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Introduction

Natural forcings

- Solar activity

- Volcanic eruptions

- Orbital variations (“astronomic”)

- ...

Anthropogenic forcings

- Greenhouse gases

- Aerosols

- Land use

- ...

Climate system

Atmosphere, Ocean, Cryosphere
Hydrosphere, Biosphere

& Interactions

+ Internal Variability

Is there a change? What are the causes?
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Detection

D&A : assessment of the respective contributions from internal and forced variability.

Detection (of a change X ) (personal rewording)

Demonstrating that (the change) X is not consistent with the internal variability only.

Detection requires to have some quantitative indication on the magnitude of internal
variability (IV).
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Attribution

Attribution (IPCC AR5)

“Evaluating the relative contributions of multiple causal factors to a change or event
with an assignment of statistical confidence”

Attribution (of a change X to the cause Y) (IPCC AR4)

Demonstrating that (the change) X is :
detectable,
consistent with the expected response to the cause Y,
not consistent with alternative, physically plausible explanations.

Requires some knowledge of the expected responses of the system to various
forcings.
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Key assumptions

A couple of key assumptions in D&A

(A1): The statistical distribution of the internal variability is known [D+A],
(A2): The expected responses to each external forcing are known [A].

D&A involves
Ideally: controled experiments on the climate system,
In practice: a careful comparison of models and observations, in order
to assess their consistency.
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Broad Applications - Advertisement

GMT trend 1951-2010
Fig 10.5, IPCC AR5, 2013
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Broad Applications - Advertisement

Widespread human influence (IPCC AR5).
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Broad Applications - Advertisement

Changes in extreme precipitation,
Source: Zhang et al. 2013; see also Min et al., 2011
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Regression based models

Philosophy: the response pattern is known, the magnitude is not.

Y` =
k∑

i=1

βiX
(i)
` + ε`, Cov(ε) = Σ,

Y = X β + ε, Cov(ε) = Σ,

n × 1 n × k , k × 1 n × 1 n × n

`: location (space-time),

Y : observations (space-time vector),

βi : scaling factor (scalar), unknown,

X (i): expected response to forcing i (space-time vector), known,

ε: internal variability (space-time vector),

Σ: IV covariance matrix (matrix).
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Attribution and hypothesis testing

Each step of the attribution process is related to some hypotheses testing
(illustration here in a 2-forcing world).

Detection “H0”: (β1, β2) = (0, 0),

Forc. 1 only “H0”: β2 = 0,

Consistency “H0”: (β1, β2) = (1, 1),

+ overall goodness-of-fit.

D&A requires

Estimating β,

Uncertainty analysis on β (i.e. confidence intervals),

Testing goodness of fit.
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OLS - Comparison to usual linear regression

Philosophy: The response patterns X are perfectly known.

OLS : Y = X β + ε, Cov(ε) = Σ,

σ2 is (assumed to be) known

The residual consistency check is obtained by comparing (what would be) σ̂2 to σ2.

Σ 6= I

If Σ known, then multiply by Σ−1/2 !

β̂ = (X ′Σ−1X )−1X ′Σ−1Y ,

The issue of how estimating Σ to efficiently approximate β̂ is uncommon.
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OLS model (Allen & Tett, 1999, and previous): Inference 1

Y = Xβ + ε, ε ∼ N(0,Σ), (Σ known)

Likelihood (−2 log-): `OLS(β) = (Y − Xβ)′Σ−1(Y − Xβ).

Estimation (optimal) β̂ = (X ′Σ−1X )−1X ′Σ−1Y ,

D&A Tests / CI β̂ ∼ N(β, (X ′Σ−1X )−1),

Goodness of fit ε̂′Σ−1ε̂ ∼H0 χ
2(n − k).
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OLS model (Allen & Tett, 1999, and previous): Inference 2

Y = Xβ + ε, ε ∼ N(0,Σ),

ε1, . . . , εp iid N(0,Σ) available to estimate Σ.

