On periodic traveling waves of the Camassa-Holm equation

Anna Geyer

joint work with Jordi Villadelprat

Theoretical and Computational Aspects of Nonlinear Surface Waves

BIRS
Oct 30 - Nov 42016

The Camassa-Holm equation

$$
\begin{equation*}
u_{t}-u_{t x x}+2 k u_{x}+3 u u_{x}=2 u_{x} u_{x x}+u u_{x x x} \tag{CH}
\end{equation*}
$$

- arises as a shallow water approximation of the Euler equations for inviscid incompressible homogeneous fluids.
- $u=u(t, x)$ represents the water's free surface and $k \in \mathbb{R}$ is a parameter related to the critical shallow water speed.
- The CH equation is completely integrable and
- models wave breaking.
R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett. 71 (1993)

Camassa-Holm equation

$$
\begin{equation*}
u_{t}-u_{t x x}+2 k u_{x}+3 u u_{x}=2 u_{x} u_{x x}+u u_{x x x} \tag{CH}
\end{equation*}
$$

Traveling Wave Solutions: $u(x, t)=\varphi(x-c t)$

$$
\begin{equation*}
\varphi^{\prime \prime}(\varphi-c)+\frac{\left(\varphi^{\prime}\right)^{2}}{2}+r+(c-2 k) \varphi-\frac{3}{2} \varphi^{2}=0 \tag{1}
\end{equation*}
$$

where c is the wave speed and $r \in \mathbb{R}$ is an integration constant.
J. Lenells, Traveling wave solutions of the Camassa-Holm equation, JDE '05.

Camassa-Holm equation

$$
\begin{equation*}
u_{t}-u_{t x x}+2 k u_{x}+3 u u_{x}=2 u_{x} u_{x x}+u u_{x x x} \tag{CH}
\end{equation*}
$$

Traveling Wave Solutions: $u(x, t)=\varphi(x-c t)$

$$
\begin{equation*}
\varphi^{\prime \prime}(\varphi-c)+\frac{\left(\varphi^{\prime}\right)^{2}}{2}+r+(c-2 k) \varphi-\frac{3}{2} \varphi^{2}=0 \tag{2}
\end{equation*}
$$

where c is the wave speed and $r \in \mathbb{R}$ is an integration constant. We will concentrate on smooth periodic TWS.

$\lambda \ldots$ wave length a ... wave height

Proposition (Waves \longleftrightarrow Orbits)

- φ is a smooth periodic solution of (2)

$$
\varphi^{\prime \prime}(\varphi-c)+\frac{\left(\varphi^{\prime}\right)^{2}}{2}+r+(c-2 k) \varphi-\frac{3}{2} \varphi^{2}=0
$$

if and only if $(w, v)=\left(\varphi-c, \varphi^{\prime}\right)$ is a periodic orbit of the planar system

$$
\left\{\begin{array}{l}
w^{\prime}=v \tag{3}\\
v^{\prime}=-\frac{A^{\prime}(w)+\frac{1}{2} v^{2}}{w}
\end{array}\right.
$$

where

$$
A(w):=\alpha w+\beta w^{2}-\frac{1}{2} w^{3}
$$

with $\alpha:=r-2 k c-\frac{1}{2} c^{2}$ and $\beta:=-(c+k)$.

Proposition (Waves \longleftrightarrow Orbits)

- φ is a smooth periodic solution of (2) if and only if
$(w, v)=\left(\varphi-c, \varphi^{\prime}\right)$ is a periodic orbit of the planar system

$$
\left\{\begin{array}{l}
w^{\prime}=v \tag{3}\\
v^{\prime}=-\frac{A^{\prime}(w)+\frac{1}{2} v^{2}}{w}
\end{array}\right.
$$

where

$$
A(w):=\alpha w+\beta w^{2}-\frac{1}{2} w^{3}
$$

- System (3) has the first integral

$$
H(w, v):=\frac{w v^{2}}{2}+A(w)
$$

Proposition (Waves \longleftrightarrow Orbits)

- φ is a smooth periodic solution of (2) if and only if
$(w, v)=\left(\varphi-c, \varphi^{\prime}\right)$ is a periodic orbit of the planar system

$$
\left\{\begin{array}{l}
w^{\prime}=v \tag{3}\\
v^{\prime}=-\frac{A^{\prime}(w)+\frac{1}{2} v^{2}}{w}
\end{array}\right.
$$

where

$$
A(w):=\alpha w+\beta w^{2}-\frac{1}{2} w^{3}
$$

- System (3) has the first integral

$$
H(w, v):=\frac{w v^{2}}{2}+A(w)
$$

- Every periodic orbit of (3) belongs to the period annulus \mathscr{P} of a center, which exists if and only if $-2 \beta^{2}<3 \alpha<0$.

