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Introduction

Issues from Spatial Temporal Modeling of Extremes

Extreme observations are often spatial temporal by nature as data are
collected from monitoring stations or grid boxes over years.

Spatial temporal extreme modeling has attracted much attention.

Objectives of statistical analyses: estimation (parameters, return
levels); prediction; risk assessment; simulation.

Spatial temporal dependence is critical in statistical inferences: can
be of primary interest in some applications but not all.

Marginal approaches without fully dependence specification can be
useful and efficient when dependence is nuissance.
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Introduction

Methodological Overview

How do we introduce dependence in models?

Markov process (mostly in temporal setting, uni-directional)
Latent processes
Copula (ev-copula vs. non-ev-copula)
Full parametric specification: max-stable processes
No dependence specification (marginal approach)

How do we handle dependence in inferences? This determines the
pros and cons of different methods.

Likelihood or composite likelihood
Bayesian (possible with composite likelihood)
Working dependence
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Introduction

Univariate Margin: GEV Distribution

GEV distribution is the limit distribution of properly normalized sample
maximum, with density

f (y ; µ, σ, ξ) =
1

σ
t(y)ξ+1e−t(y),

where

t(y) =

{(
1 +

( y−µ
σ

)
ξ
)−1/ξ

, 1 +
( y−µ

σ

)
ξ > 0, ξ 6= 0;

e(y−µ)/σ, ξ = 0.

The cumulative distribution function is

F (y ; µ, σ, ξ) = e−t(y),

µ, σ and ξ are the location, scale and shape parameters, respectively.

ξ determines the tail behavior.

covariates are often incorporated in µ.
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Review: Modeling Spatial Temporal Extremes

EVA for Time Series Data: Marginal Approach

(A recent review on temporal extremes is Reick and Shaby (2016). )

Two major inference goals: return level; serial dependence.

Marginal approach (when return level is of primary interest): POT
needs to account for serial dependence

declustering (e.g., Davison and Smith, 1990; Ferro and Segers, 2003)
working independence and sandwich variance correction (Smith, 1991;
Fawcett and Walshaw, 2007)

Remark: sandwich variance needs a moderately large sample size
(n = 10, 000 in simulation study of Fawcett and Walshaw (2007)).

Jun Yan June 16, 2016 @ BIRS 6 / 53



Review: Modeling Spatial Temporal Extremes

Modeling Serial Dependence

Markov chain model (Smith et al., 1997; Fawcett and Walshaw,
2006): conditional distribution constructed from bivariate ev
distribution and univariate GEV distribution.

Markov-switching model (Shaby et al., 2016) with two states (bulk,
extreme)

Max-stable process

Hierarchical Bayesian (Reich et al., 2014)
Censored pairwise likelihood (Raillard et al., 2014)

Copula model (copula may needs to be ev-copula; connection to
Markov model and max-stable model)
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Review: Modeling Spatial Temporal Extremes

Auto-Regressive and Moving Average Models

A recent review is Zhang et al. (2016).

MARMA(p, q) process (Davis and Resnick, 1989)

Max positive alpha stable process (Naveau et al., 2011)

Multivariate maxima and moving maxima (M4) model (Smith and
Weissman, 1991; Zhang and Smith, 2004, 2010)

Sparse moving maxima models (Zhang, 2005) with random
coefficients (SM3R) (Tang et al., 2013).

Remark: inference is challenging.
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Review: Modeling Spatial Temporal Extremes

Spatial Extremes: Latent Variables

(A recent review on spatial extremes modeling is Davison et al. (2012).)

Latent Gaussian process (e.g., Casson and Coles, 1999; Cooley et al.,
2007; Sang and Gelfand, 2010)

Latent positive stable variables on a grid of knots (e.g., Stephenson,
2009; Reich and Shaby, 2012) (see more mileage Brian Reich’s talk
on Friday)

Remarks

Both facilitate Hierarchical Bayesian inference.

