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Isothermal Primitive Equations
Primitive equations are given by

∂tv + u · ∇v −∆v +∇Hπ = f in Ω× (0,T ),

∂zπ = 0 in Ω× (0,T ), (1)

div u = 0 in Ω× (0,T ),

v(0) = a.

Ω = G × (−h, 0), where G = (0, 1)2, h > 0

velocity u is written as u = (v ,w) with v = (v1, v2)

v and w denote the horizontal and vertical components of u,

π pressure, f external force

∇H = (∂x , ∂y )
T , ∆,∇,div three dimensional operators.

System is complemented by the set of boundary conditions

∂zv = 0, w = 0 on Γu × (0,T ),
v = 0, w = 0 on Γb × (0,T ),

u, π are periodic on Γl × (0,T ).
(2)

Γu := G × {0}, Γb := G × {−h}, Γl := ∂G × [−h, 0]



Some History of Primitive Equations

’92-’95 : full primitive equations introduced by Lions, Temam and
Wang, existence of a global weak solution for a ∈ L2.

Uniqueness question seems to be open

’95-’97 : Ziane, H2-regularity of linearized resolvent problem.

’01 : Guillén-González, Masmoudi, Rodiguez-Bellido : existence of a
unique, local, strong solution for a ∈ H1

’07, Cao and Titi : breakthrough result : existence of a unique,
global strong solution for arbitrary initial data a ∈ H1

proof based on a priori H1-bounds for the solution, obtained by
L∞(L6) energy estimates, slighty different bc.

’07, ’08 : Kukavica and Ziane : global strong well-posedness for
arbitrary H1-data, our b.c.

Cao, Titi ‘12, Cao, Li, Titi ’14 : global well-posedness results for
a ∈ H2 with only horizontal viscosity and diffusion or

with vapor : ’14 : Coti-Zelati, Huang, Kukavica, Teman, Ziane

’16 Li, Titi : survey, state of the art



Global well-posedness for data different from H1

Find spaces with less differentiability properties as H1(Ω), which
nevertheless guarantee global well-posedness of these equations.

’04 : Bresch, Kazhikhov and Lemoine : uniqueness of 2d weak
solutions for data a with ∂za ∈ L2.

’14 : Kukavica, Pei, Rusin and Ziane : uniqueness of weak solutions
for continuous data

’15 : Li, Titi : uniqueness of weak solutions for data in L∞, as long
as discontinuity is small

observation : all existing results concerning the well-posedness are
within L2-setting.

Aims of this talk :

develop an Lp-approach

show existence of a unique, global strong solution to primitive
equations for data a having less differentiability properties than H1.



Strategy of Lp-Approach

solution of the linearized equation is governed by an analytic
semigroup Tp on the space Xp

Xp is defined as the range of the hydrostatic Helmholtz projection
Pp : Lp(Ω)2 → L

p
σ(Ω)

2

This space corresponds to solenoidal space L
p
σ(Ω) for Navier-Stokes

equations

generator of Tp is −Ap called the hydrostatic Stokes operator.

rewrite primitive equations as
{

v ′(t) + Apv(t) = Ppf (t)− Pp(v · ∇Hv + w∂zv), t > 0,

v(0) = a.

consider integral equation

v(t) = e−tApa +

∫ t

0
e−(t−s)Ap

(

Ppf (s) + Fpv(s)
)

ds, t ≥ 0,

where Fpv := −Pp(v · ∇Hv + w∂zv)



Strategy of Lp-approach

show that v is unique, local, strong solution, i.e.
v ∈ C 1((0,T ∗];Xp) ∩ C ((0,T ∗];D(Ap)), p ∈ (1,∞)

Note D(Ap) →֒ W 2,p(Ω)2 →֒ H1(Ω)2 for p ≥ 6/5

Hence, one ontains existence of a unique, global, strong solution for
arbirtrary a ∈ [Xp,D(Ap)]1/p for 1 < p < ∞ provided

sup0≤t≤T ‖v(t)‖H2(Ω) is bounded by some constant
B = B(‖a‖H2(Ω),T ) for any T > 0.

proof of global H2-bound for v is based on L∞(L4)-estimates for ṽ

in addition : ‖v(t)‖H2(Ω) is decaying exponentially as t → ∞.



Main Results

Theorem 1 :
Let p ∈ (1,∞), a ∈ V1/p,p and f ≡ 0. Then there exists a unique, strong
global solution (v , π) to primitive equations within the regularity class

v ∈ C 1((0,∞); Lp(Ω)2)∩C ((0,∞);W 2,p(Ω)2), π ∈ C ((0,∞);W 1,p(G )∩Lp0(G )).

