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Spatial Statistics
Removing the noise (smoothing)
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Spatial Statistics

Filling in the gaps (prediction)
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Spatial Statistics

Quantify differences (characterization)
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Spatial Statistics
What-if scenarios (simulation)

Will Kleiber (CU Applied Mathematics) Spatial Statistics BIRS 2016 4 / 59



Spatial Statistics

What is spatial statistics?

Typical goals:
I Removing the noise (smoothing)
I Filling in the gaps (prediction)
I Quantify differences (characterization)
I What-if scenarios (simulation)

Important in all goals is to quantify the uncertainty.

Outline:
I Nonstationary processes
I Large datasets
I Multivariate processes
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Spatial Statistics

What is spatial statistics?

Typical goals:
I Removing the noise (smoothing)
I Filling in the gaps (prediction)
I Quantify differences (characterization)
I What-if scenarios (simulation)

Important in all goals is to quantify the uncertainty.

Outline:
I Extreme(ly nonstationary) processes
I Extreme(ly large) datasets
I Extreme(ly multivariate) processes
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Colorado Data
Data: 145 stations from the Global Historical Climatology Network.
Daily minimum temperature, 1893-2011.
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Stevenson Screen and Rain Gauge at Niwot Ridge
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Minimum Temperature: June 1, 2010
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Notation and Preliminary Ideas

Z(s), indexed by location s ∈ Rd, is a Gaussian process if

I For any s1, . . . , sn ∈ Rd, (Z(s1), . . . ,Z(sn))T is multivariate normal,

requiring

i) Mean function: EZ(s) = µ(s) for all s ∈ Rd

ii) Covariance function: Cov(Z(s1),Z(s2)) = C(s1, s2) for all s1, s2 ∈ Rd.

Why Gaussian? Model is complete with µ(·) and C(·, ·).
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Standard Observational Model

Consider an observed process Y(s), s ∈ Rd,

Y(s) = µ(s) + Z(s) + ε(s),

where
I µ(s) fixed mean function
I Z(s) is a mean zero Gaussian process
I ε(s) is Gaussian white noise (“nugget effect”)

Momentarily use

Y(s) = Z(s) + ε(s),

where µ(s) has already been estimated.
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Kriging

Typical goal: Smooth observations Y(s1), . . . ,Y(sn) to estimate Z(s0).

The kriging predictor is

Ẑ(s0) =
1
n

n∑
i=1

w(s0, si)Y(si)

for weights w(s0, s1), . . . ,w(s0, sn) that minimize

E
(
Z(s0)− Ẑ(s0)

)2
.

If Cov
(
Z(s1),Z(s2)

)
= C(s1, s2) and Var ε(s) = τ 2,

Ẑ(s0) = cT (Σ + τ 2I
)−1 Y

where c = (C(s0, si))i and Σ = (C(si, sj))ij.
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Kriging Uncertainty

The kriging predictor is

Ẑ(s0) = cT (Σ + τ 2I
)−1 Y

with predictive mean squared error

E(Z(s0)− Ẑ(s0))2 = C(s0, s0)− cT (Σ + τ 2I
)−1 c.

MSE can be approximated via conditional simulations.
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Stationarity

A Gaussian process Z(s) is stationary if

I EZ(s) = µ is constant across the domain and

I Cov(Z(s1),Z(s2)) = C(s1 − s2) depends only on the lag between
locations.

Isotropic if C(s1 − s2) = C(‖s1 − s2‖).

Z(s) is nonstationary if it isn’t stationary.
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Nonstationary Processes

What might covariance nonstationarity look like?

C(s1, s2) 6= C(s1 − s2)
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Minimum Temperature: June 1, 2010
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Statistical Model

Model minimum temperature Y(s, t)

Y(s, t) = β(s)TX(s, t) + Z(s, t) + ε(s, t)

= β(s)TX(s, t) + W(s, t)
( = Local Climate + Weather).

X(s, t) includes seasonal terms and AR(1) behavior.

I Nonstationary mean, estimated locally by least squares

I Is W(s, t) nonstationary?

