Global Strong Well-Posedness of the 3D-Primitive Equations for Non Smooth Initial Data

Matthias Hieber
TU Darmstadt, Germany

Banff

June 9, 2016
joint work with Y. Giga, A. Hussein, T. Kashiwabara

Isothermal Primitive Equations

Primitive equations are given by

$$
\begin{align*}
& \partial_{t} v+u \cdot \nabla v-\Delta v+\nabla_{H} \pi=f \\
& \text { in } \Omega \times(0, T), \tag{1}\\
& \partial_{z} \pi=0 \quad \text { in } \Omega \times(0, T), \\
& \operatorname{div} u=0 \quad \text { in } \Omega \times(0, T), \\
& v(0)=a .
\end{align*}
$$

- $\Omega=G \times(-h, 0)$, where $G=(0,1)^{2}, h>0$
- velocity u is written as $u=(v, w)$ with $v=\left(v_{1}, v_{2}\right)$
- v and w denote the horizontal and vertical components of u,
- π pressure, f external force
- $\nabla_{H}=\left(\partial_{x}, \partial_{y}\right)^{T}, \Delta, \nabla$, div three dimensional operators.

System is complemented by the set of boundary conditions

$$
\begin{array}{rlrl}
\partial_{z} v & =0, \quad w=0 & & \text { on } \Gamma_{u} \times(0, T), \\
v & =0, \quad w=0 & & \text { on } \Gamma_{b} \times(0, T), \tag{2}\\
& u, \pi \text { are periodic } & \text { on } \Gamma_{I} \times(0, T) .
\end{array}
$$

- $\Gamma_{u}:=G \times\{0\}, \Gamma_{b}:=G \times\{-h\}, \Gamma_{l}:=\partial G \times[-h, 0]$

Some History of Primitive Equations

- '92-'95 : full primitive equations introduced by Lions, Temam and Wang, existence of a global weak solution for $a \in L^{2}$.
- Uniqueness question seems to be open
- '95-'97: Ziane, H^{2}-regularity of linearized resolvent problem.
- '01 : Guillén-González, Masmoudi, Rodiguez-Bellido : existence of a unique, local, strong solution for $a \in H^{1}$
- '07, Cao and Titi : breakthrough result : existence of a unique, global strong solution for arbitrary initial data $a \in H^{1}$
- proof based on a priori H^{1}-bounds for the solution, obtained by $L^{\infty}\left(L^{6}\right)$ energy estimates, slighty different bc.
- '07, '08 : Kukavica and Ziane : global strong well-posedness for arbitrary H^{1}-data, our b.c.
- Cao, Titi '12, Cao, Li, Titi '14 : global well-posedness results for $a \in H^{2}$ with only horizontal viscosity and diffusion or
- with vapor : '14 : Coti-Zelati, Huang, Kukavica, Teman, Ziane
- '16 Li, Titi : survey, state of the art

Global well-posedness for data different from H^{1}

Find spaces with less differentiability properties as $H^{1}(\Omega)$, which nevertheless guarantee global well-posedness of these equations.

- '04 : Bresch, Kazhikhov and Lemoine: uniqueness of 2d weak solutions for data a with $\partial_{z} a \in L^{2}$.
- '14: Kukavica, Pei, Rusin and Ziane : uniqueness of weak solutions for continuous data
- '15: Li, Titi : uniqueness of weak solutions for data in L^{∞}, as long as discontinuity is small
- observation : all existing results concerning the well-posedness are within L^{2}-setting.

Aims of this talk:

- develop an L^{p}-approach
- show existence of a unique, global strong solution to primitive equations for data a having less differentiability properties than H^{1}.

Strategy of L^{p}-Approach

- solution of the linearized equation is governed by an analytic semigroup T_{p} on the space X_{p}
- X_{p} is defined as the range of the hydrostatic Helmholtz projection $P_{p}: L^{p}(\Omega)^{2} \rightarrow L_{\bar{\sigma}}^{p}(\Omega)^{2}$
- This space corresponds to solenoidal space $L_{\bar{\sigma}}^{p}(\Omega)$ for Navier-Stokes equations
- generator of T_{p} is $-A_{p}$ called the hydrostatic Stokes operator.
- rewrite primitive equations as

$$
\left\{\begin{aligned}
v^{\prime}(t)+A_{p} v(t) & =P_{p} f(t)-P_{p}\left(v \cdot \nabla_{H} v+w \partial_{z} v\right), \quad t>0, \\
v(0) & =a .
\end{aligned}\right.
$$