Moreover, the solution (v , π) decays exponentially, i.e. there exist
constants M, c , c̃ > 0 such that

‖∂tv(t)‖Lp(Ω) + ‖v(t)‖W 2,p(Ω) + ‖π‖W 1,p(G) ≤ Mt−c̃e−ct , t > 0.

Remarks :

Vθ,p := [Xp,D(Ap)]θ, 0 ≤ θ ≤ 1 and 1 < p < ∞, is complex
interpolation space between Xp and D(Ap) of order θ

note that V1/p,p →֒ H2/p,p(Ω)2 for all p ∈ (1,∞)

if p = 2, then V1/2,2 coincides with H1 subject to bc., i.e.

V1/2,2 = {ϕ ∈ H1
per

(Ω)2 : divH ϕ̄ = 0 in G , ϕ = 0 on Γb}.



Sketch of Proofs

Sketch of Proof of global well-posedness :

resolvent estimates in Lp-setting

hydrostatic Helmholtz projection and hydrostatic Stokes operator in
Lp

local well-posedness

energy estimates and global well-posedness in L2-setting

exponential decay and bootstrap argument



Reformulation of Problem

vertical component w of u is given by

w(x , y , z) =
∫ 0
z
divH v(x , y , ζ) dζ, (x , y) ∈ G , −h < z < 0,

let v̄ be the average of v in the vertical direction, i.e.,

v̄(x , y) := 1
h

∫ 0
−h

v(x , y , z) dz , (x , y) ∈ G

Hence our problem is equivalent to finding a function v : Ω → R
2

and a function π : G → R satisfying

∂tv + v · ∇Hv + w∂zv −∆v +∇Hπ = f in Ω× (0,T ),

w =
∫ 0
z
divH v dζ in Ω× (0,T ),

divH v̄ = 0 in G × (0,T ),
v(0) = a,

as well as the boundary conditions

∂zv = 0 on Γu × (0,T ),
v = 0 on Γb × (0,T ),

v and π are periodic on Γl × (0,T ).



Lp-Resolvent estimates

Let λ ∈ Σπ−ε ∪ {0}, ε ∈ (0, π/2), let p ∈ (1,∞) and f ∈ Lp(Ω)2. Then
the linear resolvent problem

λv −∆v +∇Hπ = f in Ω,
divH v̄ = 0 in G ,

subject to the boundary conditions

∂zv = 0 on Γu , v = 0 on Γb, v and π are periodic on Γl .

admit a unique solution (v , π) ∈ W
2,p
per (Ω)2 ×W

1,p
per (G ) ∩ L

p
0(G ) and

|λ| ‖v‖Lp(Ω)+‖v‖W 2,p(Ω)+‖π‖W 1,p(G) ≤ C‖f ‖Lp(Ω), λ ∈ Σπ−ε∪{0}, f ∈ Lp(Ω)2.

Strategy :

weak formulation and Babuska-Brezzi theory on mixed problems

H2-estimates via difference quotients

rewrite problem as 2d Stokes equations and 3d Laplace problem
with mixed boundary conditions

use Lp-estimate for these problems



The hydrostatic Stokes Operator
existence of classical Helmholtz projection (for NS) is equivalent to
unique solvability of weak Neumann problem

here : Neumann problem is replaced by
∆Hπ = divH f in G , periodic bc

above problem admits unique weak solution π ∈ W
1,p
per (G ) ∩ L

p
0(G )

satisfying ‖π‖W 1,p(G) ≤ C‖f ‖Lp(G)

For f = v̄ let π unique solution and set

Ppv := v −∇Hπ
Pp is called hydrostatic Helmholtz projection.

Set Xp := RanPp

analogous role as the solenoidal space L
p
σ(Ω) in theory of (NS).

define hydrostatic Stokes operator Ap on Xp as
{

Apv := −Pp∆v

D(Ap) := {v ∈ W 2,p
per

(Ω)2 : divH v̄ = 0 in G , ∂zv = 0 on Γu , v = 0 on Γb

hydrostatic Stokes operator −Ap generates a bounded analytic
C0-semigroup Tp on Xp



Local Existence
rewrite primitive equations as

v ′(t) + Apv(t) = Ppf (t) + Fpv(t), t > 0, v(0) = a,

where Fpv := −Pp(v · ∇Hv + w∂zv) and consider
v(t) = e−tApa +

∫ t

0 e−(t−s)Ap
(

Ppf (s) + Fpv(s)
)

ds, t ≥ 0
w is less regular than v with respect to (x , y), but w has good
regularity properties with respect to z .
major difficulty : nonlinear term w∂zv is stronger as in Navier-Stokes

◮ NS : (u · ∇)u ∼ order 1
◮ primitive : w∂z ∼ order 2
◮ Kato-type iteration works only for nonlinear terms of order < 2

anisotropic nature of nonlinear term is treated with function spaces

W r ,q
z W s,p

xy := W r ,q((−h, 0);W s,p(G )).