(To interpolate local climate, interpolate β(s)).
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Minimum Temperature Residuals: June 1, 2010
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How to Model Nonstationarity

I Regularize an empirical covariance matrix (Loader and Switzer
1989; Oehlert 1993)

I Stationary in regions (Haas 1990; Kim et al. 2005)

I Deformation (Sampson and Guttorp 1992)

I Scale mixtures: adaptive spectra (Pintore and Holmes 2007),
nonstationary Matérn (Paciorek and Schervish 2006; Stein 2005)

I Process convolution (Higdon 1998; Higdon et al. 1999; Fuentes
and Smith 2002)

I Basis-constructed processes (Nychka et al. 2002; Lindgren et
al. 2011)

Will Kleiber (CU Applied Mathematics) Spatial Statistics BIRS 2016 18 / 59



Temperature Example

Temperature model covariance assumptions:

Cov(W(s, t),W(s, t + 1)) = 0

Cov(W(s1, t),W(s2, t)) = C(s1, s2, d(t)) + τ(s1, s2)2
1[s1=s2]

Estimator for C(s1, s2, d(t)):∑T
t=1

∑n
k=1

∑n
`=1 Kλt (‖d(t0), d(t)‖d)Kλ (‖s1 − sk‖)Kλ (‖s2 − s`‖)W(sk, t)W(s`, t)∑T

t=1

∑n
k=1

∑n
`=1 Kλt (‖d(t0), d(t)‖d)Kλ(‖s1 − sk‖)Kλ(‖s2 − s`‖)
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Spatial Correlation
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Temperature Data

Leave-one-out pseudo-cross-validation comparing kriging under
I Isotropic Matérn model estimated by maximum likelihood
I Nonstationary kernel-smoothed empirical covariances

Results:

RMSE CRPS
Stationary 1.808 0.983

Nonstationary 1.805 0.983
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A Closer Look
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A Closer Look (Trinidad)
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Temperature Data Minus Trinidad

Leave-one-out pseudo-cross-validation comparing kriging under
I Isotropic Matérn model estimated by maximum likelihood
I Nonstationary kernel-smoothed empirical covariances

Results:

RMSE CRPS RMSE CRPS
Stationary 1.808 0.983 1.811 0.984

Nonstationary 1.805 0.983 1.749 0.964

A whopping 2-3% improvement.
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Nonstationarity: Last Thoughts

Spatially varying nugget effect seems apparent.
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Fuglstad et al. (2014) had a similar experience.
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Precipitation anomalies: 7,352 stations

Ẑ(s0) = cT(Σ + τ 2I)−1Y
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GPM data: 4,320,000 grid points
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Popular approaches

I Fixed rank kriging: low rank representation (Cressie and
Johannesson 2008)

I Predictive processes: conditioning leads to a low rank
representation (Banerjee et al. 2008)

I Covariance tapering: sparsity via compactly supported covariance
(Furrer et al. 2006; Kaufman et al. 2008)

I Full scale approximation: low rank + compactly supported small
scale variation (Stein 2008; Sang and Huang 2012)

I Stochastic partial differential equations (Lindgren et al. 2011)

I Multiresolution representations (Nychka et al. 2002; Ferreira and
Lee 2007; Nychka et al. 2015; Katzfuss 2016)
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Kriging weight function

Recall model
Y(s) = Z(s) + ε(s)

and the kriging predictor

Ẑ(s0) = cT (Σ + τ 2I
)−1 Y

=
1
n

n∑
i=1

w(s0, si)Y(si)

How does w(·, ·) behave as a function of s1, . . . , sn?
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Kriging weight function
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Kriging weight function

Will Kleiber (CU Applied Mathematics) Spatial Statistics BIRS 2016 30 / 59



Approximating w
As n→∞ it can be shown that

w(s1, s2)→ G(s1, s2)

where G is an idealized kernel called the equivalent kernel.
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Approximating w
As n→∞ it can be shown that

w(s1, s2)→ G(s1, s2)

where G is an idealized kernel called the equivalent kernel.

I For basis representation models G is known analytically
I For “run of the mill” isotropic covariances, G is defined as an

integral (→ numerical approximation required).

What if we try

ẐEK(s0) =
1
n

n∑
i=1

G(s0, si)Y(si)

≈ 1
n

n∑
i=1

w(s0, si)Y(si)

(equivalent kriging)?
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≈ 1
n

n∑
i=1

w(s0, si)Y(si)

(equivalent kriging)?
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Generic Basis Model

Suppose

Z(s) =

∞∑
i=1

ciφi(s)

I ci are stochastic
I φi(s) are some fixed, useful basis functions
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Multiresolution Process
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Generic Basis Model Equivalent Kernel

Suppose

Z(s) =

∞∑
i=1

ciφi(s),

then the equivalent kernel is

G(s1, s2) = Φ(s1)T(P + λQ)−1Φ(s2)

where λ = τ 2/n.
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Approximation of w (With Corrections)
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Statistical Models: Timing

I US data: multiresolution covariance with 52674 basis functions

I GPM data: exponential covariance

Parameters estimated by cross-validation.