Observations:

periodic solution φ wave lenght λ of φ wave height \boldsymbol{a} of $\varphi=$
$\left\{\varphi_{a}\right\}_{a \in\left(0, a_{M}\right)}$
$\longleftrightarrow \quad$ periodic orbit γ
$=\quad$ period \boldsymbol{T} of γ
$=\quad \ell(h)$, where ℓ is an analytic diffeo with $\ell\left(h_{0}\right)=0$.
$\longleftrightarrow \quad\left\{\gamma_{h}\right\}_{h \in\left(h_{0}, h_{1}\right)}$

Observations:

periodic solution $\varphi \quad \longleftrightarrow$ periodic orbit γ
wave lenght $\boldsymbol{\lambda}$ of $\varphi=$ period \boldsymbol{T} of γ
wave height \boldsymbol{a} of $\varphi=\ell(\boldsymbol{h})$, where ℓ is an analytic diffeo with $\ell\left(h_{0}\right)=0$.
$\left\{\varphi_{a}\right\}_{a \in\left(0, a_{M}\right)} \longleftrightarrow \quad\left\{\gamma_{h}\right\}_{h \in\left(h_{0}, h_{1}\right)}$
Consequence: $\lambda(a)$ is a well-defined function

$$
\begin{aligned}
& \lambda:\left(0, a_{M}\right) \longrightarrow \mathbb{R}^{+} \\
& \lambda(a)=\text { wave length of } \varphi
\end{aligned}
$$

Observations:

periodic solution $\varphi \quad \longleftrightarrow$ periodic orbit γ
wave lenght $\boldsymbol{\lambda}$ of $\varphi=$ period \boldsymbol{T} of γ
wave height \boldsymbol{a} of $\varphi=\ell(\boldsymbol{h})$, where ℓ is an analytic diffeo with $\ell\left(h_{0}\right)=0$.
$\left\{\varphi_{a}\right\}_{a \in\left(0, a_{M}\right)} \longleftrightarrow\left\{\gamma_{h}\right\}_{h \in\left(h_{0}, h_{1}\right)}$
Consequence: $\lambda(a)$ is a well-defined function

$$
\begin{array}{ll}
\lambda:\left(0, a_{M}\right) \longrightarrow \mathbb{R}^{+} & T:\left(h_{0}, h_{1}\right) \rightarrow \mathbb{R}^{+} \\
\lambda(a)=\text { wave length of } \varphi & T(h)=\text { period of } \gamma
\end{array}
$$

Deduce qualitative properties of the function λ from those of the period function \mathbf{T}.

Observations:

periodic solution $\varphi \quad \longleftrightarrow$ periodic orbit γ
wave lenght $\boldsymbol{\lambda}$ of $\varphi=$ period \boldsymbol{T} of γ
wave height \boldsymbol{a} of $\varphi=\ell(\boldsymbol{h})$, where ℓ is an analytic diffeo with $\ell\left(h_{0}\right)=0$.
$\left\{\varphi_{a}\right\}_{a \in\left(0, a_{M}\right)} \longleftrightarrow\left\{\gamma_{h}\right\}_{h \in\left(h_{0}, h_{1}\right)}$
Consequence: $\lambda(a)$ is a well-defined function

$$
\begin{array}{ll}
\lambda:\left(0, a_{M}\right) \longrightarrow \mathbb{R}^{+} & T:\left(h_{0}, h_{1}\right) \rightarrow \mathbb{R}^{+} \\
\lambda(a)=\text { wave length of } \varphi & T(h)=\text { period of } \gamma
\end{array}
$$

Deduce qualitative properties of the function λ from those of the period function \mathbf{T}.

Result: $\lambda(a)$ is either unimodal or monotonous.