Latent Gaussian process does not offer extremal dependence, and the
marginal distribution is no longer GEV.

Laten positive stable variables retain marginal GEV distribution.
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Review: Modeling Spatial Temporal Extremes

Spatial Extremes: Copulas

From Sklar’s Theorem, every multivariate continuous distribution can
be uniquely represented by its marginal distributions and a copula
which characterizes the dependence structure.

Copula has standard uniform margins while simple max-stable process
has unit Fréchet margins.

Limiting distribution of multivariate componentwise sample maxima
leads to marginal GEV distributions and an ev copula (max-stable).

Parametric models

Hüsler–Reiss copula (Hüsler and Reiss, 1989) (connection to Gaussian
extreme value process (Smith, 1990))
t copula (Demarta and McNeil, 2005) (connection to t extremal t
process (Opitz, 2013))

Remark: A slightly different view but shares the same difficulties faced by
max-stable process models.
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Review: Modeling Spatial Temporal Extremes

Spatial Extremes: Max-Stable Process

Extension of multivariate extreme value distribution to processes
(de Haan, 1984; Schlather, 2002).

Elegant in theory and popular in recent applications (e.g., Padoan
et al., 2010; Davison and Gholamrezaee, 2012).

Several parametric families implemented in R packages
SpatialExtremes and RandomFields.

Fully specification of the dependence structure allows prediction and
simulation.

Estimation often with composite likelihood because the full likelihood
is unavailable.

Full likelihood and Bayesian inference freshly tackled (Raphael
Huser’s talk)
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Review: Modeling Spatial Temporal Extremes

Spatial Temporal Extremes

A rising field.

Models based on the spectral representation (Schlather, 2002;
Kabluchko et al., 2009)

Constructions: spatial components and a single time coponent. (Davis
et al., 2013; Huser and Davison, 2014; Buhl and Klüppelberg, 2016)
Composite likelihood inference.
Continous instead of discrete time; Time has no specific role from
spatial dimension; No explicit temporal dynamics.

Space-time max-stable models with spectral separability (Embrechts
et al., 2015)

Partly decouple the influence of time and space, but such that time
influences space through an operator on space.
Both continuous-time and discrete-time versions.
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Review: Modeling Spatial Temporal Extremes

More Remarks

Full dependence specification allows inference for jointly defined
events and simulation.

When the spatial dependence is misspecified, full specification can
lead to bias (Wang et al., 2014) (e.g., mixture dependence).

Goodness-of-fit test can provide some guard but can be difficult to do
in high dimension (Kojadinovic et al., 2015).

In some applications where the primary interest is inference about
marginal parameters, spatial dependence is a nuisance.

Efficient marginal inference is possibly by somewhat accounting for
spatial dependence without exact modeling; no specification beyond
the univariate GEV distribution.
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A Marginal Approach with Estimating Equations

Motivating Application: Detection and Attribution
(Fingerprinting)

Changes in climate extremes have more influential environmental and
societal impacts than changes in mean climate states.

Detection and attribution of changes in climate extremes have gained
sharpened focus.

This is a challenging problem: low signal-noise ratio, sparsity of data,
distributional properties of extremes.

No fully satisfactory analog of the optimal fingerprinting method has
been established for changes in climate extremes with the GEV
distribution.

Apply standard fingerprinting to measures of extremes or to estimated
parameters from extreme value distributions.
The state-of-the-art is Zwiers et al. (2011).

Can we increase the efficiency in Zwiers et al. (2011)?
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A Marginal Approach with Estimating Equations Combined Score Equations

Combined Score Equations

Idea: Combine the score equation of the marginal GEV distribution at
each monitoring sites in some optimal way to improve efficiency by
accounting the spatial correlation among them.

Yts : extreme observation of interest at site s in year t with density
f (·; θts), s = 1, . . . ,m, t = 1, . . . , n.

Xts : p × 1 covariate vector for θts .

g(θts) = ηts = X>ts β, where g is a known link function.

