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The Camassa-Holm equation

Ut - utXX + 2kUX + 3 u UX == 2 Uxuxx + u uXXXa (CH)

» arises as a shallow water approximation of the Euler
equations for inviscid incompressible homogeneous fluids.

v

u = u(t, x) represents the water’s free surface and k € R is
a parameter related to the critical shallow water speed.

The CH equation is completely integrable and
models wave breaking.

v

v

R. Camassa and D. Holm, An integrable shallow water equation with peaked
solitons, Phys. Rev. Lett. 71 (1993)
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Camassa-Holm equation
Ut — Upxx + 2KUyx + 3 U Uy = 2 UxUxx + U Uxxx, (CH)
Traveling Wave Solutions: u(x, ) = ¢(x — ct)

w”(so—CH(¢;)2+f+(0—2k)w—2902—0 (1)

where c is the wave speed and r € R is an integration constant.

J. Lenells, Traveling wave solutions of the Camassa-Holm equation, JDE "05.
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Camassa-Holm equation
U[ - Utxx + 2kUX + 3 u UX — 2 Uxuxx + u uXXX; (CH)
Traveling Wave Solutions: u(x, ) = p(x — ct)

N2
¢"(p—c)+ (@2) +r+(c—2K)p - ng =0 (2)

where c is the wave speed and r € R is an integration constant.
We will concentrate on smooth periodic TWS.

w
a

A

A ... wavelength a ... wave height



Proposition (Waves <— Orbits)

» ¢ is a smooth periodic solution of (2)

(¢')?
2

3
O"(p—c)+ +I’+(C—2k)cp—§go2:0,
if and only if (w, v) = (¢ — ¢, ¢’) is a periodic orbit of the
planar system

w =v,
;o Aw) + V2 3)
Vie———

where .
A(w):= aw + w? — §W37

with a:= r — 2kc — 3¢? and B:= —(c + k).
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Proposition (Waves <— Orbits)

>  is a smooth periodic solution of (2) if and only if
(w,v) = (¢ — c,¢) is a periodic orbit of the planar system

Nl

w =v,
' A(w)+ 5 v2 3)
- _ - ,

where
3

A(w):= aw + fw? — 1§W :

» System (3) has the first integral
wv2

H(w,v):= - + A(w).
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Proposition (Waves <— Orbits)

>  is a smooth periodic solution of (2) if and only if
(w,v) = (¢ — c,¢) is a periodic orbit of the planar system

Nl

w =v,
. A(w)+ 1 v2 3)
- _ - ,

where

A(w):= aw + fw? — 1§W3.

» System (3) has the first integral

2
H(w, v) = 22— + Aw).
» Every periodic orbit of (3) belongs to the period annulus &7
of a center, which exists if and only if —232 < 3a < 0.
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Observations:
periodic solution ¢

wave lenght X of ¢
wave height a of ¢

{@a}ae(o,aM)

—

periodic orbit ~

period T of ~
£(h), where ¢ is an
analytic diffeo with ¢(hg) = 0.

{f)/h}he(ho,fh )
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Observations:
periodic solution ¢ «+—  periodic orbit ~

wave lenght Aof ¢ = period T of v
wave heightaof ¢ = £(h), where Zis an
analytic diffeo with ¢(hg) = 0.

{¥atac(0,au) s {n}he(bo,hy)

Consequence: \(a) is a well-defined function

A (0, aM) — RT
A(a) = wave length of ¢
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Observations:
periodic solution ¢ «+—  periodic orbit ~

wave lenght Aof ¢ = period T of v
wave heightaof ¢ = £(h), where Zis an
analytic diffeo with ¢(hg) = 0.

{¥atac(0,au) s {n}he(bo,hy)

Consequence: \(a) is a well-defined function

)\Z(O,a/\/[)—>1&+ Ti(ho,h1)—>]RJr
A(a) = wave length of ¢ T(h) = period of ~
N\ ! 7/
-@- Deduce qualitative properties of the function A
7 AN

from those of the period function T.

=
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Observations:
periodic solution ¢ «+—  periodic orbit ~

wave lenght Aof ¢ = period T of v
wave heightaof ¢ = £(h), where Zis an
analytic diffeo with ¢(hg) = 0.

{¥atac(0,au) s {n}he(bo,hy)

Consequence: \(a) is a well-defined function

)\Z(O,a/\/[)—>1&+ Ti(ho,h1)—>]RJr
A(a) = wave length of ¢ T(h) = period of ~
N\ ! 7/
-@- Deduce qualitative properties of the function A
7 AN

from those of the period function T.

=
=3

Result: \(a) is either unimodal or monotonous.



Theorem (A.G. & J. Villadelprat)

Given c, k, ¢ # —k, there exist real numbers ry < rp, < rp, < >
such that the Camassa-Holm equation

Ut + 2K Uy — Uiy + 3 U Uy = 2 Uxlxy + U Uyxy (CH)

has smooth periodic TWS o(x — ct) satisfying

AYA 3
(902) +I’+(Cf2k)<pf§<p2:0,

©"(p—c)+

if and only if the integration constant r € (ry, r2).
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The set of smooth periodic TWS form a continuous family
{va}a parametrized by the wave height a.



