive operators . . .

second option: use the operators from the KdV equation

� p = 0 corresponds to the KdV equation

� decompose:

Lc,p = LKdV + p2LKP, Mc,p =MKdV + p2MKP

� MKdV is obtained from a higher order conserved functional:

MKdV = ∂4
x + 10∂xφc(x)∂x − 10cφc(x)− c2

� computeMKP directly from the commutativity relation:

MKP =
5

3

(
1 + c∂−2

x

)



Main result

Transverse spectral stability of periodic waves (with

respect to bounded perturbations):

� there exist constants b such that the operators

Kc,p,b(γ) =Mc,p(γ)− bLc,p(γ) are positive1

� the commutativity relation holds

� the general counting criterion implies that the spectra of

Bc,p(γ) = J (γ)Lc,p(γ) are purely imaginary

1except for p = γ = 0 when the operator is nonnegative with 1D kernel
(spanned by the derivative of the wave)



Transverse linear stability

linearized problem

wt = Bcw

� Bc = JLc , J = ∂x, Lc = −∂2
x − c− 6φc(x)− ∂−2

x ∂2
y

� Bc acts in L̇2(N, p) (the space of locally square-integrable

functions on R2 which are 2πN-periodic and have zero mean in

x , and are 2π/p-periodic in y)

linear operator

Kc =Mc − bLc

� nonnegative operator with point spectrum and 1D kernel

(spanned by the derivative of the periodic wave)

� the operators JKc and JLc commute
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Transverse linear stability

Lyapunov functional w 7→ 〈Kcw,w〉

�
d

dt
〈Kcw(t),w(t)〉 = 0 (from commutativity)

� 〈Kcw,w〉 ≥ c‖w‖2, when 〈w, ∂xφc〉 = 0 (from positivity)

implies transverse linear stability of the periodic waves

(with respect to doubly periodic perturbations)



Transverse nonlinear stability

Open problem . . .

� the nonnegative linear operator Kc is not the Hessian operator

of some conserved higher-order energy functional of the KP-II

equation . . .

� find a conserved higher-order energy functional of the KP-II

equation for which the Hessian operator (at the periodic wave)

is nonnegative?
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