Assume data from year to year are independent while spatial
dependence exists within the same year.

Only assume marginal distribution f is the correctly specified GEV
distribution.
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A Marginal Approach with Estimating Equations Combined Score Equations

Combined Score Equations

Score function: Sts = d log f (Yts ; θts)/dθts .

Score equation for β at site s:

n∑
t=1

Xts
dθts
dηts

Sts = 0.

Combined score equation:

n∑
t=1

X>t AtW
−1
t St = 0,

where X>t = (Xt1, . . . ,Xtm), At = diag(dθt1/dηt1, . . . ,dθtm/dηtm),
W−1

t is the weight matrix, and St = (St1, . . . ,Stm)>.

When Wt is the identity matrix, it reduces to the derivative of the
independence likelihood.
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A Marginal Approach with Estimating Equations Combined Score Equations

Optimal Weight

Optimal Wt (Nikoloulopoulos et al., 2011):

Wt = Ωt∆
−1
t ,

where Ωt = cov(St) and

∆t = −diag
{
E

(
d2 log ft1(yt1, θt1)

dθ2
t1

)
, . . . ,E

(
d2 log ftm(ytm, θtm)

dθ2
tm

)}
.

Approximate the covariance matrix Ωt of the score functions St :

Apply the idea of GEE (Liang and Zeger, 1986) with simple form of
working spatial correlation structure.
Assume all the clusters (years) share a same correlation matrix, R, of
the score function:

Ωt = ∆
1/2
t R∆

1/2
t .
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A Marginal Approach with Estimating Equations Combined Score Equations

Approximation of Optimal Weight
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Figure: The empirical correlation of the standardized score function of µ (points),
and the corresponding non-linear least square fitted correlation curves from
exponential (red), spherical (blue) and gaussian (green) correlation function.
Data generated from an isotropic Smith model with m = 20, n = 1000, and
moderate dependence level in region [−10, 10].
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A Marginal Approach with Estimating Equations Combined Score Equations

Approximation of Optimal Weight

It would be nice to know the pairwise correlation between site j and
site k , ρjk , but approximation is good too.

Exponential correlation

ρjk = exp(−djk/r),

where djk is the pairwise distance and r is the parameter to be
estimated through the empirical correlation of the standardized score
function.

Spherical correlation

ρjk =
[
1− 1.5(r/djk) + 0.5(r/djk)3

]
Idij<r

,

which leads to sparse correlation matrix and can be exploited
computationally when the number of sites is big.
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A Marginal Approach with Estimating Equations Combined Score Equations

Combined Score Equation of GEV Distribution

µts , σts , and ξts : the location, scale, and shape parameter,
respectively, for the GEV distribution of Yts .

Xµ,ts , Xσ,ts , and Xξ,ts : corresponding covariate vector.

GEV parameters connect to covariates through known link functions:

gµ(µts) = X>µ,tsβµ, gσ(σts) = X>σ,tsβσ, gξ(ξts) = X>ξ,tsβξ,

Regression parameter: Θ = (β>µ , β
>
σ , β

>
ξ )>.

Iteratively estimate one set of the parameters at a time while the
other two sets are being fixed until convergence.
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A Marginal Approach with Estimating Equations Combined Score Equations

Inferences

Sandwich variance estimator

May underestimate variation with shorter records
Need adjustment under temporal dependence

Semiparametric bootstrap with no dependence structure specified

Need to preserve spatial (and temporal) dependence (Heffernan and
Tawn, 2004)
Can be used in detection and attribution analysis
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A Marginal Approach with Estimating Equations Combined Score Equations

Simulation Study

Number of sites m.

Study region [−c , c]2.

Three combinations of (c ,m): (10, 20), (10, 80), and (20, 80).

Number of years n = 100.