Theorem (A.G. \& J. Villadelprat)
Given $c, k, c \neq-k$, there exist real numbers $r_{1}<r_{b_{1}}<r_{b_{2}}<r_{2}$ such that the Camassa-Holm equation

$$
\begin{equation*}
u_{t}+2 k u_{x}-u_{t x x}+3 u u_{x}=2 u_{x} u_{x x}+u u_{x x x} \tag{CH}
\end{equation*}
$$

has smooth periodic TWS $\varphi(x-c t)$ satisfying

$$
\varphi^{\prime \prime}(\varphi-c)+\frac{\left(\varphi^{\prime}\right)^{2}}{2}+r+(c-2 k) \varphi-\frac{3}{2} \varphi^{2}=0
$$

if and only if the integration constant $r \in\left(r_{1}, r_{2}\right)$.

- If $r \in\left(r_{1}, r_{b_{1}}\right]$, then $\lambda(a)$ is monotonous increasing.
- If $r \in\left(r_{b_{1}}, r_{b_{2}}\right)$, then $\lambda(a)$ has a unique critical point (maximum).
- If $r \in\left[r_{b_{2}}, r_{2}\right)$, then $\lambda(a)$ is monotonous decreasing.

Theorem (A.G. \& J. Villadelprat)

Given $c, k, c \neq-k$, there exist real numbers $r_{1}<r_{b_{1}}<r_{b_{2}}<r_{2}$ such that the Camassa-Holm equation

$$
\begin{equation*}
u_{t}+2 k u_{x}-u_{t x x}+3 u u_{x}=2 u_{x} u_{x x}+u u_{x x x} \tag{CH}
\end{equation*}
$$

has smooth periodic TWS $\varphi(x-c t)$ satisfying

$$
\varphi^{\prime \prime}(\varphi-c)+\frac{\left(\varphi^{\prime}\right)^{2}}{2}+r+(c-2 k) \varphi-\frac{3}{2} \varphi^{2}=0
$$

if and only if the integration constant $r \in\left(r_{1}, r_{2}\right)$.
The set of smooth periodic TWS form a continuous family $\left\{\varphi_{\mathrm{a}}\right\}_{\text {a }}$ parametrized by the wave height a.

- If $r \in\left(r_{1}, r_{b_{1}}\right]$, then $\lambda(a)$ is monotonous increasing.
- If $r \in\left(r_{b_{1}}, r_{b_{2}}\right)$, then $\lambda(a)$ has a unique critical point (maximum).
- If $r \in\left[r_{b_{2}}, r_{2}\right)$, then $\lambda(a)$ is monotonous decreasing.

Theorem (A.G. \& J. Villadelprat)

Given $c, k, c \neq-k$, there exist real numbers $r_{1}<r_{b_{1}}<r_{b_{2}}<r_{2}$ such that the Camassa-Holm equation

$$
\begin{equation*}
u_{t}+2 k u_{x}-u_{t x x}+3 u u_{x}=2 u_{x} u_{x x}+u u_{x x x} \tag{CH}
\end{equation*}
$$

has smooth periodic TWS $\varphi(x-c t)$ satisfying

$$
\varphi^{\prime \prime}(\varphi-c)+\frac{\left(\varphi^{\prime}\right)^{2}}{2}+r+(c-2 k) \varphi-\frac{3}{2} \varphi^{2}=0
$$

if and only if the integration constant $r \in\left(r_{1}, r_{2}\right)$.
The set of smooth periodic TWS form a continuous family $\left\{\varphi_{\mathrm{a}}\right\}_{\text {a }}$ parametrized by the wave height a.

The wave length $\lambda=\lambda(a)$ of φ_{a} satisfies the following:

- If $r \in\left(r_{1}, r_{b_{1}}\right]$, then $\lambda(a)$ is monotonous increasing.
- If $r \in\left(r_{b_{1}}, r_{b_{2}}\right)$, then $\lambda(a)$ has a unique critical point (maximum).
- If $r \in\left[r_{b_{2}}, r_{2}\right)$, then $\lambda(a)$ is monotonous decreasing.

Theorem (A.G. \& J. Villadelprat)

Given $c, k, c \neq-k$, there exist real numbers $r_{1}<r_{b_{1}}<r_{b_{2}}<r_{2}$ such that the Camassa-Holm equation has smooth periodic TWS $\varphi(x-c t)$ satisfying

$$
\varphi^{\prime \prime}(\varphi-c)+\frac{\left(\varphi^{\prime}\right)^{2}}{2}+r+(c-2 k) \varphi-\frac{3}{2} \varphi^{2}=0
$$

if and only if the integration constant $r \in\left(r_{1}, r_{2}\right)$.
The set of smooth periodic TWS form a continuous family $\left\{\varphi_{\mathrm{a}}\right\}_{\text {a }}$ parametrized by the wave height a.