- consider integral equation

$$
v(t)=e^{-t A_{p}} a+\int_{0}^{t} e^{-(t-s) A_{\rho}}\left(P_{p} f(s)+F_{p} v(s)\right) d s, \quad t \geq 0
$$

where $F_{p} v:=-P_{p}\left(v \cdot \nabla_{H} v+w \partial_{z} v\right)$

Strategy of L^{p}-approach

- show that v is unique, local, strong solution, i.e.

$$
v \in C^{1}\left(\left(0, T^{*}\right] ; X_{p}\right) \cap C\left(\left(0, T^{*}\right] ; D\left(A_{p}\right)\right), p \in(1, \infty)
$$

- Note $D\left(A_{p}\right) \hookrightarrow W^{2, p}(\Omega)^{2} \hookrightarrow H^{1}(\Omega)^{2}$ for $p \geq 6 / 5$
- Hence, one ontains existence of a unique, global, strong solution for arbirtrary $a \in\left[X_{p}, D\left(A_{p}\right)\right]_{1 / p}$ for $1<p<\infty$ provided
- $\sup _{0 \leq t \leq T}\|v(t)\|_{H^{2}(\Omega)}$ is bounded by some constant $B=B\left(\|a\|_{H^{2}(\Omega)}, T\right)$ for any $T>0$.
- proof of global H^{2}-bound for v is based on $L^{\infty}\left(L^{4}\right)$-estimates for \tilde{v}
- in addition : $\|v(t)\|_{H^{2}(\Omega)}$ is decaying exponentially as $t \rightarrow \infty$.

Main Results

Theorem 1:
Let $p \in(1, \infty), \quad a \in V_{1 / p, p}$ and $f \equiv 0$. Then there exists a unique, strong global solution (v, π) to primitive equations within the regularity class
$v \in C^{1}\left((0, \infty) ; L^{p}(\Omega)^{2}\right) \cap C\left((0, \infty) ; W^{2, p}(\Omega)^{2}\right), \pi \in C\left((0, \infty) ; W^{1, p}(G) \cap L_{0}^{p}(G)\right)$.
Moreover, the solution (v, π) decays exponentially, i.e. there exist constants $M, c, \tilde{c}>0$ such that

$$
\left\|\partial_{t} v(t)\right\|_{L^{p}(\Omega)}+\|v(t)\|_{W^{2, p}(\Omega)}+\|\pi\|_{W^{1, p}(G)} \leq M t^{-\tilde{c}} e^{-c t}, \quad t>0
$$

Remarks:

- $V_{\theta, p}:=\left[X_{p}, D\left(A_{p}\right)\right]_{\theta}, 0 \leq \theta \leq 1$ and $1<p<\infty$, is complex interpolation space between X_{p} and $D\left(A_{p}\right)$ of order θ
- note that $V_{1 / p, p} \hookrightarrow H^{2 / p, p}(\Omega)^{2}$ for all $p \in(1, \infty)$
- if $p=2$, then $V_{1 / 2,2}$ coincides with H^{1} subject to bc., i.e.

$$
V_{1 / 2,2}=\left\{\varphi \in H_{\text {per }}^{1}(\Omega)^{2}: \operatorname{div}_{H} \bar{\varphi}=0 \text { in } G, \quad \varphi=0 \text { on } \Gamma_{b}\right\} .
$$

Sketch of Proofs

Sketch of Proof of global well-posedness :

- resolvent estimates in L^{p}-setting
- hydrostatic Helmholtz projection and hydrostatic Stokes operator in L^{p}
- local well-posedness
- energy estimates and global well-posedness in L^{2}-setting
- exponential decay and bootstrap argument

Reformulation of Problem

- vertical component w of u is given by

$$
w(x, y, z)=\int_{z}^{0} \operatorname{div}_{H} v(x, y, \zeta) d \zeta, \quad(x, y) \in G,-h<z<0,
$$