Marginal model at each site s, s = 1, . . . ,m: GEV model with
covariates latitude X1(s) and longitude X2(s):

µs = βµ,0 + βµ,1X1(s) + βµ,2X2(s),

σs = βσ,0,

ξs = βξ,0,

where βµ,0 = 15, βµ,1 = −0.2, βµ,2 = 0.25, βσ,0 = 4 and βξ,0 = 0.2.
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A Marginal Approach with Estimating Equations Combined Score Equations

Simulation Study

Data between different years were independent, while within the same
year spatial dependence was imposed.

Data generating scenarios:
1 An isotropic SM max-stable model.
2 A mixture of a GG max-stable model and a GA model.

Dependence level: moderate (M) and strong (S).

Estimation methods:

Combined score equation (CSE).
Independence likelihood (IL).
Pairwise likelihood (PL).

1000 replications for each case.

Report: average point estimate, root mean square error (RMSE), and
the relative efficiency (RE) in terms of MSE using the IL method as
the reference.
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A Marginal Approach with Estimating Equations Combined Score Equations

Scenario 1: SM model

Table: Simulation results for S dependence level.

Estimate RMSE RE

(c,m) Par True IL PL CSE IL PL CSE PL CSE

(10, 20) βµ,0 15 15.034 15.032 15.030 0.353 0.347 0.317 1.039 1.243
βµ,1 −0.2 −0.200 −0.200 −0.200 0.026 0.025 0.023 1.062 1.255
βµ,2 0.25 0.248 0.248 0.249 0.025 0.025 0.023 1.042 1.226
βσ,0 4 4.001 4.002 3.998 0.268 0.268 0.245 1.000 1.193
βξ,0 0.2 0.198 0.199 0.199 0.061 0.045 0.056 1.804 1.202

(10, 80) βµ,0 15 15.041 15.038 15.028 0.353 0.344 0.296 1.058 1.421
βµ,1 −0.2 −0.199 −0.199 −0.199 0.023 0.023 0.019 1.010 1.439
βµ,2 0.25 0.250 0.250 0.250 0.023 0.023 0.019 1.006 1.477
βσ,0 4 3.993 3.994 3.983 0.259 0.257 0.222 1.014 1.360
βξ,0 0.2 0.196 0.197 0.199 0.059 0.043 0.052 1.844 1.296

(20, 80) βµ,0 15 15.024 15.022 15.022 0.241 0.238 0.208 1.030 1.350
βµ,1 −0.2 −0.200 −0.200 −0.200 0.010 0.010 0.009 1.022 1.437
βµ,2 0.25 0.250 0.250 0.250 0.011 0.011 0.009 1.024 1.463
βσ,0 4 3.993 3.992 3.993 0.183 0.182 0.156 1.015 1.379
βξ,0 0.2 0.196 0.197 0.196 0.041 0.036 0.035 1.337 1.374
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A Marginal Approach with Estimating Equations Combined Score Equations

Scenario 2: Mixed model of GG and GA

Proportion p from GG max-stable model with Gaussian correlation
function ρ(h) = exp[−(‖h‖/φ)2].

Proportion 1− p from GA model with exponential correlation
function ρ(h) = exp(−h/τ).

Contamination rate p ∈ {0, 0.1, 0.25, 0.5, 0.75, 1}.
PL method was applied with the dependence model specified as GG.
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A Marginal Approach with Estimating Equations Combined Score Equations

Scenario 2: Mixed model of GG and GC

Table: Simulation results for S dependence level when p = 0.25 and 0.75.

