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introduction: decay rates of weak solution

The incompressible Navier-Stokes equations are given by

ut + u · ∇u−∆u+∇p = 0, (1a)

∇ · u = 0, (1b)

where u is the velocity field and p is the pressure.

For a divergence-free vector field u0 ∈ L2, there exists a weak solution satisfying
the energy inequality (Leray):

‖u(t)‖2L2 + 2

∫ t

0
‖∇u(s)‖2L2 ds ≤ ‖u0‖2L2 .



This implies that
lim inf
t→∞

‖∇u(t)‖L2 = 0.

To show this, for ε > 0 arbitrary, choose t large so that

1

t
‖u0‖2L2 < 2ε.

Then, the energy inequality implies

1

t

∫ t

0
‖∇u(s)‖2L2 ds ≤

1

2t
‖u0‖2L2 < ε.

By Pigeonhole principle, there exists t0 ∈ (0, t) such that

‖∇u(t0)‖2L2 < ε.



On a smooth bounded domain with Dirichlet boundary condition, weak solutions
decay exponentially.

From the energy inequality

d

dt
‖u(t)‖2L2(Ω) ≤ −2 ‖∇u(t)‖2L2(Ω)

and Poincaré’s inequality

‖u(t)‖L2 ≤ C ‖∇u(t)‖L2 ,

we have

d

dt
‖u(t)‖2L2 ≤ −C ‖u(t)‖2L2 =⇒ ‖u(t)‖L2 ≤ ‖u0‖L2e−Ct.



On the whole space R3, Schonbek (1985) proved that for divergence-free
u0 ∈ L1 ∩ L2, weak solutions satisfy the following algebraic decay property:

‖u(t)‖L2 ≤ C(t+ 1)−
1
4

using Fourier splitting method.

(1) L2: Schonbek (1985), Wiegner (1987)

(2) Hs: Schonbek-Wiegner (1996)



This talk consists of 2 parts.

1. The incompressible Navier-Stokes equations

(1) Mild solution of the Navier-Stokes equations

(2) Gevrey regularity of mild solutions

(3) Decay estimates of weak solutions

(4) Log-Lipschitz regularity of the velocity and Hölder regularity of the flow map

2. Dissipative equations with analytic nonlinearity



mild solution

A mild solution u(t, x) of the Navier-Stokes equations satisfies the integral
equation

u(t) = et∆u0 −
∫ t

0

[
e(t−s)∆P∇ · (u⊗ u)(s)

]
ds := et∆u0 −B(u, u),

where

1. u(t, x) ∈ C([0, T ];X);

2. X is a Banach space on which the heat semi-group{
et∆ : t ≥ 0

}
is strongly continuous.



Fixed Point Lemma. Let X be a Banach space and B : X ×X → X a bilinear
operator, such that for any u, v ∈ X,

‖B(u, v)‖X ≤ η‖u‖X‖v‖X .

Then, for any u0 ∈ X with smallness condition

4η‖u0‖X ≤ 1,

the equation

u(t) = et∆u0 −
∫ t

0

[
e(t−s)∆P∇ · (u⊗ u)(s)

]
ds := et∆u0 −B(u, u) (2)

has a unique global in time solution u ∈ C([0,∞);X).



How to find function spaces solving (2)? Roughly,

u ∈W s,p =⇒ u⊗ u ∈W 2s− 3
p
,p

=⇒ ∇ · (u⊗ u) ∈W 2s− 3
p
−1,p

=⇒
∫ t

0

[
e(t−s)∆P∇ · (u⊗ u)(s)

]
ds ∈W 2s− 3

p
−1+2,p

.

s = 2s−
3

p
− 1 + 2 =⇒ s =

3

p
− 1



Function spaces associated with (2) correspond to the scaling invariance property
of the equation:

uλ(t, x) = λu(λ2t, λx), pλ(t, x) = λ2p(λ2t, λx) ∀λ > 0

A space X is called a critical space (for initial data) if its norm is invariant under
the scaling

f(x) 7→ λf(λx).