The wave length $\lambda=\lambda(a)$ of φ_{a} satisfies the following:

- If $r \in\left(r_{1}, r_{b_{1}}\right]$, then $\lambda(a)$ is monotonous increasing.
- If $r \in\left(r_{b_{1}}, r_{b_{2}}\right)$, then $\lambda(a)$ has a unique critical point (maximum).
- If $r \in\left[r_{b_{2}}, r_{2}\right)$, then $\lambda(a)$ is monotonous decreasing.

The bifurcation values are $r_{1}=-\frac{2}{3}\left(k-\frac{1}{2} c\right)^{2}, r_{2}=c\left(\frac{1}{2} c+2 k\right)$, and
$r_{b_{1}}=k\left(c-\frac{1}{2} k\right), r_{b_{2}}=\frac{\sqrt{6}-3}{12}(3 k \sqrt{6}+2 c+8 k)(k \sqrt{6}-2 c-2 k)$

- For the Degasperis-Procesi equation

$$
u_{t}+2 k u_{x}+4 u u_{x}-u_{t x x}=3 u_{x} u_{x x}+u u_{x x x}
$$

the TWS satisfy an equation of the form

$$
\varphi^{\prime \prime}(\varphi-c)+\left(\varphi^{\prime}\right)^{2}+r+(c-2 k) \varphi-2 \varphi^{2}=0
$$

and the wave length is qualitatively the same as for CH .

The wave length $\lambda(a)$ is monotonous for periodic TWS of

- Korteweg-de Vries and BBM equation:

$$
u_{t}+u_{x}+\frac{3}{2} u u_{x}+\alpha u_{x x x}+\beta u_{t x x}=0
$$

with $\alpha, \beta \in \mathbb{R}$, whose TWS satisfy an equation of the form

$$
\varphi^{\prime \prime}+f(\varphi)=0
$$

where f is quadratic.
\rightsquigarrow use monotonicity criteria by [Chicone, '87] or [Schaaf, '85].

The wave length $\lambda(a)$ is monotonous for periodic TWS of

- Korteweg-de Vries and BBM equation:

$$
u_{t}+u_{x}+\frac{3}{2} u u_{x}+\alpha u_{x x x}+\beta u_{t x x}=0
$$

with $\alpha, \beta \in \mathbb{R}$, whose TWS satisfy an equation of the form

$$
\varphi^{\prime \prime}+f(\varphi)=0
$$

where f is quadratic.
\rightsquigarrow use monotonicity criteria by [Chicone, '87] or [Schaaf, '85].

- generalized reduced Ostrovsky:

$$
\left(u_{t}+u^{p} u_{x}\right)_{x}=u
$$

with $p \in \mathbb{N}$, whose TWS satisfy an equation of the form

$$
\varphi^{\prime \prime}\left(\varphi^{p}-c\right)+p \varphi^{(p-1)}\left(\varphi^{\prime}\right)^{2}-\varphi=0
$$

\rightsquigarrow classical monotonicity criteria do not apply.

Criteria to bound the number of critical periods for planar systems with first integrals of a certain type:

Criteria to bound the number of critical periods for planar systems with first integrals of a certain type:

- potential systems:

$$
H(x, y)=V(x)+\frac{1}{2} y^{2}
$$

[F. Mañosas, J. Villadelprat, JDE '09]

Criteria to bound the number of critical periods for planar systems with first integrals of a certain type:

- potential systems:

$$
H(x, y)=V(x)+\frac{1}{2} y^{2}
$$

[F. Mañosas, J. Villadelprat, JDE '09]

- systems with quadratic-like centers:

$$
H(x, y)=A(x)+B(x) y+C(x) y^{2}
$$

[A. Garijo, J. Villadelprat, JDE '14]

Consider a Hamiltonian differential system of the form

$$
\left\{\begin{array}{l}
x^{\prime}=y, \\
y^{\prime}=-V^{\prime}(x),
\end{array} \quad H(x, y)=\frac{y^{2}}{2}+V(x)\right.
$$

where $V(x)$ is a quadratic potential. For the period function

$$
T(h)=\int_{\gamma_{h}} \frac{d x}{y}=\sqrt{2} \int_{x_{l}}^{x_{r}} \frac{d x}{\sqrt{h-V(x)}}
$$