Estimate RMSE RE

p (c,m) Par True IL PL CSE IL PL CSE PL CSE

0.25 (10, 20) βµ,0 15 14.739 14.694 14.730 0.438 0.459 0.419 0.907 1.091
βµ,1 −0.2 −0.200 −0.200 −0.200 0.024 0.023 0.022 1.053 1.194
βµ,2 0.25 0.250 0.250 0.250 0.023 0.022 0.021 1.076 1.227
βσ,0 4 4.031 4.013 4.029 0.257 0.251 0.231 1.049 1.233
βξ,0 0.2 0.195 0.225 0.196 0.055 0.050 0.052 1.199 1.123

(20, 80) βµ,0 15 14.789 14.769 14.785 0.318 0.330 0.307 0.931 1.073
βµ,1 −0.2 −0.200 −0.200 −0.200 0.010 0.010 0.008 1.039 1.335
βµ,2 0.25 0.250 0.250 0.250 0.010 0.010 0.009 1.040 1.353
βσ,0 4 4.070 4.061 4.069 0.190 0.186 0.180 1.052 1.123
βξ,0 0.2 0.192 0.204 0.192 0.039 0.033 0.037 1.431 1.141

0.75 (10, 20) βµ,0 15 14.920 14.842 14.914 0.352 0.371 0.337 0.902 1.095
βµ,1 −0.2 −0.200 −0.200 −0.200 0.022 0.022 0.020 1.059 1.184
βµ,2 0.25 0.250 0.250 0.250 0.023 0.022 0.021 1.058 1.186
βσ,0 4 3.998 3.971 3.998 0.251 0.248 0.239 1.025 1.106
βξ,0 0.2 0.200 0.255 0.201 0.048 0.067 0.045 0.504 1.108

(20, 80) βµ,0 15 14.932 14.893 14.924 0.273 0.283 0.253 0.935 1.170
βµ,1 −0.2 −0.200 −0.200 −0.200 0.010 0.009 0.008 1.042 1.334
βµ,2 0.25 0.250 0.249 0.250 0.010 0.010 0.009 1.041 1.252
βσ,0 4 4.016 3.998 4.014 0.185 0.182 0.169 1.037 1.207
βξ,0 0.2 0.197 0.221 0.197 0.031 0.035 0.029 0.806 1.141
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A Marginal Approach with Estimating Equations Combined Score Equations

Some Discussion

Comparison between CSE and PL

What if PL is correctly specified?
PL does better in shape but not in location parameters.

Simulation study under what spatial dependence

max-stable (ev copula)
non-ev copula (e.g. Gaussian)
mixture of ev and non-ev copula
unknown dependence (from observed data)

Handling large data with spherical working correlation and sparse
matrix operation.

Non-invertible working correlation matrix?

Performance of bootstrap confidence interval

Jun Yan June 16, 2016 @ BIRS 27 / 53



A Marginal Approach with Estimating Equations Detection and Attribution with CSE

Optimal Fingerprinting

The fingerprint refers to the pattern of change in the climate that is
expected in response to external forcing of the climate system, and is
typically estimated from climate model simulations.

Regresses observations onto the fingerprints to determine whether
they are present in the observations.

Classical optimal fingerprinting: scaling factors are estimated by a
generalized least squares approach, with the optimal weight chosen to
be the inverse variance matrix of the residuals. The method gives the
smallest variance of the scaling factor estimator.

No fully satisfactory analog of the optimal fingerprinting method has
been established for changes in climate extremes with the GEV
distribution.
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A Marginal Approach with Estimating Equations Detection and Attribution with CSE

Fingerprint Method

Signal Estimation

Detection Analysis

Uncertainty Assessment

Goodness-of-fit Test
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A Marginal Approach with Estimating Equations Detection and Attribution with CSE

Signal Estimation

Estimated from the ensembles of climate model simulation data of
the external forcing.

GEV location parameters, which vary every h-yr (h = 5 or 10), are
used to represent the model-simulated changes in the climate
extremes.
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A Marginal Approach with Estimating Equations Detection and Attribution with CSE

Signal Estimation

Suppose

Number of year n is multiple times of h, then the number of h-yr
block is B = n/h.

Totally l ensembles for one individual climate model.

Ztsu: the model output at grid box s in year t from ensemble u for
s = 1, . . . ,m, t = 1, . . . , n, and u = 1, . . . , l .