Derive 2 indep estimates Σ̂1, Σ̂2 (Σ̂1 not necessarily sample estimate).

Estimation (optimal) β̂ = (X ′Σ̂−1
1 X )−1X ′Σ̂−1

1 Y ,

D&A Tests / CI β̂ ∼ N
(
β, (X ′Σ̂−1

1 X )−1X ′Σ−1X (X ′Σ̂−1
1 X )−1

)
,

(β̂ − β)′
[
(X ′Σ̂−1X )−1X ′Σ̂−1

2 X (X ′Σ̂−1
1 X )−1

]−1
(β̂ − β)

∼ kF (k , p2),

Goodness of fit ε̂′Σ̂−1
2 ε̂ ∼H0

p2(n−k)
p2−n+1 F (n − k , p2 − n + 1).

(approximation).
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TLS model (Allen & Stott, 2003)

Philosophy: Taking into account the internal variability within the climate simulations
leading to X .

Y = X∗β + ε, ε ∼ N(0,Σ) (1)

X = X∗ + εX , εX ∼ N(0,Σ/nX ) (2)
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TLS: model and likelihood

TLS model

Regression equation Y ∗ = X ∗β

One observes
{

X = X ∗ + εX , Cov(εX ) = ΣX
Y = Y ∗ + εY , Cov(εY ) = ΣY .

ΣX = λΣY .
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TLS: model and likelihood

TLS model

Regression equation Y ∗ = X ∗β

One observes
{

X = X ∗ + εX , Cov(εX ) = ΣX
Y = Y ∗ + εY , Cov(εY ) = ΣY .

ΣX = λΣY .

Writing used by Allen & Stott (2003):

Y = (X − εX )β + εY , Cov(εX ) = ΣX , Cov(εY ) = ΣY .

Misleading because:
Suggests X − εX ∼ N(X ,ΣX ), while X − εX = X∗,
At least, must add Cov(X , εX ) = ΣX ! (or better εX |X = X∗ − X ).
X∗ is also of interest !
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TLS: model and likelihood

TLS model

Regression equation Y ∗ = X ∗β

One observes
{

X = X ∗ + εX , Cov(εX ) = ΣX
Y = Y ∗ + εY , Cov(εY ) = ΣY .

ΣX = λΣY .

`TLS(β,X∗) = (Y − X∗β)′Σ−1
Y (Y − X∗β) + (X − X∗)′Σ−1

X (X − X∗).

-> Geometry

`c
TLS(β) =

(Y − Xβ)′Σ−1(Y − Xβ)

1 + β2 (assuming λ = 1).
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TLS: Likelihood

`c
TLS(β) =

(Y − Xβ)′Σ−1(Y − Xβ)

1 + β2 . (3)

4

5

6

7

8

9

-10 -8 -6 -4 -2 0 2 4 6 8 10

If you assume the wrong model

OLS is "the truth": β̂TLS is not optimal (too much variance),

TLS is "the truth": β̂OLS is biased toward 0.
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TLS model: Inference

[X ,Y ] = [X ∗,X ∗β] + [εX , εY ],

Estimation (optimal)

Explicit for β̂, X̂ ∗ and Ŷ ∗ from,

SVD of [X ,Y ] = UΛV ′.

D&A Tests and Goodness of fit: asymptotic results

Approximated assuming λk � λk+1 (ie high s/n),
e.g. v̂ ′V (Λ2 − λ2

k+1I)V ′v̂ ∼ χ2
k (AS03, no proof),

Mainly too small CI, too permissive RCT (too often accepted).
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TLS: attributable trend

TLS model

Regression equation Y ∗ = X ∗β

One observes
{

X = X ∗ + εX , Cov(εX ) = ΣX
Y = Y ∗ + εY , Cov(εY ) = ΣY .

To assess the contribution of the forcing to a change:

We usually consider: [X β̂inf ,X β̂sup],

We should consider: [(X̂ ∗β̂)inf , (X̂ ∗β̂)sup],
(but difficult to estimate),
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EIV model (Huntingford et al., 2006; Hannart et al., 2014)

Philosophy: Taking into account the modeling uncertainty (ie different climate
models provide different patterns X or X∗).