Homogeneous critical spaces in 3D

Ḣ
1
2 , L3, Ẇ

3
p
−1,p

, Ḃ
3
p
−1

p<∞,q , BMO−1, Ḃ−1
∞,∞



Mild Solutions of the Navier-Stokes Equations in Critical Spaces

(1) Ḣ
1
2 : Fujita–Kato (1964)

(2) L3: Kato (1984), Furioli–Lemarié-Rieusset–Terraneo (2000)

(3) Ḃ
3
p
−1

p<∞,q : Cannone–Meyer–Planchon (1993), Cannone–Planchon (1996),
Chemin (1999)

(4) BMO−1: Koch–Tataru (2001)

(5) Fourier Space: Le Jan–Sznitman (1997), Lei–Lin (2011)

We note that the Navier-Stokes equation is ill-posed in Ḃ−1
∞,∞ (Bourgain-Pavlović

(2008))



spatial analyticity: motivation

The space analyticity radius yields a Kolmogorov type length scale encountered in
turbulence theory; at this length scale the viscous effects and the (nonlinear)
inertial effects are roughly comparable.

Below this length scale the Fourier spectrum decays exponentially. This fact can
be used to show that the Galerkin approximations converge exponentially fast.

Example: Let u(x) =
∑
k∈Zd

uke
i(x·k) on Td. Let δ be the size of the analyticity

radius in L2
(
Td
)
. Then,

|uk| . e−δ|k| (Paley-Weiner Theorem).



Analyticity radius is used to establish geometric regularity criteria for the
Navier-Stokes equations, and to measure the spatial complexity of fluid flow.
(Kukavica (1996,1999), Grujic (2001))

We cannot use Cauchy-Kovalevski theorem to show analyticity of the
Navier-Stokes equations due to the non-local term ∇p,

∇p = ∇(−∆)−1∇· (u · ∇u) .

Instead, we will use the fact that mild solutions are perturbation of solutions to
the heat equation.



spatial analyticity in critical spaces

1. Convergence of Taylor series∥∥∥∇ku∥∥∥
BMO−1

≤
Ckk!

(
√
t)k

Germain-Pavlović-Staffilani (2007)

=⇒ Koch-Tatatu solution is analytic.

2. Analytic Extension in Lp, p ≥ 3

Ut + U · ∇U +∇P −∆U = 0, U(x+ iy, 0) = u0(x) ∈ Lp

Grujic- Kukavica (1998), Guberović (2010)

=⇒ Lp solutions (including Kato solution) are analytic.



gevrey regularity

A function f is Gevrey regular of order α if there exist M and R such that∥∥∥∇kf∥∥∥
L∞
≤Mk (k!)α

Rk
, ∀k ∈ N.

Gevrey regularity of order 1 is analytic by the Cauchy estimates.

In the study of evolution equations, a function f is said to be Gevrey regular of
order α in a Banach space X if

eτ
√
−∆αf ∈ X

for some τ > 0.



We note that eτ
√
−∆f ∈ X implies that f is analytic in X (by Cauchy estimates),

with the radius of analyticity proportional to τ .

Gevrey Regularity approaches to the Navier-Stokes Equations

(1) H1: Foias–Temam (1989), Oliver–Titi (2000).

(2) Ḣ
1
2 : Lemarié-Rieusset (2002) : |ξ|

1
2 sup
t>0

e
√
t|ξ||û(t, ξ)| ∈ L2.

=⇒ Fujita–Kato solution is analytic.



Lemarié-Rieusset: Mild solutions are analytic for t > 0.

Let X be a critical space. If u is a mild solution,

u(t) = et∆u0 −
∫ t

0
e(t−s)∆P∇ · (u⊗ u)(s)ds ∈ X,

the same is true for e
√
tΛ1u ∈ X.