Theorem (A.G. & J. Villadelprat)

Given c, k, ¢ # —k, there exist real numbers ry < rp, < rp, < >
such that the Camassa-Holm equation

Ut + 2K Uy — Uiy + 3 U Uy = 2 Uxlxy + U Uyxy (CH)

has smooth periodic TWS o(x — ct) satisfying

AYA 3
(902) +I’+(Cf2k)<pf§<p2:0,

©"(p—c)+

if and only if the integration constant r € (ry, r2).
The set of smooth periodic TWS form a continuous family
{va}a parametrized by the wave height a.
The wave length \ = \(a) of p, satisfies the following:
» Ifr € (ry, rp,], then X(@) is monotonous increasing.

» Ifr e (ry,, 1), then X(a) has a unique critical point
(maximum).

» Ifr € [ry,, 12), then \(&) is monotonous decreasing.



Theorem (A.G. & J. Villadelprat)

Given c, k, ¢ # —k, there exist real numbers ri < rp, < rp, < >
such that the Camassa-Holm equation has smooth periodic
TWS o(x — ct) satisfying

(')
2

3
Pp—c)+ 5 +rt(c—2k)p -3¢ =0,

if and only if the integration constantr € (rq, r2).

The set of smooth periodic TWS form a continuous family

{¢a}a parametrized by the wave height a.

The wave length \ = \(a) of v, satisfies the following:
» Ifr € (ry, rp,], then X(@) is monotonous increasing.

> Ifr e (r,,b,), then X(a) has a unique critical point
(maximum).

» Ifr € [ry,, I2), then \(a) is monotonous decreasing.

The bifurcation values are ry = —%(k — 3¢)?, r. = c(}3 ¢ + 2k), and

o, = k(c — 1K), rs, = Y8-3(3kv/6 + 2¢ + 8k)(k\/6 — 2¢ — 2k)



» For the Degasperis-Procesi equation
Ut + 2Kuy + 4UUx — Uy = SUxUxx + Ulxxy,
the TWS satisfy an equation of the form

¢'(p—cC)+ (@) +r+(c—2k)p—2p° =0,

and the wave length is qualitatively the same as for CH.
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The wave length \(a) is monotonous for periodic TWS of

» Korteweg-de Vries and BBM equation:

3
Ur + Uy + EUUX + QU + BUpx = 0,

with «, 8 € R, whose TWS satisfy an equation of the form
¢" +1(p) =0,

where f is quadratic.

~» use monotonicity criteria by [Chicone, '87] or [Schaaf, '85].
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The wave length \(a) is monotonous for periodic TWS of

» Korteweg-de Vries and BBM equation:

3
Ur + Uy + EUUX + QU + BUpx = 0,

with «, 8 € R, whose TWS satisfy an equation of the form
¢" +1(p) =0,

where f is quadratic.
~» use monotonicity criteria by [Chicone, '87] or [Schaaf, '85].

» generalized reduced Ostrovsky:
(U + UPuy)x = U,
with p € N, whose TWS satisfy an equation of the form
¢"(¢P =)+ pePI(¢)? —p =0.

~ classical monotonicity criteria do not apply.
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Criteria to bound the number of critical periods for planar
systems with first integrals of a certain type:
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Criteria to bound the number of critical periods for planar
systems with first integrals of a certain type:

» potential systems:

Hx,y) = V(x) + 35

[F. Mafosas, J. Villadelprat, JDE '09]
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Criteria to bound the number of critical periods for planar
systems with first integrals of a certain type:

» potential systems:

Hx,y) = V(x) + 35

[F. Mafosas, J. Villadelprat, JDE '09]
» systems with quadratic-like centers:

H(x.y) = A(x) + B(x)y + C(x)y*

[A. Garijo, J. Villadelprat, JDE ’14]
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Consider a Hamiltonian differential system of the form

2

{ ;:z}:’vl(x)’ H(X,y):?—I-V(X),

<

where V/(x) is a quadratic potential. For the period function

T(h):/%‘ﬁ(:x@/;r#m,
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Consider a Hamiltonian differential system of the form

2

{ ;:z}:’vl(x)’ H(X,y):?—I-V(X),

<

where V/(x) is a quadratic potential. For the period function

T(h):/%‘ﬁ(:x@/;r#m,

one can show that

-3 (2)3

——
==my(x)
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Consider a Hamiltonian differential system of the form

2

{ v g, HOn = Ve,

<

where V/(x) is a quadratic potential. For the period function

T(h):/%‘ﬁ(:x@/;r#m,

one can show that

1 V' dx 1 _
= [ () 5= [ maayoax
Vi y Vh

==my(x)

where my are defined recursively using the Hamiltonian.
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Consider a Hamiltonian differential system of the form

x' = Y, _ y2
{ y’:—V’(x), H(X,y)—?—I-V(X),
where V/(x) is a quadratic potential. For the period function

T(h):/%‘f(:x@/;r#m,

one can show that

1 v\’ dx 1 _
= [ () 5= [ maayoax
Vi y Vh

==my(x)
where my are defined recursively using the Hamiltonian. Then,

“ critical periods = zeros(T'(h)) < zeros(my) =: n, if n < k.