Regression equation Y ∗ = X∗β

One observes


Y = Y ∗ + εY ,IV︸︷︷︸

εY

X = X∗ + εX ,IV︸︷︷︸
εX

With
{

Cov(εY ) = ΣY = ΣIV ,
Cov(εX ) = ΣX = ΣIV ,

(I.V.)
(I.V.)
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EIV model (Huntingford et al., 2006; Hannart et al., 2014)

Philosophy: Taking into account the modeling uncertainty (ie different climate
models provide different patterns X or X∗).

Regression equation Y ∗ = X∗β

One observes


Y = Y ∗ + εY ,IV︸︷︷︸

εY

X = X∗ + εX ,IV + εMod︸ ︷︷ ︸
εX

With
{

Cov(εY ) = ΣY = ΣIV ,
Cov(εX ) = ΣX = ΣIV + ΣMod ,

(I.V.)
(I.V. + Mod. Uncert.)
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EIV model (Huntingford et al., 2006; Hannart et al., 2014)

Philosophy: Taking into account the modeling uncertainty (ie different climate
models provide different patterns X or X∗).

Regression equation Y ∗ = X∗β

One observes


Y = Y ∗ + εY ,IV + εObs︸ ︷︷ ︸
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X = X∗ + εX ,IV + εMod︸ ︷︷ ︸
εX
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{

Cov(εY ) = ΣY = ΣIV + ΣObs,
Cov(εX ) = ΣX = ΣIV + ΣMod ,

(I.V. + Obs. Uncert.)
(I.V. + Mod. Uncert.)
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EIV model

Regression equation Y ∗ = X ∗β

Observations
{

Y = Y ∗ + εY , Cov(εY ) = ΣY ,
X = X ∗ + εX , Cov(εX ) = ΣX .

ΣY and ΣX have no relationship.
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EIV: Likelihood

Regression equation Y ∗ = X ∗β

Observations
{

Y = Y ∗ + εY , Cov(εY ) = ΣY ,
Xi = X ∗i + εX ,i , Cov(εX ,i ) = ΣX ,i .

Assuming k = 1,

`(β,X∗) = cte + (Y − X∗β)′Σ−1
Y (Y − X∗β) + (X − X∗)′Σ−1

X (X − X∗).

`c(β) = cte + (Y − Xβ)′(β2ΣX + ΣY )−1(Y − Xβ).

No explicit maximum (i.e. MLE) !
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Estimation (Hannart et al., 2014)

Philosophy: maximize `(β,X∗) with a numerical algorithm (MLE).

Estimation: algorithm

1. Fix β̂0,

2i. Compute X̂∗i = Argmax X∗ `(β̂
i−1,X∗),

3i. Compute β̂i = Argmax β `(β, X̂
∗
i ),

4. When convergence occurs, you have (β̂, X̂∗).

Issue(s): may converge to a critical point or local maximum (not necessarily the
global maximum, i.e. MLE).

Confidence intervals

Use asymptotic property of MLE.

Issue(s): too low coverage probability (i.e.: too small CI).
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EIV model: Inference

Assuming ΣX , ΣY known

Estimation (optimal) Non-explicit (MLE algo, Hannart et al., 2014),

D&A Tests / CI Approximated (too small CI),

Goodness of fit ??.

If ΣX , ΣY are estimated
? ? ? ?
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EIV: funny property

Using EIV instead of TLS may reduce uncertainty !

-> Toy exemple
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Motivation: Is linear regression suitable?

Y =
k∑

i=1

βiXi + ε

Predominantly used for about 2 decades

Assumes that
models are able to simulate response patterns,
response magnitudes are unknown.