- let \bar{v} be the average of v in the vertical direction, i.e.,

$$
\bar{v}(x, y):=\frac{1}{h} \int_{-h}^{0} v(x, y, z) d z, \quad(x, y) \in G
$$

- Hence our problem is equivalent to finding a function $v: \Omega \rightarrow \mathbb{R}^{2}$ and a function $\pi: G \rightarrow \mathbb{R}$ satisfying

$$
\begin{aligned}
\partial_{t} v+v \cdot \nabla_{H} v+w \partial_{z} v-\Delta v+\nabla_{H} \pi & =f & & \text { in } \Omega \times(0, T), \\
w & =\int_{z}^{0} \operatorname{div}_{H} v d \zeta & & \text { in } \Omega \times(0, T), \\
\operatorname{div}_{H} \bar{v} & =0 & & \text { in } G \times(0, T), \\
v(0) & =a, & &
\end{aligned}
$$

as well as the boundary conditions

$$
\begin{aligned}
\partial_{z} v & =0 & & \text { on } \Gamma_{u} \times(0, T), \\
v & =0 & & \text { on } \Gamma_{b} \times(0, T), \\
& v \text { and } \pi \text { are periodic } & & \text { on } \Gamma_{i} \times(0, T) .
\end{aligned}
$$

L^{p}-Resolvent estimates

Let $\lambda \in \Sigma_{\pi-\varepsilon} \cup\{0\}, \varepsilon \in(0, \pi / 2)$, let $p \in(1, \infty)$ and $f \in L^{p}(\Omega)^{2}$. Then the linear resolvent problem

$$
\begin{aligned}
& \lambda v-\Delta v+\nabla_{H} \pi=f \\
& \text { in } \Omega, \\
& \operatorname{div}_{H} \bar{v}=0
\end{aligned} \quad \text { in } G,
$$

subject to the boundary conditions

$$
\partial_{z} v=0 \text { on } \Gamma_{u}, \quad v=0 \text { on } \Gamma_{b}, \quad v \text { and } \pi \text { are periodic on } \Gamma_{/} .
$$

admit a unique solution $(v, \pi) \in W_{\text {per }}^{2, p}(\Omega)^{2} \times W_{\text {per }}^{1, p}(G) \cap L_{0}^{p}(G)$ and
$|\lambda|\|v\|_{L^{p}(\Omega)}+\|v\|_{W^{2, p}(\Omega)}+\|\pi\|_{W^{1, p}(G)} \leq C\|f\|_{L^{p}(\Omega)}, \quad \lambda \in \Sigma_{\pi-\varepsilon} \cup\{0\}, f \in L^{p}(\Omega)^{2}$.

Strategy:

- weak formulation and Babuska-Brezzi theory on mixed problems
- H^{2}-estimates via difference quotients
- rewrite problem as 2d Stokes equations and 3d Laplace problem with mixed boundary conditions
- use L^{p}-estimate for these problems

The hydrostatic Stokes Operator

- existence of classical Helmholtz projection (for NS) is equivalent to unique solvability of weak Neumann problem
- here : Neumann problem is replaced by

$$
\Delta_{H} \pi=\operatorname{div}_{H} f \text { in } G, \text { periodic bc }
$$

- above problem admits unique weak solution $\pi \in W_{\text {per }}^{1, p}(G) \cap L_{0}^{p}(G)$ satisfying $\|\pi\|_{W^{1, p}(G)} \leq C\|f\|_{L^{p}(G)}$
- For $f=\bar{v}$ let π unique solution and set

$$
P_{p} v:=v-\nabla_{H} \pi
$$

- P_{p} is called hydrostatic Helmholtz projection.
- Set $X_{p}:=\operatorname{Ran} P_{p}$
- analogous role as the solenoidal space $L_{\sigma}^{p}(\Omega)$ in theory of (NS).
- define hydrostatic Stokes operator A_{p} on X_{p} as

$$
\left\{\begin{aligned}
A_{p} v & :=-P_{p} \Delta v \\
D\left(A_{p}\right) & :=\left\{v \in W_{\text {per }}^{2, p}(\Omega)^{2}: \operatorname{div}_{H} \bar{v}=0 \text { in } G, \partial_{z} v=0 \text { on } \Gamma_{L}, v=0 \text { on } \Gamma_{b}\right.
\end{aligned}\right.
$$

- hydrostatic Stokes operator $-A_{p}$ generates a bounded analytic C_{0}-semigroup T_{p} on X_{p}

Local Existence

- rewrite primitive equations as

$$
v^{\prime}(t)+A_{p} v(t)=P_{p} f(t)+F_{p} v(t), t>0, \quad v(0)=a
$$

where $F_{p} v:=-P_{p}\left(v \cdot \nabla_{H} v+w \partial_{z} v\right)$ and consider