Set Vθ,p := [Xp,D(Ap)]θ
There exists a unique local mild solution v provided a ∈ V1/p,p

parabolic theory implies : v is strong solution
unfortunately : for a ∈ Vδ,p the dependency of life time T ∗ cannot be
controled merely by Vδ,p-norm of a
however : T ∗ = (C‖a‖Vδ+ε,p)

−1



H2- A Priori Bounds and Almost Global Existence

local result : existence of a unique, strong solution on (0,T ∗]

for t1 ∈ (0,T ∗) regard v(t1) ∈ D(Ap) as new initial data

if p = 2, then unique local strong solution in [0,T ∗] may be extended
to strong solution on [0,T ] for all T ∈ (T ∗,∞) due to

a priori bound : sup0≤t≤T ‖v(t)‖H2(Ω) ≤ B = B(T , ‖a‖H2(Ω)).

We show

‖Av‖L2(Ω) ≤ C (‖∂tv‖L2(Ω) + ‖v‖3H1(Ω) + ‖v‖H1(Ω)‖vz‖
3
L3(Ω)), t ≥ 0,

as well as the estimates

‖v(t)‖H1(Ω) ≤ B2(t, ‖a‖H1(Ω)) for t ≥ 0 and some function B2.

‖vz(t)‖L3(Ω) ≤ B3(t, ‖a‖H2(Ω)) for t ≥ 0 and some function B3.

‖∂tv(t)‖L2(Ω) ≤ B4(t, ‖a‖H2(Ω)) for t ≥ 0 and some function B4.

choose TB > 0, depending only on B , and extend v to a strong
solution on [0,T ∗ + TB ].

If T ∗ + TB < T , then ‖v(T ∗ + TB)‖H2(Ω) ≤ B , so we extend v to
[0,T ∗ + 2TB ]

Repeating this argument yields a unique, strong solution on [0,T ].



Global existence for 1 < p < ∞ and Exponential Decay

let v ∈ C 1((0,T ∗];Xp) ∩ C ((0,T ∗];D(Ap)) be the local solution for
a ∈ V1/p,p

for fixed t0 ∈ (0,T ∗] regard v(t0) ∈ V1/2,2 as new initial value

above steps imply global existence of v within the L2-framework

use spectral gap of A2 to establish exponential decay of v for p = 2

extend to the case p ≤ 3 by a bootstrap argument, more precisely

consider v as the solution of the linear primitive equations with force
f := −v · ∇Hv − w∂zv , i.e.,

v(t) = e−tApa +

∫ t

0
e−(t−s)ApPpf (s) ds, t > 0.

Since ‖f ‖L3(Ω) ≤ C‖v‖2
H2(Ω)

is exponentially decaying as t → ∞ we
obtain the claim for p ≤ 3

Repeat argument, taking p = 3 for granted, and combine with
embeddings yields the main assertion



Characterization of Initial Data

Let θ ∈ [0, 1] and 1 < p < ∞. Then

Vθ,p = D(Aθ) =











{v ∈ H
2θ,p
per (Ω)2 ∩ L

p
σ(Ω) : ∂zv

∣

∣

ΓN
= 0, v

∣

∣

ΓD
= 0}, 1/2 + 1/2p < θ ≤ 1,

{v ∈ H
2θ,p
per (Ω)2 ∩ L

p
σ(Ω) : v

∣

∣

ΓD
= 0}, 1/2p < θ < 1/2 + 1/2p,

{v ∈ H
2θ,p
per (Ω)2 ∩ L

p
σ(Ω)}, θ < 1/2p.



The case p = ∞

Aim : extend above result within Lp-setting for 1 < p < ∞ to p = ∞.