~» Chebyshev criterion for Abelian integrals [Grau, Mafosas, Villadelprat, '11]
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Consider an analytic differential system satisfying

The system has a center at the origin,
an analytic first integral of the form

M Hix,y) = AX) + B(x)y + Cx)y2 with A(0) = 0,
and its integrating factor K depends only on x.
Theorem (Garijo & Villadelprat, 2014)

Under hypotheses (H) let o = —1 and define for i > 1

/
— [CIV [ Ku—1 _
Mk = ( + 2k— 3>'uk 1+ (2k—3)K < C|V1> and Ek ‘C‘V//J“k

If the number of zeros of %, (L) on (0, X;), counted with multiplicities,

is n > 0 and it holds that k > n, then the number of critical periods of
the center at the origin, counted with multiplicities, is at most n.

P (lx) denotes the o-odd part of ¢, for an involution o defined in terms of H.
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The system

has the first integral
H(w, v):= Aw) + 22,

To apply the criterion of [GaVi14], our system has to satisfy the
following hypotheses:

The system has a center at the origin,
an analytic first integral of the form

M Hix,y) = AX) + B(x)y + Cx)y2 with A(0) = 0,

and its integrating factor K depends only on x.
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Period Annuli

{ x'=y, A(x) = Fx2 = x®,
, AMX)+y? where . i( 2 4 (4)
Y = "2xt0) ' 6( “+ 58 )
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Period Annuli

|

x' =y,
y'=-

A(x)+y?
2(x+9) "’

where

/N

=
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Period Annuli

{ x'=y, A(x) = Fx2 = x®,
, AMX)+y? where . i( 2 4 (4)
y_fg(X_Hg) ’ 5( 4t )

: A 4
: 1\ ~x G
A

_19: T
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Proposition (1)

If9 > %, then the period function of the center of system (4) is
monotonous increasing.

» Apply the criterion in [GaVi14]

LW
to deduce monotonicity. :W

/N
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Proposition (2)

For¥ < % the period function of the center of (4) is either
monotonous decreasing for ¢ € (0,14] or unimodal
¥ € (91,1/6), where ¥y = —5 + {=V/6.

» Apply criterion in [GaVi14] to obtainan — " !
upper bound for the critical periods. \

» Compute the first period constants.

» Determine the sign of T'(h) for h = hy,. D
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Proposition (2)

For v < % the period function of the center of (4) is either
monotonous decreasing for ¥ € (0,v4] or unimodal
¥ € (91,1/6), where 91 = —5 + =1/6.

To apply the criterion, we study the number of roots of %, (E,-).
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Proposition (2)

For v < % the period function of the center of (4) is either
monotonous decreasing for v € (0,v4] or unimodal
9 € (¥1,1/8), where 9y = — 45 + {£V/6.

To apply the criterion, we study the number of roots of 4, (E,-).

Intervals (0,90) |  (Yo,01) | (91,1/6) |

# roots of B, ((3) 0 | 1 \ 2 \
1 [GaVit14], THM A
Period function T(h) || monot. | <1 crit. per. | < 2 crit. per. |
Il h~0,h~ hy
Period function T(h) | monot. decreasing | 1 crit. period |

» T'(h) < 0forv¥ < v near h=0.
» T'(h) — —oc as h — hp,.
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Sketch of the graph of the period function T(h) of the center of (4):

T ‘ T
To ‘ ‘ ‘
To
Ty T
~h ~h
0<¥ <% <9< g

Proposition (2)
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Sketch of the graph of the period function T(h) of the center of (4):

To

Ty

T .

0< <%

Ty

T .

191<’l9<%

T .

v >

(=211

Proposition (2)

Proposition (1)
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Sketch of the graph of the period function T(h) of the center of (4):

T ‘ T . T
To . ‘
To
T i 7
~h ~h h
0<d < <9< 0>
Proposition (2) Proposition (1)

) B V(@I +1)([ —69)
To=21v29, Ty=2In (1 +6194\/m> =
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Summary

T T Ve
wave lenght Aof o = period Tofy,, a J
wave heightaof o = £(hy) ~ " /
. , r
{®a}ac(0,am) < {vn}thetho.m) . - "
0<d<v; 9y <V <} v>1
Theorem

Given ¢ # —k, there exist real numbers ry < rp, < r,, < r> such that

the Camassa-Holm equation has smooth periodic TWS satisfying

(¥)?
2

ifand only ifr € (r1, ). The set of smooth periodic

TWS form a continous family {4} 2 parametrized by the wave height a.

The wave length A = \(a) of v, satisfies the following:

3
o"(p—c)+ +r+(C—2k)<p—§cp2:O,

> Ifr e (n,ry], then X(a) is monotonous increasing.
> Ifr e (ry,, I,), then X(a) has a unique critical point (maximum).

> Ifr € [, I2), then A(&) is monotonous decreasing.
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