- $v(t)=e^{-t A_{p}} a+\int_{0}^{t} e^{-(t-s) A_{p}}\left(P_{p} f(s)+F_{p} v(s)\right) d s, \quad t \geq 0$
- w is less regular than v with respect to (x, y), but w has good regularity properties with respect to z.
- major difficulty : nonlinear term $w \partial_{z} v$ is stronger as in Navier-Stokes
- NS: $(u \cdot \nabla) u \sim$ order 1
- primitive : w $\partial_{z} \sim$ order 2
- Kato-type iteration works only for nonlinear terms of order <2
- anisotropic nature of nonlinear term is treated with function spaces

$$
W_{z}^{r, q} W_{x y}^{s, p}:=W^{r, q}\left((-h, 0) ; W^{s, p}(G)\right)
$$

- Set $V_{\theta, p}:=\left[X_{p}, D\left(A_{p}\right)\right]_{\theta}$
- There exists a unique local mild solution v provided $a \in V_{1 / p, p}$
- parabolic theory implies : v is strong solution
- unfortunately : for $a \in V_{\delta, p}$ the dependency of life time T^{*} cannot be controled merely by $V_{\delta, p}$-norm of a
- however: $T^{*}=\left(C\|a\| V_{\delta+\varepsilon, p}\right)^{-1}$

H^{2} - A Priori Bounds and Almost Global Existence

- local result : existence of a unique, strong solution on ($0, T^{*}$]
- for $t_{1} \in\left(0, T^{*}\right)$ regard $v\left(t_{1}\right) \in D\left(A_{p}\right)$ as new initial data
- if $p=2$, then unique local strong solution in $\left[0, T^{*}\right]$ may be extended to strong solution on $[0, T]$ for all $T \in\left(T^{*}, \infty\right)$ due to
- a priori bound : $\sup _{0 \leq t \leq T}\|v(t)\|_{H^{2}(\Omega)} \leq B=B\left(T,\|a\|_{H^{2}(\Omega)}\right)$.
- We show

$$
\|A v\|_{L^{2}(\Omega)} \leq C\left(\left\|\partial_{t} v\right\|_{L^{2}(\Omega)}+\|v\|_{H^{1}(\Omega)}^{3}+\|v\|_{H^{1}(\Omega)}\left\|v_{z}\right\|_{L^{3}(\Omega)}^{3}\right), \quad t \geq 0,
$$

as well as the estimates

- $\|v(t)\|_{H^{1}(\Omega)} \leq B_{2}\left(t,\|a\|_{H^{1}(\Omega)}\right)$ for $t \geq 0$ and some function B_{2}.
- $\left\|v_{z}(t)\right\|_{L^{3}(\Omega)} \leq B_{3}\left(t,\|a\|_{H^{2}(\Omega)}\right)$ for $t \geq 0$ and some function B_{3}.
- $\left\|\partial_{t} v(t)\right\|_{L^{2}(\Omega)} \leq B_{4}\left(t,\|a\|_{H^{2}(\Omega)}\right)$ for $t \geq 0$ and some function B_{4}.
- choose $T_{B}>0$, depending only on B, and extend v to a strong solution on $\left[0, T^{*}+T_{B}\right]$.
- If $T^{*}+T_{B}<T$, then $\left\|v\left(T^{*}+T_{B}\right)\right\|_{H^{2}(\Omega)} \leq B$, so we extend v to $\left[0, T^{*}+2 T_{B}\right]$
- Repeating this argument yields a unique, strong solution on $[0, T]$.

Global existence for $1<p<\infty$ and Exponential Decay

- let $v \in C^{1}\left(\left(0, T^{*}\right] ; X_{p}\right) \cap C\left(\left(0, T^{*}\right] ; D\left(A_{p}\right)\right)$ be the local solution for $a \in V_{1 / p, p}$
- for fixed $t_{0} \in\left(0, T^{*}\right]$ regard $v\left(t_{0}\right) \in V_{1 / 2,2}$ as new initial value
- above steps imply global existence of v within the L^{2}-framework
- use spectral gap of A_{2} to establish exponential decay of v for $p=2$
- extend to the case $p \leq 3$ by a bootstrap argument, more precisely
- consider v as the solution of the linear primitive equations with force $f:=-v \cdot \nabla_{H} v-w \partial_{z} v$, i.e.,

$$
v(t)=e^{-t A_{p}} a+\int_{0}^{t} e^{-(t-s) A_{p}} P_{p} f(s) d s, \quad t>0 .
$$