A GEV model is assumed for Ztsu with parameters
µtsu = µb(t),s ,

σtsu = σs ,

ξtsu = ξs ,

(1)

where b(t) = ceiling(t/h), b = 1, . . . ,B = n/h.
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A Marginal Approach with Estimating Equations Detection and Attribution with CSE

Detection Analysis

The observed annual extreme climate variable Yts at grid box s is
modeled by a GEV distribution with

µts = αs + X>ts β,

σts = σs ,

ξts = ξs ,

(2)

Xts : p × 1 vector of the relative signals of external forcing of interest
estimated from climate model data.
β: scaling vector.
αs , σs , and ξs : grid box specific location, scale, and shape parameters,
respectively.

CSE reduces to Zwiers et al. (2011) with working independence.

Bootstrap procedures in Zwiers et al. (2011) remain valid.
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Inference about β

The confidence interval of β:

Above 0: a response to external forcing is said to be “detected”.

Above 0 and also contains 1: no evidence that observation and model
simulations are inconsistent; conclusion of attribution is made.

Above 1: observation is underestimated by climate model.

Between 0 and 1: observation is overestimated by climate model.
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CSE Method with a Coordinate Descent Approach

Totally 3m + p unknown parameters.

Coordinate descent approach: a two-step iterative process.

1 Given current estimate β̂ of β, obtain the likelihood estimate ζ̂s of
ζs = (αs , σs , ξs) separately at each grid box s ∈ {1, . . . ,m}.

2 Given current estimate ζ̂s , obtain the CSE estimate β̂ of β from
solving the estimating equation with an appropriately chosen working
correlation structure.

The two steps iterate until β̂ converges.
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Uncertainty Assessment

A 32× 32 block bootstrap that preserves both temporal and spatial
dependence is performed.

32 bootstrap samples of signal: account for the effects of signal
uncertainty that arise from climate-model-simulated internal
variability.

32 bootstrap samples of the observational data: account for the
natural internal variability in the climate system.

5% quantile and 95% quantile leads to an approximate 90% confidence
interval.
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Goodness-of-fit Test

Test for each grid box separately.

Remove the nonstationary component by the fitted GEV parameters.

Account for the uncertainty in parameter estimation.

Combine the site-wise p-values into one region level p-value to
alleviate the multiple testing issue.
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Simulation Study in Fingerprinting Setting

Mimic the daily maximum temperature setting in Australia (n = 140,
m = 29).

Recall detection model:

µts = αs + X>ts β, σts = σs , ξts = ξs .

Estimated signals µ̃d(t),s were used as input Xts to generate data.
Parameters α, σ and ξ are the estimates based on Australia data.

β ∈ {0, 0.5, 1}.
Dependence model: a mixture of a GG model (proportion p) and a
GA model (proportion 1− p).

CSE method with an exponential correlation structure.
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Estimate RMSE RE

p Dep True IL PL CSE IL PL CSE PL CSE

0 M 0 −0.001 −0.001 0.001 0.120 0.114 0.103 1.10 1.37
0.5 0.503 0.503 0.502 0.118 0.111 0.097 1.12 1.49

1 1.005 1.005 1.005 0.119 0.112 0.098 1.13 1.48
S 0 −0.001 −0.002 −0.004 0.153 0.140 0.104 1.19 2.14

0.5 0.503 0.502 0.501 0.147 0.133 0.102 1.21 2.05
1 1.007 1.007 1.002 0.146 0.134 0.103 1.19 1.99

0.5 M 0 0.004 0.003 0.001 0.116 0.112 0.094 1.08 1.51
0.5 0.507 0.507 0.502 0.115 0.111 0.096 1.07 1.42

1 0.997 0.997 1.000 0.115 0.112 0.097 1.06 1.40
S 0 −0.004 −0.004 0.000 0.138 0.131 0.098 1.12 2.00

0.5 0.500 0.500 0.499 0.144 0.136 0.100 1.13 2.08
1 1.005 1.005 1.006 0.138 0.131 0.097 1.12 2.02