The reality is probably more balanced
Large uncertainty in the response magnitude (e.g. sensitivity), but also in the spatial
response pattern (e.g. land sea warming ratio, amplitude of the Arctic amplification),
Unknown / Uncertain feedbacks are likely to modify spatial response pattern (e.g.
the cloud feedback).

Wish to not discard the available physical knowledge on the response magnitudes.

Statistical methods in D&A Aurélien Ribes, CNRM, Météo France - CNRS [-10pt]



Introduction Models & inference Common issues Conclusion

Motivation: Is linear regression suitable?

Y =
k∑

i=1

βiXi + ε

Predominantly used for about 2 decades

Assumes that
models are able to simulate response patterns,
response magnitudes are unknown.

The reality is probably more balanced
Large uncertainty in the response magnitude (e.g. sensitivity), but also in the spatial
response pattern (e.g. land sea warming ratio, amplitude of the Arctic amplification),
Unknown / Uncertain feedbacks are likely to modify spatial response pattern (e.g.
the cloud feedback).

Wish to not discard the available physical knowledge on the response magnitudes.

Statistical methods in D&A Aurélien Ribes, CNRM, Météo France - CNRS [-10pt]



Introduction Models & inference Common issues Conclusion

Possibility to apply D&A to single scalar variables

IV−only

F1−only

F1+F2

Detection: inconsistency with IV-only,

Attribution (1): consistency with F1+F2,

Attribution (2): inconsistency with F1-only.
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The new approach

Y ∗ =
k∑

i=1

X ∗i ,

{
Y = Y ∗ + εY , εY ∼ N(0,ΣY ),

Xi = X ∗i + εXi , εXi ∼ N(0,ΣXi ), i = 1, . . . , k ,

Use identical assumptions, but remove the βs,Â
response’s magnitude and pattern are treated consistently

Inference focuses on X∗i (instead of βi ),

Main assumption: additivity,

Interpretation: models give information on each term X∗i , then an additional
constraint on their sum comes from observations.

All inference can be made with maximum likelihood

X̂∗i = Xi + ΣXi (ΣY + ΣX )−1(Y − X ) ∼ N(Xi ,ΣX̂∗
i

).
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Comparing linear regression with this method

Linear Regression (EIV) This method

• knowledge on magnitude ignored • magnitude and pattern treated
consistently

• estimators are non explicit and diffi-
cult to compute

• explicit estimators

• approximated CI on β, • exact CI.
no CI on βX∗ (attrib. trend),

([β̂inf X , β̂supX ] 6= [(β̂X∗)inf , (β̂X∗)sup])
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How does this work (for scalars)?

The method is efficient if all terms but one are well constrained

a) b) c)

a) large uncertainty in both F1 and F2: little gain.

b) large uncertainty in both F1 and obs: little gain.

c) limited uncertainty in both obs and F2: substantial gain on F1.
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How does this work (2-D)?

The dependence structures ΣX1 ,ΣX2 influence the results

−2 −1 0 1 2

−1

0

1

2

3

−2 −1 0 1 2

−1

0

1

2

3

a) b)

a b

a) Variables v1 and v2 are independent: weak obs. constrain,

b) Strong dependence between v1 and v2: strong obs. constrain.
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Analysis of the observed 1951-2010 GMT linear trend

Detection step Consistency with all forcings

Obs warming: +.65K,

ALL-induced: +.67K [+.55K,+.79K],

NAT-induced: -.01K [-.03K,+.02K],

ANT-induced: +.67K [+.55K,+.80K],

NATA (consistent with Fig 10.5)

Attribution to ANT / NAT

Statistical methods in D&A Aurélien Ribes, CNRM, Météo France - CNRS [-10pt]



Introduction Models & inference Common issues Conclusion

1 Introduction - Definitions

2 Statistical models and inference
OLS
TLS
EIV
No more regression

3 Common issues and challenges
Dimensionality
Estimating large covariance matrices
Estimating climate modeling uncertainty

4 Conclusion

Statistical methods in D&A Aurélien Ribes, CNRM, Météo France - CNRS [-10pt]



Introduction Models & inference Common issues Conclusion

High dimension in climate datasets

Typical climate dataset (e.g. near-surface temperature)

Spatial dimension: 5o × 5o ∼ 2600 grid-points,
Temporal dimension: 50 - 100 ans (instrumental period),
Dimension of Y ∼ 105.
Internal variability is described by Σ ∼ 105 × 105.
The estimation of Σ requires at least 105 realisations of ε, i.e. 107 yrs of control
simulations (vs about ∼ 104 yrs available).