- Since $\|f\|_{L^{3}(\Omega)} \leq C\|v\|_{H^{2}(\Omega)}^{2}$ is exponentially decaying as $t \rightarrow \infty$ we obtain the claim for $p \leq 3$
- Repeat argument, taking $p=3$ for granted, and combine with embeddings yields the main assertion

Characterization of Initial Data

Let $\theta \in[0,1]$ and $1<p<\infty$. Then

$$
\begin{aligned}
& V_{\theta, p}=D\left(A^{\theta}\right)= \\
& \left\{\begin{array}{lll}
\left\{v \in H_{p e r}^{2 \theta, p}(\Omega)^{2} \cap L_{\bar{\sigma}}^{p}(\Omega):\left.\partial_{z} v\right|_{\Gamma_{N}}=0,\left.v\right|_{\Gamma_{D}}=0\right\}, & 1 / 2+1 / 2 p<\theta \leq 1, \\
\left\{v \in H_{p e r}^{2 \theta, p}(\Omega)^{2} \cap L_{\bar{\sigma}}^{p}(\Omega):\left.v\right|_{\Gamma_{D}}=0\right\}, & 1 / 2 p<\theta<1 / 2+1 / 2 p, \\
\left\{v \in H_{p e r}^{2 \theta, p}(\Omega)^{2} \cap L_{\bar{\sigma}}^{p}(\Omega)\right\}, & \theta<1 / 2 p .
\end{array}\right.
\end{aligned}
$$

The case $p=\infty$

Aim : extend above result within L^{p}-setting for $1<p<\infty$ to $p=\infty$.
Strategy :

- show that for $a \in L^{\infty}$-type space like $L_{\bar{\sigma}}^{\infty}(\Omega)$ or $B U C_{\bar{\sigma}}(\Omega)$, there exists a unique, local mild solution v with $v\left(t_{1}\right) \in V_{\theta, p}$ for some (θ, p)
- apply previous L^{p}-result
- Step I: extend linear theory to L^{∞}-setting
- Step II: develop iteration scheme

Linear Theory : The Hydrostatic Stokes Operator via Perturbation

- resolvent equation : solve for pressure π : take average, apply div_{H}
- then $\nabla_{H} \pi=\left.\nabla_{H} \Delta_{H}^{-1} \operatorname{div}_{H} \partial_{z} v\right|_{z=-1}$
- key observation : regard this as Kato-perturbation of Δ of order $1+1 / p$
- A generates analytic semigroup S on $L_{\bar{\sigma}}^{p}(\Omega)$ and $L_{\bar{\sigma}}^{\infty}(\Omega)$
- A behaves like usual Stokes operator; e.g. A admits
- maximal $L^{p}-L^{q}$-regularity
- $L^{p}-L^{q}$ smoothing

Consequences: Linear estimates for $p=\infty$
Let S be hydrostatic Stokes semigroup and P hydrostatic Helmholtz projection. Then

- $\|\nabla S(t) P f\|_{\infty} \leq C t^{-1 / 2}\|f\|_{\infty}, \quad t>0$
- $\|\nabla S(t) P \nabla f\|_{\infty} \leq C t^{-1}\|f\|_{\infty}, \quad t>0$
- $\|S(t) P \nabla f\|_{\infty} \leq C t^{-1 / 2}\|f\|_{\infty}, \quad t>0$
- $\|\nabla S(t) P f\|_{\infty} \leq C\|P f\|_{\infty}, \quad t>0$

Reference Solution and Iteration Scheme

- For $a \in B U C_{\bar{\sigma}}(\Omega)={\overline{C_{\bar{\sigma}}^{\infty}}(\Omega)}^{\|\cdot\|_{\infty}}$ choose reference data $a_{\text {ref }} \in C_{\bar{\sigma}}^{\infty}(\Omega)$ such that $\left\|V_{0}\right\|_{\infty}$ is small, where $V_{0}:=a-a_{\text {ref }}$
- construct local reference solution $v_{r e f}$ with $v_{r e f}(0)=a_{r e f}$ as above
- define approximating sequence

$$
V_{m+1}(t):=S(t) V_{0}-\int_{0}^{t} S(t-s) P \nabla \cdot\left(U_{m} \otimes V_{m}\right) d s-\int_{0}^{t} S(t-s) P\left(U_{m} \cdot v_{r e f}+u_{r e f} \cdot \nabla V_{m}\right) d s
$$