(1) The exponential operator e
√
tΛ1 is quantified by Λ1 whose symbol is given by

|ξ|1 = |ξ1|+ |ξ2|+ |ξ3| rather than the usual Λ = (−∆)
1
2 .

(2) The inverse operator e−
√
tΛ1 is a Fourier multiplier, which is the product of

one dimensional Poisson kernels. The L1 norm of this kernel is bounded by a
constant independent of t.

Recent developments in the Navier-Stokes problem, Lemarié-Rieusset (2002)



To prove e
√
tΛ1u ∈ X, we need to show that the bilinear term

B(u, u) =

∫ t

0
e(t−s)∆P∇ · (u⊗ u)(s)ds

is bounded in X under the action of e
√
tΛ1 .

Let U(t) = e
√
tΛ1u.

e
√
tΛ1B(u, u) = e

√
tΛ1

∫ t

0

[
e(t−s)∆P∇ · (e−

√
sΛ1U ⊗ e−

√
sΛ1U)(s)

]
ds

=

∫ t

0

[
e(
√
t−
√
s)Λ1e

1
2

(t−s)∆e
1
2

(t−s)∆e
√
sΛ1P∇ · (e−

√
sΛ1U ⊗ e−

√
sΛ1U)(s)

]
ds



∫ t

0

[
e

1
2

(t−s)∆P∇ · e
√
sΛ1 (e−

√
sΛ1U ⊗ e−

√
sΛ1U)(s)

]
ds

We introduce the bilinear operator Bs of the form

Bs(f, g) = e
√
sΛ1 (e−

√
sΛ1fe−

√
sΛ1g).

Roughly,

Bs(f, g) ' f
(
e−
√
sΛ1g

)
+
(
e−
√
sΛ1f

)
g ' fg.

Lemarié-Rieusset proved that

Bs(f, g) = Kα1 ⊗Kα2 ⊗Kα3

(
fg
)
' fg,

where Kαi are linear combinations of the Poisson kernels and identity operators.

U(t) = e
√
tΛ1u, U(t) ' e

1
2
t∆u0 +

∫ t

0

[
e

1
2

(t−s)∆P∇ · (U ⊗ U)(s)
]
ds.



gevrey regularity in critical spaces

1.
{
f ∈ S

′
: |ξ|2

∣∣∣f̂(ξ)
∣∣∣ ∈ L∞}

(1) Le Jan–Sznitman (1997)

(2) Analyticity: Lemarié-Rieusset (2002)

2. Ḃ
3
p
−1

p<∞,∞

(1) Cannone–Meyer–Planchon (1993), Cannone–Planchon (1996), Chemin (1999)

(2) Analyticity: B–Biswas–Tadmor (2012)

3. Ḃ−1
∞,q ∩ Ḃ0

3,∞, 1 ≤ q <∞
(1) Existence and Analyticity: B–Biswas–Tadmor (2012)

4.
{
f ∈ S

′
: |ξ|−1

∣∣∣f̂(ξ)
∣∣∣ ∈ L1

}
(1) Lei–Lin (2011)

(2) Analyticity: B. (2015)



decay estimates of weak solutions

Gevrey regularity enables us to obtain decay estimates:∥∥∥∇ku(t)
∥∥∥
X

=
∥∥∥∇ke−√tΛ1e

√
tΛ1u(t)

∥∥∥
X
≤ Ckt−

k
2

∥∥∥e√tΛ1u(t)
∥∥∥
X
.

If ‖u0‖X is sufficiently small,
∥∥∥e√tΛ1u(t)

∥∥∥
X

is uniformly bounded.∥∥∥∇ku(t)
∥∥∥
X
≤ Ckt−

k
2 , k ∈ N.

If ‖u0‖Y is large, but lim inf
t→∞

‖u(t)‖X = 0, after a certain transient time t0 > 0

∥∥∥∇ku(t)
∥∥∥
X
≤ Ck(t− t0)−

k
2 , k ∈ N.