Some options :
Decrease the dimension of Y ,
Look for an estimator of Σ accurate in large dimension.
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Decreasing the dimension (or pre-processing)

Statistical investigation of climate at the global scale requires to reduce the
spatio-temporal dimension of datasets.

Decadal means,
Projection on spherical harmonics (e.g. truncation T4, ∼ spatial scales
> 5000 kms),
Use of simple climate indices (global mean, land-sea contrast, inter-hemispheric
contrast, annual cycle, etc).

Projection on EOFs,

This treatment is quite arbitrary and non optimal.
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1 Introduction - Definitions

2 Statistical models and inference
OLS
TLS
EIV
No more regression

3 Common issues and challenges
Dimensionality
Estimating large covariance matrices
Estimating climate modeling uncertainty

4 Conclusion
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Problem statement

Most inference methods assume that Σ is known.
(and the full distribution of the internal variability ε).

Usually, climate models are used to derive a few realisations of ε, say ε1, . . . , εp.

The distribution, or at least, Σ = Cov(ε) is estimated from these.

Optimal statistics requires to estimate Σ−1

(eg β̂OLS = (X ′Σ−1X)−1X ′Σ−1Y ).

This is very challenging in high dimension.
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Estimation of Σ in large dimension

Let us assume that ε1, . . . , εn ∼ N(0,Σ) are available for estimating Σ (p × p).

What about Σ̂ ?

The sample estimate Σ̂ is a poor estimator of Σ in large dimension (n close
to p).

Illustration : case Σ = I, distribution of the eigenvalues of Σ̂ when n, p →∞
(Marc̆enko-Pastur distribution).

0 1 2 3 4 5

0.0

0.5

1.0

1.5

Statistical methods in D&A Aurélien Ribes, CNRM, Météo France - CNRS [-10pt]



Introduction Models & inference Common issues Conclusion

Estimation of Σ in large dimension

Let us assume that ε1, . . . , εn ∼ N(0,Σ) are available for estimating Σ (p × p).

What about Σ̂ ?

The sample estimate Σ̂ is a poor estimator of Σ in large dimension (n close
to p).

Illustration : case Σ = I, distribution of the eigenvalues of Σ̂ when n, p →∞
(Marc̆enko-Pastur distribution).

0 1 2 3 4 5

0.0

0.5

1.0

1.5

Statistical methods in D&A Aurélien Ribes, CNRM, Météo France - CNRS [-10pt]



Introduction Models & inference Common issues Conclusion

Estimation of Σ in large dimension

Let us assume that ε1, . . . , εn ∼ N(0,Σ) are available for estimating Σ (p × p).

What about Σ̂ ?

The sample estimate Σ̂ is a poor estimator of Σ in large dimension (n close
to p).

Illustration : case Σ = I, distribution of the eigenvalues of Σ̂ when n, p →∞
(Marc̆enko-Pastur distribution).

0 1 2 3 4 5

0.0

0.5

1.0

1.5

Statistical methods in D&A Aurélien Ribes, CNRM, Météo France - CNRS [-10pt]



Introduction Models & inference Common issues Conclusion

EOF projections

EOF proj estimate β̂+
q

β̂q = (X ′Σ̂+
q X )−1X ′Σ̂+

q Y .

Σ̂+
q = P diag( 1

λ1
, . . . , 1

λq
, 0, . . . , 0)P′ with Σ̂ = P diag(λ1, . . . , λp)P′, and q < p.