- control $K_{m}(t):=\sup _{0<s<t} s^{1 / 2}\left\|\nabla V_{m}(s)\right\|_{\infty}$
- control $H_{m}(t):=\sup _{0<s<t}\left\|V_{m}(s)\right\|_{\infty}$
- setting $G_{m}(t):=\max \left\{K_{m}(t), H_{m}(t)\right\}$ we have

$$
G_{m+1}(t) \leq C_{1}\left\|V_{0}\right\|_{\infty}+C_{2} G_{m}(t)^{2}+C_{3} G_{m}(t)
$$

- if $a_{m+1} \leq a_{0}+c_{1} a_{m}^{2}+c_{2} a_{m}$ and $c_{2}<1$ and $4 c_{1} a_{0}<\left(1-c_{2}\right)^{2}$, then $\left(a_{m}\right)$ is bounded
- Hence $G_{m}(t) \leq C\left\|V_{0}\right\|$, i.e. $\left(G_{m}\right)$ is bounded sequence
- Moreover, $\left(V_{m}\right)$ is Cauchy sequence in

$$
S:=\left\{V \in C\left([0, T] ; B \cup C_{\bar{\sigma}}(\Omega):\|\nabla V(t)\|_{\infty}=o\left(t^{-1 / 2}\right)\right\}\right.
$$

- $v:=v_{r e f}+\lim _{m \rightarrow \infty} V_{m}$ is unique, local solution
- parabolicity : $v\left(t_{1}\right) \in\left\{u \in W^{1, \infty}(\Omega):\left.u\right|_{z=-1}=0, \operatorname{div} \bar{u}=0\right\} \subset V_{1 / 2,2}$

Global well-posedness for Bounded Data

Theorem 2:
Let $a \in B U C_{\bar{\sigma}}(\Omega)$ with $a=0$ on $\Gamma_{b}=0$. Then there exists a unique, global, strong solution to the 3D-primitive equations.

Periodic and Stationary Solutions for Large Forces

Theorem 3 (jointly with P. Galdi) :
Primitive equations admit a strong, periodic solution for non small periodic $f \in L^{2}\left(J, L^{2}\right)$

Corollary (jointly with P. Galdi) :
Primitive equations admit a stationary solution for non small periodic $f \in L^{2}\left(J, L^{2}\right)$

Remark :
Note that there is no smallness assumption on f as e.g. in Hsia, Shiue '13.

Periodic Solutions for large forces

v is called a weak T-periodic solution provided

- $v \in C\left(J ; L^{2}(\Omega)\right) \cap L^{2}\left(J ; H^{1}(\Omega)\right)$ is a weak solution
- v satisfies strong energy inequality

$$
\|v(t)\|_{2}^{2}+2 \int_{s}^{t}\|\nabla v(\tau)\|_{2}^{2} d \tau \leq\|v(s)\|_{2}^{2}+2 \int_{s}^{t}(f(\tau), v(\tau)) d \tau
$$

- $v(t+T)=v(T)$ for all $t \geq 0$

A weak T-periodic solution v is called strong if in addition $v \in C\left(J ; H^{1}(\Omega)\right) \cap L^{2}\left(J ; H^{2}(\Omega)\right)$

Proposition : Let $f \in L^{2}\left(J ; L^{2}(\Omega)\right)$ be T-periodic. Then there exists at least one weak T-periodic solution v

Proof: Galerkin procedure and Brouwer's fixed point theorem

Strong Periodic Solutions via Weak-Strong Uniqueness

- Let $f \in L^{2}\left(J ; L^{2}(\Omega)\right)$ be T-periodic. Then there exists unique global strong solution u for (arbitrary) $a \in H^{1}(\Omega)$
- weak-strong uniqueness theorem : $u=v$
- Idea of Proof: weak theory : there is $t_{0}>0$ with $v\left(t_{0}\right) \in H^{1}$
- take $v\left(t_{0}\right)$ as initial data for strong solution u
- take u as test function
- for $w=v-u$ one has
$\|w(t)\|_{2}^{2}+\int_{t_{0}}^{t}\|\nabla w(s)\|_{2}^{2} d s \leq C \int_{t_{0}}^{t}\left[\left\|\nabla_{H} u(s)\right\|_{2}^{4}+\left\|\nabla_{H} u(s)\right\|_{2}^{2}\left\|D^{2} u(s)\right\|_{2}^{2}\right]\|w(s)\|_{2}^{2} d s$
- blue term in $L^{1}\left(t_{0}, t\right)$ due to regularity of strong solutions u
- Gronwall : w = 0