Consider a Hamiltonian differential system of the form

$$
\left\{\begin{array}{l}
x^{\prime}=y, \\
y^{\prime}=-V^{\prime}(x),
\end{array} \quad H(x, y)=\frac{y^{2}}{2}+V(x),\right.
$$

where $V(x)$ is a quadratic potential. For the period function

$$
T(h)=\int_{\gamma_{h}} \frac{d x}{y}=\sqrt{2} \int_{x_{l}}^{x_{r}} \frac{d x}{\sqrt{h-V(x)}},
$$

one can show that

$$
T^{\prime}(h)=\frac{1}{h} \int_{\gamma_{h}} \underbrace{\left(\frac{V}{V^{\prime}}\right)^{\prime}}_{:=m_{1}(x)} \frac{d x}{y}
$$

Consider a Hamiltonian differential system of the form

$$
\left\{\begin{array}{l}
x^{\prime}=y, \\
y^{\prime}=-V^{\prime}(x),
\end{array} \quad H(x, y)=\frac{y^{2}}{2}+V(x),\right.
$$

where $V(x)$ is a quadratic potential. For the period function

$$
T(h)=\int_{\gamma_{h}} \frac{d x}{y}=\sqrt{2} \int_{x_{l}}^{x_{r}} \frac{d x}{\sqrt{h-V(x)}},
$$

one can show that

$$
T^{\prime}(h)=\frac{1}{h} \int_{\gamma_{h}} \underbrace{\left(\frac{V}{V^{\prime}}\right)^{\prime}}_{:=m_{1}(x)} \frac{d x}{y}=\frac{1}{h^{k}} \int_{\gamma_{h}} m_{k}(x) y^{2 k-3} d x,
$$

where m_{k} are defined recursively using the Hamiltonian.

Consider a Hamiltonian differential system of the form

$$
\left\{\begin{array}{l}
x^{\prime}=y, \\
y^{\prime}=-V^{\prime}(x),
\end{array} \quad H(x, y)=\frac{y^{2}}{2}+V(x),\right.
$$

where $V(x)$ is a quadratic potential. For the period function

$$
T(h)=\int_{\gamma_{h}} \frac{d x}{y}=\sqrt{2} \int_{x_{1}}^{x_{r}} \frac{d x}{\sqrt{h-V(x)}},
$$

one can show that

$$
T^{\prime}(h)=\frac{1}{h} \int_{\gamma_{h}} \underbrace{\left(\frac{V}{V^{\prime}}\right)^{\prime}}_{:=m_{1}(x)} \frac{d x}{y}=\frac{1}{h^{k}} \int_{\gamma_{h}} m_{k}(x) y^{2 k-3} d x,
$$

where m_{k} are defined recursively using the Hamiltonian. Then,
" critical periods $=\operatorname{zeros}\left(T^{\prime}(h)\right) \leq \operatorname{zeros}\left(m_{k}\right)=: n$, if $n<k$."
\rightsquigarrow Chebyshev criterion for Abelian integrals [Grau, Mañosas, Villadelprat, '11]

Consider an analytic differential system satisfying
The system has a center at the origin, an analytic first integral of the form
(H)

$$
H(x, y)=A(x)+B(x) y+C(x) y^{2} \text { with } A(0)=0,
$$

and its integrating factor K depends only on x.

Theorem (Garijo \& Villadelprat, 2014)

Under hypotheses (\mathbf{H}) let $\mu_{0}=-1$ and define for $i \geqslant 1$

$$
\mu_{k}:=\left(\frac{1}{2}+\frac{1}{2 k-3}\right) \mu_{k-1}+\frac{\sqrt{|C|} V}{(2 k-3) K}\left(\frac{K \mu_{k-1}}{\sqrt{|C|} V^{\prime}}\right)^{\prime} \text { and } \ell_{k}:=\frac{k}{\sqrt{|C|} V^{\prime}} \mu_{k}
$$

If the number of zeros of $\mathscr{B}_{\sigma}\left(\ell_{k}\right)$ on $\left(0, x_{r}\right)$, counted with multiplicities, is $n \geqslant 0$ and it holds that $k>n$, then the number of critical periods of the center at the origin, counted with multiplicities, is at most n.
$\mathscr{B}_{\sigma}\left(\ell_{k}\right)$ denotes the σ-odd part of ℓ_{k} for an involution σ defined in terms of H.