Strategy :

show that for a ∈ L∞-type space like L∞σ (Ω) or BUCσ(Ω), there exists
a unique, local mild solution v with v(t1) ∈ Vθ,p for some (θ, p)

apply previous Lp-result

Step I : extend linear theory to L∞-setting

Step II : develop iteration scheme



Linear Theory : The Hydrostatic Stokes Operator via

Perturbation

resolvent equation : solve for pressure π : take average, apply divH
then ∇Hπ = ∇H∆

−1
H divH∂zv

∣

∣

z=−1

key observation : regard this as Kato-perturbation of ∆ of order
1 + 1/p

A generates analytic semigroup S on L
p
σ(Ω) and L∞σ (Ω)

A behaves like usual Stokes operator ; e.g. A admits
◮ maximal Lp − Lq-regularity
◮ Lp − Lq smoothing

Consequences : Linear estimates for p = ∞
Let S be hydrostatic Stokes semigroup and P hydrostatic Helmholtz
projection. Then

‖∇S(t)Pf ‖∞ ≤ Ct−1/2‖f ‖∞, t > 0

‖∇S(t)P∇f ‖∞ ≤ Ct−1‖f ‖∞, t > 0

‖S(t)P∇f ‖∞ ≤ Ct−1/2‖f ‖∞, t > 0

‖∇S(t)Pf ‖∞ ≤ C‖Pf ‖∞, t > 0



Reference Solution and Iteration Scheme
For a ∈ BUCσ(Ω) = C∞

σ (Ω)
‖·‖∞

choose reference data
aref ∈ C∞

σ (Ω) such that ‖V0‖∞ is small, where V0 := a − aref
construct local reference solution vref with vref (0) = aref as above

define approximating sequence

Vm+1(t) := S(t)V0−

∫ t

0
S(t−s)P∇·(Um⊗Vm)ds−

∫ t

0
S(t−s)P(Um·vref+uref ·∇Vm)ds

control Km(t) := sup0<s<t s
1/2‖∇Vm(s)‖∞

control Hm(t) := sup0<s<t ‖Vm(s)‖∞
setting Gm(t) := max{Km(t),Hm(t)} we have

Gm+1(t) ≤ C1‖V0‖∞ + C2Gm(t)
2 + C3Gm(t)

if am+1 ≤ a0 + c1a
2
m + c2am and c2 < 1 and 4c1a0 < (1− c2)

2, then
(am) is bounded

Hence Gm(t) ≤ C‖V0‖, i.e. (Gm) is bounded sequence

Moreover, (Vm) is Cauchy sequence in
S := {V ∈ C ([0,T ];BUCσ(Ω) : ‖∇V (t)‖∞ = o(t−1/2)}

v := vref + limm→∞ Vm is unique, local solution

parabolicity : v(t1) ∈ {u ∈ W 1,∞(Ω) : u|z=−1 = 0, divu = 0}⊂ V1/2,2



Global well-posedness for Bounded Data

Theorem 2 :
Let a ∈ BUCσ(Ω) with a = 0 on Γb = 0. Then there exists a unique,
global, strong solution to the 3D-primitive equations.



Periodic and Stationary Solutions for Large Forces

Theorem 3 (jointly with P. Galdi) :
Primitive equations admit a strong, periodic solution for non small
periodic f ∈ L2(J, L2)

Corollary (jointly with P. Galdi) :
Primitive equations admit a stationary solution for non small periodic
f ∈ L2(J, L2)

Remark :
Note that there is no smallness assumption on f as e.g. in Hsia, Shiue ’13.



Periodic Solutions for large forces

v is called a weak T -periodic solution provided

v ∈ C (J; L2(Ω)) ∩ L2(J;H1(Ω)) is a weak solution

v satisfies strong energy inequality

‖v(t)‖22 + 2

∫ t

s

‖∇v(τ)‖22dτ ≤ ‖v(s)‖22 + 2

∫ t

s

(f (τ), v(τ))dτ

v(t + T ) = v(T ) for all t ≥ 0

A weak T -periodic solution v is called strong if in addition
v ∈ C (J;H1(Ω)) ∩ L2(J;H2(Ω))

Proposition : Let f ∈ L2(J; L2(Ω)) be T -periodic. Then there exists at
least one weak T -periodic solution v

Proof : Galerkin procedure and Brouwer’s fixed point theorem



Strong Periodic Solutions via Weak-Strong Uniqueness

Let f ∈ L2(J; L2(Ω)) be T -periodic. Then there exists unique global
strong solution u for (arbitrary) a ∈ H1(Ω)

weak-strong uniqueness theorem : u = v

Idea of Proof : weak theory : there is t0 > 0 with v(t0) ∈ H1

take v(t0) as initial data for strong solution u

take u as test function

for w = v − u one has

‖w(t)‖22+

∫ t

t0

‖∇w(s)‖22ds ≤ C

∫ t

t0

[‖∇Hu(s)‖
4
2 + ‖∇Hu(s)‖

2
2‖D

2u(s)‖22]‖w(s)‖22ds

blue term in L1(t0, t) due to regularity of strong solutions u

Gronwall : w = 0