There’s no optimality result regarding the choice of k , and it may impact the
results.
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Regularising Σ (1)
Principle

Principle

We use an estimator of Σ such as

Σ̃ = γΣ̂ + ρI.

LW estimate (Ledoit & Wolf, 2004)

Introduction of estimators γ̂, ρ̂ of γ, ρ to minimise the mean square error

E
(
‖Σ̃− Σ‖2

M

)
.

Σ̂I = γ̂Σ̂ + ρ̂I.

New estimator (Ribes et al., 2009)

β̂I = (X ′Σ̂−1
I X )−1X ′Σ̂−1

I Y .
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Regularising Σ (2)
Results: Mean square error

OLS TLS

n
1
=

75

k k

n
1
=

15
0

k k

n
1
=

30
0

k k

FIG.: Mean square error of β-
estimates based on Σ̂I (red, reg-
ularisation), Σ̂+

q , q = 1 . . . p
(blue, q-truncation) and Σ (black,
perfect estimation). Estimation
based on Monte-Carlo simula-
tions, for three values of n (p =

250 here), and under OLS and
TLS models.

By the way:
EOF projection is not optimal!

(Ribes et al., 2013)
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Integrated Optimal Fingerprinting approach

Regularization with a target ∆ 6= I (Hannart et Naveau, 2014, JMVA).

Use of a Bayesian prior: Σ ∼ W−1(∆, α) (centered on ∆),

Derive estimators ρ̂1, ρ̂2 leading to Σ̃∆ = ρ̂1Σ̂ + ρ̂2∆.

Estimation of Σ (and therefore Σ−1) and β in a joint statistical
framework (Hannart, 2016, JClim).

Uncertainty on Σ is partly taken into account in the estimation and CI on β.

β̂∆ = (X ′Σ̂−1
∆ X )−1X ′Σ̂−1

∆ Y .

The dimension reduction is no longer required - an appropriate prior
has to be used.
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How to estimate modeling uncertainty for D&A?

Need to set a paradigm: how far are the models from the truth?
We assume “models (mi ) are stat. indistinguishable from the truth (m∗)”

(mi −mj ) ∼ N(0, 2Σm), (mi −m∗) ∼ N(0, 2Σm).

Or using a different point of view (µ: mean of the model population)

(mi − µ) ∼ N(0,Σm), (µ−m∗) ∼ N(0,Σm)

Illustration:

1 1.5 2 2.5

TCR (°C)

Magnitude and pattern uncertainty are estimated consistently.
Should we assume a larger distribution?
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Modeling uncertainty vs internal variability in MME

I Simulated responses are affected by both model’s error and internal
variability,

Use of linear mixed models (model j , run k ):

wjk = µ+ mj + εjk , j = 1, . . . , nm, k = 1, . . . , nj ,

wjk = µ + mj + εjk , j = 1, . . . , nm, k = 1, . . . , nj ,

∼ N
(
µ,Σm + Σv

)
∼ N(0,Σm) ∼ N(0,Σv)

Estimation of Σm

wj. = 1/nr

nr∑
k=1

wjk , SSM =

nm∑
j=1

(wj. − w)2,

Σ̂m =
1

nm − 1

(
SSM − nm − 1

nm

nm∑
j=1

1
nj

Σv

)
+

.
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Estimating modeling uncertainty : open issues

Dimension:
about 40 models in CMIP5,
about 10 participating to DAMIP,
typical dimension of Y is > 30 (sometimes much larger)...

Models are not independent,

Ensemble design: CMIP not designed to sample uncertainty (e.g. physical
parameters, forcing uncertainty).
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Conclusions

A wide range of statistical models and methods are used in D&A, with
different levels of complexity.

Mainly regression based models (so far),
Climate modeling uncertainty is often not considered.

Many statistical issues of interest in this area.

EIV models,
Estimation of large covariance matrices,
Estimation of climate modeling uncertainty,

Hopefully, improving the methods could lead to improved observational
constrain on future changes (e.g. climate sensitivity, changes in
extreme events).
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