Theorem (B–Biswas–Tadmor (2012)): For any initial data u0 ∈ L2 with
ω0 ∈ L1, there exists a time t0 > 0 such that weak solutions decay as∥∥∥∇ku(t)

∥∥∥
Lp
≤ Ck ‖u(t0)‖

Ḃ

3
p
−1

p,p

(t− t0)−
k−s0

2 , k > s0 =
3

p
− 1, p < 2.

(1) This is decay rate in Lp-based spaces with p < 2.

(2) The main idea is to find small critical norm only using the L2 norm of u and
the L1 norm of the vorticity ω = ∇× u.

(3) We cannot express t0 > 0 explicitly.



proof

1. L2-level: u0 ∈ L2 =⇒ ‖u(t)‖2
L2 +

∫ t

0
‖∇u(s)‖2

L2ds ≤ ‖u0‖2L2

=⇒ lim inf
t→∞

‖∇u(t)‖L2 = 0.

2: L1-level: ω0 = ∇× u0 ∈ L1

ωt + u · ∇ω −∆ω = ω∇u =⇒ ‖ω(t)‖L1 ≤ C.

3. Interpolation:
lim inf
t→∞

‖u(t)‖
Ḃ

3
p
−1

p,p

= 0, p < 2.

4. Decay rates: from the relation between Besov spaces and Sobolev spaces

Ḃ
3
p
−1

p,p ⊂ Ẇ
3
p
−1,p

for p < 2



ordinary differential equations

Osgood’s lemma. Let ρ be a positive measurable, γ be a positive and locally
integrable function, and µ be a continuous increasing function. Suppose that for a
positive real number a, ρ satisfies

ρ(t) ≤ a+

∫ t

0
γ(s)µ(ρ(s))ds.

Let

Φ(x) =

∫ 1

x

1

µ(r)
dr.

Then, we have

−Φ(ρ(t)) + Φ(a) ≤
∫ t

0
γ(s)ds.

Furthermore, if a = 0, then ρ is identically zero.



Theorem. Let X be a Banach space, Ω an open set of X, I an open interval of R
and (0, x0) ∈ I × Ω. Let F be a function in L1

loc(I, Cµ(Ω)) with∫ 1

0

1

µ(r)
dr =∞.

Then, there exists an interval J such that 0 ∈ J ⊂ I and the equation

x(t) = x0 +

∫ t

0
F (s, x(s))ds

has a unique continuous solution on J (by Picard iteration and Osgood lemma)

(1) µ(r) = r when F is Lipschitz.

(2) µ(r) = r(− ln r)β , 0 < β ≤ 1 when F is Log-Lipschitz.



Zuazua (2002) proved Log-Lipschitz regularity and uniqueness of the flow for a
field in

L1
(

0, T ;W
3
p

+1,p
)
.

The flow map η of the Navier-Stokes equations:

∂tη(t, x) = u (t, η(t, x)) , η(0, x) = x.

We note that mild solutions of the Navier-Stokes equations gain almost 2
derivatives when integrated in time:

u0 ∈ Ẇ
3
p
−1,p

=⇒ u ∈ L1
(

0, T ; Ẇ
3
p

+1−ε,p
)
.



Log-Lipschitz regularity

Chemin–Lerner (1995): for u0 ∈ H
1
2 , there exists T > 0 such that the exists a

unique solution u ∈ C([0, T ];H
1
2 ) such that

(1) u is Log-Lipschitz∫ T

0
sup

|x−y|< 1
2

|u(t, x)− u(t, y)|
|x− y| (− ln |x− y|)β

dt < C‖u0‖
H

1
2
, β >

1

2

(2) η ∈ C([0, T ] : Cα) ∀ α ∈ (0, 1)

(3) Chemin-Lerner space:

L̃rT Ḃ
s
p,q =

{
f ∈ S

′
h : ‖f‖

L̃
ρ
T
Ḃsp,q

=
∥∥∥2js ‖∆jf‖Lr

T
Lp

∥∥∥
lq(Z)

<∞
}

This space gains two derivatives when r = 1.