The system

$$
\left\{\begin{array}{l}
w^{\prime}=v, \\
v^{\prime}=-\frac{A^{\prime}(w)+\frac{1}{2} v^{2}}{w}
\end{array}\right.
$$

has the first integral

$$
H(w, v):=A(w)+\frac{w}{2} v^{2}
$$

To apply the criterion of [GaVi14], our system has to satisfy the following hypotheses:

The system has a center at the origin, an analytic first integral of the form
(H)

$$
H(x, y)=A(x)+B(x) y+C(x) y^{2} \text { with } A(0)=0
$$

and its integrating factor K depends only on x.

Period Annuli

$$
\begin{cases}x^{\prime}=y, & A(x)=\frac{1}{2} x^{2}-x^{3} \tag{4}\\ y^{\prime}=-\frac{A^{\prime}(x)+y^{2}}{2(x+\vartheta)}, & \text { where } \\ \vartheta:=\frac{1}{6}\left(\frac{2}{\sqrt{4+\frac{6 \alpha}{\beta^{2}}}}-1\right)\end{cases}
$$

Period Annuli

$$
\begin{cases}x^{\prime}=y, & A(x)=\frac{1}{2} x^{2}-x^{3} \tag{4}\\ y^{\prime}=-\frac{A^{\prime}(x)+y^{2}}{2(x+\vartheta)}, & \text { where } \\ \vartheta:=\frac{1}{6}\left(\frac{2}{\sqrt{4+\frac{6 \alpha}{\beta^{2}}}}-1\right)\end{cases}
$$

Period Annuli

$$
\begin{cases}x^{\prime}=y, & A(x)=\frac{1}{2} x^{2}-x^{3} \tag{4}\\ y^{\prime}=-\frac{A^{\prime}(x)+y^{2}}{2(x+\vartheta)}, & \text { where } \\ \vartheta:=\frac{1}{6}\left(\frac{2}{\sqrt{4+\frac{6 \alpha}{\beta^{2}}}}-1\right)\end{cases}
$$

Proposition (1)

If $\vartheta \geqslant \frac{1}{6}$, then the period function of the center of system (4) is monotonous increasing.

- Apply the criterion in [GaVi14] to deduce monotonicity.

Proposition (2)

For $\vartheta<\frac{1}{6}$ the period function of the center of (4) is either monotonous decreasing for $\vartheta \in\left(0, \vartheta_{1}\right]$ or unimodal
$\vartheta \in\left(\vartheta_{1}, 1 / 6\right)$, where $\vartheta_{1}=-\frac{1}{10}+\frac{1}{15} \sqrt{6}$.

- Apply criterion in [GaVi14] to obtain an upper bound for the critical periods.
- Compute the first period constants.
- Determine the sign of $T^{\prime}(h)$ for $h \approx h_{m}$.

Proposition (2)

For $\vartheta<\frac{1}{6}$ the period function of the center of (4) is either monotonous decreasing for $\vartheta \in\left(0, \vartheta_{1}\right]$ or unimodal $\vartheta \in\left(\vartheta_{1}, 1 / 6\right)$, where $\vartheta_{1}=-\frac{1}{10}+\frac{1}{15} \sqrt{6}$.

To apply the criterion, we study the number of roots of $\mathscr{B}_{\sigma}\left(\ell_{i}\right)$.

Proposition (2)

For $\vartheta<\frac{1}{6}$ the period function of the center of (4) is either monotonous decreasing for $\vartheta \in\left(0, \vartheta_{1}\right]$ or unimodal $\vartheta \in\left(\vartheta_{1}, 1 / 6\right)$, where $\vartheta_{1}=-\frac{1}{10}+\frac{1}{15} \sqrt{6}$.

To apply the criterion, we study the number of roots of $\mathscr{B}_{\sigma}\left(\ell_{i}\right)$.