1 M 0 −0.001 −0.001 −0.002 0.110 0.108 0.091 1.04 1.46
0.5 0.504 0.504 0.502 0.110 0.108 0.092 1.04 1.44

1 0.997 0.997 1.000 0.112 0.110 0.093 1.04 1.44
S 0 −0.001 0.000 −0.002 0.132 0.128 0.098 1.07 1.83

0.5 0.505 0.505 0.502 0.133 0.129 0.099 1.07 1.80
1 0.996 0.996 1.000 0.135 0.131 0.100 1.07 1.82

(The relative efficiency (RE) was based on the MSE, with the IL estimate as reference.)
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Applications on Extreme Temperatures

Perfect model detection for Australia

Extreme temperatures in Northern Europe (NEU)

Annual maximum of daily maximum (TXx) — warmest day
Annual maximum of daily minimum (TNx) — warmest night
Annual minimum of daily maximum (TXn) — coldest day
Annual minimum of daily minimum (TNn) — coldest night

Data period 1951–2010 (n = 60, m = 67).

CSE method with an exponential correlation structure.
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Perfect Model Detection for Australia

Annual maxima of daily minimum temperature (TNx) in Australia
during 1861–2000 (n = 140, m = 29).

Both the “observational” data and signals come from simulations of
climate models.

Climate simulation data with 10 ensembles under combined effect of
anthropogenic and natural forcings. Each ensemble was treated as an
observation dataset and the rest nine ensembles as model simulations.

If the signal is strong enough to be detectable, β should be around 1
(which may be affected by data resolution).
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Table: Summaries of the estimate of the scaling factor β, the corresponding 90%
confidence interval and the interval length for the 10 perfect model detection
analyses.

Estimate 90% Confidence Interval Interval Length

Ensemble IL CSE IL CSE IL CSE

1 1.03 0.91 (0.78, 1.28) (0.75, 1.09) 0.49 0.34
2 0.93 0.79 (0.68, 1.19) (0.60, 0.99) 0.51 0.39
3 1.11 1.06 (0.90, 1.32) (0.83, 1.30) 0.42 0.46
4 1.10 0.94 (0.86, 1.35) (0.76, 1.15) 0.49 0.39
5 0.99 0.93 (0.75, 1.26) (0.71, 1.15) 0.51 0.44
6 0.98 0.79 (0.73, 1.24) (0.55, 1.03) 0.51 0.47
7 0.95 0.88 (0.77, 1.16) (0.67, 1.10) 0.39 0.42
8 1.16 0.89 (0.94, 1.38) (0.67, 1.09) 0.44 0.42
9 0.98 0.81 (0.67, 1.27) (0.54, 1.07) 0.60 0.53

10 1.02 1.01 (0.81, 1.24) (0.83, 1.20) 0.43 0.36
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Detection and Attribution Analysis of TNx in NEU

Forcing Me Par est 90% CI len gof

ALL IL β 1.10 (0.73, 1.48) 0.75 2
CSE β 0.69 (0.46, 0.95) 0.49 1

ANT IL β 1.19 (0.77, 1.62) 0.85 2
CSE β 0.52 (0.31, 0.74) 0.43 2

ANT&NAT IL βA 1.12 (0.75, 1.50) 0.76 2
βN 0.91 (−0.28, 2.07) 2.35

CSE βA 0.70 (0.47, 0.95) 0.48 1
βN 0.59 (0.17, 1.01) 0.84
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A Marginal Approach with Estimating Equations Conclusion

Summary

CSE improves efficiency without specifying spatial dependence

Application to climate extremes increases power of detection and
attribution analysis.

Future Work

Applications

Regional frequency analysis
Detection and attribution of changes in extreme precipitation

Methodological development.