Theorem (B–Cannone (2016)). There exists a constant ε > 0 such that for all

u0 ∈ L1 ∩H
1
2 with the smallness condition

‖u0‖
Ḣ

1
2
≤ ε,

there exists a global solution u satisfying the following Log-Lipschitz regularity:

‖u‖LLβ :=

∫ ∞
0

sup
|x−y|< 1

2

|u(t, x)− u(t, y)|
|x− y| (− ln |x− y|)β

dt ≤ Cβ
(
‖u0‖L1 + ‖u0‖

H
1
2

)
for β > 1

2
.



There exists a unique flow map η satisfying the following Hölder regularity:

(i) β ∈
(

1
2
, 1
)
: for |x− y| ≤ e

−(1−β)‖u‖1−β
LLβ ,

|η(t, x)− η(t, y)| ≤ |x− y|α , ∀α ∈ (0, 1). (3)

(ii) β = 1: for |x− y| <
1

2
,

|η(t, x)− η(t, y)| ≤ |x− y|γ , γ = e−‖u‖LL1 . (4)

In particular, the Hölder exponent γ has a lower bound when β = 1:

γ ≥ Ce
−
(
‖u0‖L1+‖u0‖

H
1
2

)



1. We control low frequency part by u0 ∈ L1 ∩ L2 and high frequency part by

small u0 ∈ Ḣ
1
2 to show Log-Lipschitz regularity.

2. The existence of a continuous solution η follows by ODE theorem with

µ(r) = r(− ln r)β ,
1

2
< β ≤ 1.

We restrict the range of β ≤ 1 to satisfy the condition∫ 1

0

1

µ(r)
dr =∞.



Theorem (B–Cannone (2016)). There exists a constant ε0 > 0 such that for

all u0 ∈ Ḣ
1
2 with ‖u0‖

Ḣ
1
2
≤ ε0, there exists a global in time solution u satisfying

the following Log-Lipschitz regularity: for any k ∈ N

∫ T

0
sup

|x−y|< 1
2

t
k
2
∣∣∇k (u(t, x)− u(t, y))

∣∣
|x− y| (− ln |x− y|)β

dt ≤ Ck lnT‖u0‖
Ḣ

1
2

for β > 1.

This theorem implies that the Log-Lipschitz regularity holds almost globally:

∫ T

0
sup

|x−y|< 1
2

t
k
2
∣∣∇k (u(t, x)− u(t, y))

∣∣
|x− y| (ln |x− y|)β

dt ≤ 1, T ∼ e
1
ε0 .



Compared to the Euler equations,

(1) Yudovich (1963) proved Hölder regularity of the flow map of the 2D Euler
equations with initial vorticity in L∞. But, Hölder regularity of the flow map is
decreasing in time.

This losing regularity does not occur to the Navier-Stokes equations when initial
data are small in critical spaces.

(2) Beale-Kato-Majda blowup criterion (1984) is obtained by dealing with the
Biot-Savart kernel near the origin and infinity separately in the real variables.

We prove our results by analyzing u near the origin and infinity separately in the
Fourier variables.



We only show how to obtain Hölder regularity of the flow map when β = 1. Let

χ(t) := χ(t, x, y) =
∣∣η(t, x)− η(t, y)

∣∣,
‖u‖LL :=

∫ ∞
0

sup
|x−y|< 1

2

|u(t, x)− u(t, y)
∣∣

|x− y| (− ln |x− y|)
dt.