Intervals	$\left(0, \vartheta_{0}\right)$	$\left(\vartheta_{0}, \vartheta_{1}\right)$	$\left(\vartheta_{1}, 1 / 6\right)$
\# roots of $\mathscr{B}_{\sigma}\left(\ell_{3}\right)$	0	1	2

Proposition (2)

For $\vartheta<\frac{1}{6}$ the period function of the center of (4) is either monotonous decreasing for $\vartheta \in\left(0, \vartheta_{1}\right]$ or unimodal $\vartheta \in\left(\vartheta_{1}, 1 / 6\right)$, where $\vartheta_{1}=-\frac{1}{10}+\frac{1}{15} \sqrt{6}$.

To apply the criterion, we study the number of roots of $\mathscr{B}_{\sigma}\left(\ell_{i}\right)$.

Intervals	$\left(0, \vartheta_{0}\right)$	$\left(\vartheta_{0}, \vartheta_{1}\right)$	$\left(\vartheta_{1}, 1 / 6\right)$
$\#$ roots of $\mathscr{B}_{\sigma}\left(\ell_{3}\right)$	0	1	2
\Downarrow [GaVi14], THM A			
Period function $T(h)$	monot.	≤ 1 crit. per.	≤ 2 crit. per.

Proposition (2)

For $\vartheta<\frac{1}{6}$ the period function of the center of (4) is either monotonous decreasing for $\vartheta \in\left(0, \vartheta_{1}\right]$ or unimodal $\vartheta \in\left(\vartheta_{1}, 1 / 6\right)$, where $\vartheta_{1}=-\frac{1}{10}+\frac{1}{15} \sqrt{6}$.

To apply the criterion, we study the number of roots of $\mathscr{B}_{\sigma}\left(\ell_{i}\right)$.

Intervals	$\left(0, \vartheta_{0}\right)$	$\left(\vartheta_{0}, \vartheta_{1}\right)$	$\left(\vartheta_{1}, 1 / 6\right)$
$\#$ roots of $\mathscr{B}_{\sigma}\left(\ell_{3}\right)$	0	1	2
$\Downarrow[$ GaVi14], THM A			
Period function $T(h)$	monot.	≤ 1 crit. per.	≤ 2 crit. per.
$\Downarrow h \approx 0, h \approx h_{m}$			
Period function $T(h)$	monot. decreasing		

- $T^{\prime}(h) \lessgtr 0$ for $\vartheta \lessgtr \vartheta_{1}$ near $h=0$.
- $T^{\prime}(h) \longrightarrow-\infty$ as $h \rightarrow h_{m}$.

Sketch of the graph of the period function $T(h)$ of the center of (4):

Proposition (2)

Sketch of the graph of the period function $T(h)$ of the center of (4):

Sketch of the graph of the period function $T(h)$ of the center of (4):

$$
0<\vartheta \leq \vartheta_{1}
$$

$\vartheta_{1}<\vartheta<\frac{1}{6}$
$\vartheta \geq \frac{1}{6}$
Proposition (2)
Proposition (1)

$$
T_{0}=2 \pi \sqrt{2 \vartheta}, \quad T_{1}=2 \ln \left(\frac{\sqrt{(2 \vartheta+1)(1-6 \vartheta)}}{1+6 \vartheta-4 \sqrt{\vartheta(1+3 \vartheta)}}\right)>0
$$

Summary

$0<\vartheta \leq \vartheta_{1}$

Theorem

Given $c \neq-k$, there exist real numbers $r_{1}<r_{b_{1}}<r_{b_{2}}<r_{2}$ such that the Camassa-Holm equation has smooth periodic TWS satisfying

$$
\varphi^{\prime \prime}(\varphi-c)+\frac{\left(\varphi^{\prime}\right)^{2}}{2}+r+(c-2 k) \varphi-\frac{3}{2} \varphi^{2}=0
$$

if and only if $r \in\left(r_{1}, r_{2}\right)$. The set of smooth periodic
TWS form a continous family $\left\{\varphi_{a}\right\}_{a}$ parametrized by the wave height a.
The wave length $\lambda=\lambda(a)$ of φ_{a} satisfies the following:

- If $r \in\left(r_{1}, r_{b_{1}}\right]$, then $\lambda(a)$ is monotonous increasing.
- If $r \in\left(r_{b_{1}}, r_{b_{2}}\right)$, then $\lambda(a)$ has a unique critical point (maximum).
- If $r \in\left[r_{b_{2}}, r_{2}\right)$, then $\lambda(a)$ is monotonous decreasing.