Correct bias from measurement error (signals are not known but
estimated): ongoing with Yujing Jiang.
Avoid correlation parameter estimation (Stoner and Leroux, 2002).
Minimize the objective function (Qu et al., 2000; Bai et al., 2012).
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Appendix

Bivariate Density

The bivariate density of site i and j , fi ,j , is

fi ,j(yi , yj ;β, α) = gi ,j (zi , zj ;α) |J(yi , yj ;β)|,

where gi ,j(zi , zj ;α) is the bivariate marginal density of the max-stable
process model with unit Fréchet margins, zi = G−1{Fi (yi ;β)}, and

|J(yi , yj ;β)| =
∣∣ d

dyi
G−1{Fi (yi ;β)} d

dyj
G−1{Fj(yj ;β)}

∣∣.
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Appendix

Optimal Weight

From Cauchy–Schwarz inequality (Chaganty and Joe, 2004), the optimal
choice of Wt satisfies

X>t W−1
t = Ψ>t Ω−1

t , (3)

where Ψt = −E(dSt/dβ
>), and St = (St1, . . . ,Stm)>. Since

−E(dSts/dβ
>) = −E

(
d2 log fts(yts , θts)

dθ2
ts

)
x>ts = Itsx>ts ,

We have
Ψt = −E(dSt/dβ

>) = ∆tXt ,

where ∆t = diag(It1, . . . , Itm). Substitute Ψt into equation (3),

X>t W−1
t = Ψ>t Ω−1

t = X>t ∆>t Ω−1
t ⇒ Wt = Ωt∆

−1
t .
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Appendix

Bootstrap Sampling of Signal when h = 10

(A) For each individual grid box of each ensemble, divide the n-year
simulation data into n/10 nonoverlapping 10-yr blocks. Randomly
sample 5-yr blocks data with replacement within the 10-yr blocks. All
the grid boxes share the same sample order to keep the spatial
dependence.

(B) All the ensembles of all climate models share the same sample order.

(C) Estimate the signals from the reordered data in step A.

(D) Repeat steps A to C 32 times.
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Appendix

Bootstrap Sampling of Signal when h = 5

(A) For each ensemble, transform the simulation data into Gumbel
residuals by the fitted GEV parameters in model (1) at each grid box
(Kharin and Zwiers, 2005).

(B) For each individual grid box, divide the data into nonoverlapping 5-yr
blocks. Randomly sample 5-yr blocks data with replacement. All the
grid boxes share the same sample order to keep the spatial
dependence.

(C) Transform the reordered Gumbel residuals back into GEV distribution
by the fitted GEV parameters in model (1), then estimate the signals
from the transformed data.

(D) Repeat steps A to C 32 times.
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Appendix

Bootstrap Sampling of Observational Data

(a) Subtracting the scaled signal X>ts β̂ from Yts in Model (2) to obtain
the residuals.

(b) For each individual grid box, divide the residuals into nonoverlapping
5-yr blocks. Randomly reorder the 5-yr blocks residuals. All the grid
boxes share the same sample order to keep the spatial dependence.

(c) Adding the scaled signal X>ts β̂ back to the reordered residuals, and
denote it as Ỹts .

(d) Estimate the scaling factor from Ỹts with the given signal.

(e) Repeat steps b to d 32 times for each of the 32 bootstrap samples of
signal.
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Appendix

Goodness-of-fit Test

i Transform the observational data into Gumbel residuals by the fitted
GEV parameters in Model (2) at each grid box. So testing the
goodness-of-fit of the GEV distribution of observed data equals to
testing the goodness-of-fit of the standard Gumbel distribution of the
Gumbel residuals.

ii Calculate the Kolmogorov–Smirnov test statistic at each grid box.

iii Apply the semiparametric bootstrap algorithm in Heffernan and Tawn
(2004) on the observational data to generate a bootstrap sample of
observed data. Apply steps i to ii on the sample data. Repeat this step
1000 times to obtain 1000 bootstrap samples of the
Kolmogorov–Smirnov statistics at each grid box.
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