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6
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ut + 2uux + F−1(c(ξ)) ∗ ux = 0.

Exact dispersion relation for the linearized Euler equation:

m(ξ) =

√
tanh(ξ)

ξ
= 1− 1

6
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Gerald B. Whitham introduced in 1967 the following equation

ut + 2uux + F−1(m(ξ)) ∗ ux = 0.
2 / 16



Whitham equation

ut + 2uux + F−1(m(ξ)) ∗ ux = 0.

I Nonlocal, nonlinear equation.

I Valid approximation for modeling relatively short waves in shallow water.
[Moldabayev, Kalisch, Dutykh ’15]

I Existence of: periodic traveling waves [Ehrnström, Kalisch ’09] ,
[Ehrnström, Groves, Wahlén ’12] , wave breaking [Naukin, Shishmarev ’94,

Constantin, Escher ’98, Hur ’15] , cusped waves [Ehrnström, Wahlén ’16] .
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I Nonlocal, nonlinear equation.

I Valid approximation for modeling relatively short waves in shallow water.
[Moldabayev, Kalisch, Dutykh ’15]

I Existence of: periodic traveling waves [Ehrnström, Kalisch ’09] , solitary
waves [Ehrnström, Groves, Wahlén ’12] , wave breaking [Naukin, Shishmarev

’94, Constantin, Escher ’98, Hur ’15] , cusped waves [Ehrnström, Wahlén ’16] .

Symmetry and decay of solitary waves:

Solitary solutions to the Euler equations [Craig, Sternberg ’88] :
Any supercritical solitary solution satisfies:

I it decays exponentially fast at ±∞.

I it is symmetric and has exactly one crest.
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Main findings for the Whitham equation:

1. Any solitary wave solution decays exponentially.

2. Any solitary wave solution is symmetric and has exactly one crest.

3. Any symmetric, classical, unique solution is traveling.
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Exponential decay

φ (c − φ) = Hc ∗ φ2, Hc := F−1
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)
.

1. 0 < φ < c ⇒ (c − φ) is bounded!

2. The kernel Hc satisfies the following properties:
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Exponential decay

φ (c − φ) = Hc ∗ φ2, Hc := F−1
(

m

c −m

)
.

1. 0 < φ < c ⇒ (c − φ) is bounded!

2. The kernel Hc satisfies the following properties:

Theorem (Properties of Hc)

i) Hc is even, smooth away from zero, monotonically decreasing on (0,∞).

ii) Hc(x) = O(|x |−
1
2 ) as |x | → 0.

iii) x 7→ xeδ|·|Hc ∈ L2(R) for some δc ∈ (0, π2 ).

x

Hc (x)

∼ e−δ|x|

∼ |x|−
1
2
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Idea of Proof

φ (c − φ) = Hc ∗ φ2, Hc := F−1
(

m

c −m

)
.

i) Set h(x) = m(
√
x)

c−m(
√

x)
and f (x) = h(x2).

Lemma (Ehrnström, Wahlén ’16)

If h is completely monotone with limx→0 h(x) <∞ and limx→∞ h(x) = 0, then
F(f ) is a positive, integrable function, which is smooth and monotone outside
of the origin.

iii) Use a Paley–Wiener type theorem for g = ∂x
(

m
c−m

)
.

Paley–Wiener type theorem

If g ∈ L2(R) and there exists δc > 0 such that g is holomorphic in the complex
strip {z ∈ C | | Im z | < δc} and supy<δc ‖g(·+ iy)‖L2(R) <∞, then
eδc |·|F(g) ∈ L2(R).

⇒ x 7→ ixeδc |x|Hc(x) belongs to L2(R).
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Exponential decay

φ (c − φ) = Hc ∗ φ2, Hc := F−1
(

m

c −m

)
,

Corollary

The convolution kernel Hc satisfies:

I | · |αHc ∈ Lp(R) iff α > 1
2 −

1
p
. In particular, Hc ∈ Lp(R) for p ∈ [1, 2).