From the equation of η, we have the following inequality

χ
′
(t) ≤ |u(t, η(t, x))− u(t, η(t, y))| . (5)

We rewrite (5) as

−
d

dt
[ln (− lnχ(t))] =

χ
′
(t)

ρ(t) (− lnχ(t))
≤
|u(t, η(t, x))− u(t, η(t, y))|

χ(t) (− lnχ(t))
. (6)



Integrating (6) in time, we have

− ln (− lnχ(t)) + ln (− lnχ(0)) ≤
∫ t

0

|u(s, η(s, x))− u(s, η(s, y))|
χ(s) (− lnχ(s))

dt ≤ ‖u‖LL. (7)

By taking a double exponential to (7), we have

χ(t) ≤ χ(0)e
−‖u‖LL

as long as χ(s) < 1
2

for 0 < s < t and this holds for |x− y| < 1
2

.

Therefore, we obtain that

|η(t, x)− η(t, y)| ≤ |x− y|e
−‖u‖LL

.



analytic nonlinearity: homogeneous case

We consider dissipative equations of the form

ut −∆u = ∇F (u), F (z1, · · · , zd) =
∑
|α|=n

aαz
α, n ≥ 2.

and homogeneous Sobolev/Gevrey spaces

Ẇ s,p =
{
u : Rd → Rm : ‖u‖Ẇs,p = ‖Λsu‖Lp <∞

}
,

Ġ(t, s, p) =
{
u ∈ Ẇ s,p : ‖u‖Ġ(t,s,p) =

∥∥∥e√tΛ1u
∥∥∥
Ẇs,p

<∞
}
.

Gevrey Regularity in Energy spaces (p = 2)

Ferrari–Titi (1998), Cao-Rammaha–Titi (1999)



1. Critical spaces: Ẇ s0,p, s0 =
d

p
−

1

n− 1
> 0

2. Fractional product rule

‖Λs(fg)‖Lp . ‖Λsf‖Lp1 ‖g‖Lq1 + ‖f‖Lp2 ‖Λ
sg‖Lq2 ,

1

p
=

1

pi
+

1

qi

∥∥∥e√tΛ1Λs(fg)
∥∥∥
Lp

.
∥∥∥e√tΛ1Λsf

∥∥∥
Lp1

∥∥∥e√tΛ1g
∥∥∥
Lq1

+
∥∥∥e√tΛ1f

∥∥∥
Lp2

∥∥∥e√tΛ1Λsg
∥∥∥
Lq2

.

Theorem (B-Biswas (2015)): For ‖u0‖Ẇs0,p < ε� 1, p < 2

(1) Gevrey regularity: e
√
tΛ1u(t) ∈ Ẇ s0,p.

(2) Decay:
∥∥∥∇ku(t)

∥∥∥
Lp
≤ Ckt−

1
2

(k−s0), k > s0.



analytic nonlinearity: inhomogeneous case

We consider dissipative equations of the form

ut −∆u = F (u), F (z) =
∑
n∈Zd

anz
n

with its majorizing function F (r) =
∑
n

|an|r|n| converging ∀r > 0.

Example: ut −∆u = sinu

We consider the inhomogeneous Sobolev/Gevrey spaces

W s,p =
{
u : Rd → Rm : ‖u‖Ws,p = ‖(1 + Λ)su‖Lp <∞

}
G(t, s, p) =

{
u ∈W s,p : ‖u‖G(t,s,p) =

∥∥∥e√tΛ1u
∥∥∥
Ws,p

<∞
}
.



1. Existence of a solution: W s,p is a Banach algebra when s > d
p

‖fg‖Ws,p ≤ C ‖f‖Ws,p ‖g‖Ws,p s >
d

p
.

2. G(t, s, p) is a Banach algebra when s > d
p

:

‖fg‖G(t,s,p) ≤ C ‖f‖G(t,s,p) ‖g‖G(t,s,p) .

Theorem (B-Biswas (2015)): Let ‖u0‖Ws,p < C, with s > d
p

. Then, there

exists a time T > 0 and a solution u ∈ L∞(0, T ;W s,p) such that

sup
t∈(0,T ]

‖u(t)‖G(t,s,p) <∞.



Thank you for your attention