I eδ|·|Hc ∈ Lp(R) for p ∈ [1, 2) and δ < δc .

Following the approach of Bona and Li (1997), we prove the main result.1

Theorem (Exponential Decay)

Let δc be the exponential decay rate of Hc . Then any solitary solution to the
Whitham equation decays exponentially fast:

eη|·|φ ∈ L1(R) ∩ L∞(R) for some η ≥ δ.

1Bona, Li: eδ|·|H ∈ L2(R)
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2. Any solitary solution is symmetric and has exactly one crest.
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Symmetry of solitary waves

Theorem (Symmetry of solitary waves)

If φ is a solitary wave solution to the Whitham equation, then it is symmetric
and has exactly one crest.
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I Using decay result: There exists λ∗ such that Σλ = ∅ for all λ ≤ λ∗.

I Move the plane x = λ to the right as long as φ(x) ≥ φ(2λ− x) on [λ,∞).

I This process stops at some point λ0.

I Touching lemma: There can not be a touching point unless φ is symmetric.
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Symmetry of solitary waves

Hence, we have that

• φ is symmetric or

• φ(x) > φ(2λ0 − x) on (λ0,∞).

Assume that φ(x) > φ(2λ0 − x) on (λ0,∞).

xλ0

I We show that there exists ε > 0 such that Σλ = ∅ for all λ ∈ [λ0, λ0 + ε).

I Plane x = λ can be moved further to the right. Contradition!

I φ is symmetric and has exactly one crest.
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3. Any classical, symmetric, unique solution is traveling.
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Symmetric solutions

We say that a function u is symmetric in x , if

u(t, x) = u(t, 2λ(t)− x),

where λ ∈ C 1(R) the axis of symmetry.
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Theorem (Symmetric solutions are traveling)

Any classical, symmetric, unique solution of the Whitham equation is a
traveling wave solution, that is

u(t, x) = u0(x − ct).

I u0 = u(0, x): initial datum.

I c: speed of the propagating wave.
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Theorem (Symmetric solutions are traveling)

Any classical, symmetric, unique solution of the Whitham equation is a
traveling wave solution, that is

u(t, x) = u0(x − ct).

I u0 = u(0, x): initial datum.

I c: speed of the propagating wave.

The statement holds true for a large class of partial differential equations.
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Theorem (Local Principle, M. Ehrnström, H. Holden, X. Raynaud ’09)

If u is a classical, symmetric, unique solution of

ut + F (u) = 0,

where F (u) = F (u, ux , uxx , . . .) is odd in the sense that

F (u,−ux , uxx ,−uxxx . . .) = −F (u, ux , uxx , uxxx . . .),

then u is a traveling wave solution.

I “odd number of x–derivatives in each term” .

I On the Fourier side: each term is odd in ξ.

I F(F−1(m) ∗ ux) = m(ξ)F(ux) = m(ξ)iξû is odd in ξ (m even).
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I On the Fourier side: each term is odd in ξ.
I F(F−1(m) ∗ ux) = m(ξ)F(ux) = m(ξ)iξû is odd in ξ (m even).

Theorem (Nonlocal Principle, G.B., M. Ehrnström, A. Geyer, L. Pei)

If u is a symmetric, unique solution of P(∂x)ut + F (u) = 0, P is even and
G(û, ξ) = F(F (u)) satisfies

G(û,−ξ) = −G(û, ξ),

then u is a traveling wave solution.
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Summary

For the Whitham equation

ut + 2uux + F−1(m) ∗ ux = 0, m(ξ) =

√
tanh(ξ)

ξ
,

the following holds true:

1. u solitary wave solution ⇒ u decays exponentially.

2. u solitary wave solution ⇒ u is symmetric and has exactly one crest.

3. u classical, symmetric, unique solution ⇒ u is a traveling wave.
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the following holds true:

1. u solitary wave solution ⇒ u decays exponentially.

2. u solitary wave solution ⇒ u is symmetric and has exactly one crest.

3. u classical, symmetric, unique solution ⇒ u is a traveling wave.

Thank you very much!
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