I US data: Kriging to 524888 locations (with remainders): 2.6
seconds

I GPM data: Kriging to 4320000 locations: 81 seconds
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Precipitation Results
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Precipitation Results
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Timing Results: Covariance Tapering
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NOAA Global Ensemble Forecast System Reforecast

GEFS reforecast project version 2:
I 2012 version of NCEP’s GEFS
I 11-member ensemble, daily from 00 UTC initial conditions
I T254 (∼ 50 km) to 8 days, T190 (∼ 70 km) to 16 days

Sea level pressure at forecast horizons:
I 0 hours
I 24 hours, 48 hours, . . . , 192 hours (8 days)

over first 90 days of 2014.

Statistical goal:
I Quantify the improvement and similarity between forecasts and

realizing surfaces
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Introduction to Multivariate Spatial Modeling

A typical model for p observed spatial processes is
Y1(s)
Y2(s)

...
Yp(s)

 = Y = µ+ Z + ε =


µ1(s)
µ2(s)

...
µp(s)

+


Z1(s)
Z2(s)

...
Zp(s)

+


ε1(s)
ε2(s)

...
εp(s)


where

I µ(s) is a fixed unknown vector of functions
I Z(s) is a mean zero p-variate correlated stochastic process
I ε(s) is a mean zero p-variate white noise process
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Cross-Covariance Functions

Dependence is usually specified by choosing
I (Direct)-Covariance functions Cii(s1 − s2) = Cov(Zi(s1),Zi(s2))

I Cross-covariance functions Cij(s1 − s2) = Cov(Zi(s1),Zj(s2)), i 6= j.

We require these to be nonnegative definite in that

p∑
i=1

p∑
j=1

n∑
k=1

n∑
`=1

aikaj`Cij(sk − s`) ≥ 0.

This is a very difficult condition to ensure for some arbitrary proposed
model, so most models are constructed to satisfy it.
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Correlations vs. Cross-Correlations
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Marginal Range, Smoothness
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Correlation Coefficient
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Cross-Range
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Cross-Smoothness
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Spectra for Multivariate Random Fields

Consider
fij(ω) =

1
(2π)d

∫
Rd

Cij(h) exp(−iωTh)dh.

I fii(ω) is the spectral density for Cii(h)

I fij(ω) is the cross-spectral density for Cij(h)

I fii(ω) is the amount of variability of Zi(s) that can be attributed to
frequency ω.

I What about fij(ω)?
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Coherence
Define the coherence at frequency ω between Z1(s) and Z2(s) as

γ(ω) =
| f12(ω)|√

f11(ω) f22(ω)
∈ [0, 1].

Coherence is the amount of variability that can be attributed to a linear
relationship between two processes at frequency ω.

Moreover, the K(u) that minimizes

E
∣∣∣∣Z1(s0)−

∫
Rd

K(u− s0)Z2(u)du
∣∣∣∣2

is

K(u) =
1

(2π)d

∫
Rd

√
f11(ω)

f22(ω)
γ(ω) exp(−iωTu)dω.
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Simple Coherence Example

Suppose

Z1(s) = U1 cos(ω0s)

Z2(s) = U1 cos(ω0s) + U2 cos(ω1s)

for ω0 6= ω1 and U1 and U2 uncorrelated. Then

γ(ω) =

{
1 ω = ω0

0 otherwise
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Cross-Correlations
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Coherence vs. Cross-Correlation
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Coherence vs. Cross-Correlation
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Cross-Correlations vs. Coherences
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Multivariate Matérn Implications

A bivariate Matérn model has

γ(ω)2 = ρ2 Γ(ν12 + d/2)2Γ(ν1)Γ(ν2)

Γ(ν1 + d/2)Γ(ν2 + d/2)Γ(ν12)2

a4ν12
12

a2ν1
1 a2ν2

2

×
(a2

1 + ‖ω‖2)ν1+d/2(a2
2 + ‖ω‖2)ν2+d/2

(a2
12 + ‖ω‖2)2ν12+d

.

Results:
I Force ν12 > (ν1 + ν2)/2, else coherence does not decay at

arbitrarily high frequencies
I a12 controls location of peak of coherence
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Estimation: Periodogram

The spatial periodogram matrix is I(ω) = (Ik`(ω))p
k,`=1 where

Ik`(ω) =
δ

(2π)pN

(
N∑

k=1

Zk(sk) exp(−isT
kω)

)(
N∑

k=1

Z`(sk) exp(−isT
kω)

)

and is available at Fourier frequencies.

I Need to smooth periodograms for consistency

I GEFS example: average empirical coherences over 90 days in
dataset
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GEFS SLP Coherences

Estimated absolute coherence functions for the GEFS pressure data
between (a) 0h and 168h (7 days), (b) 0h and 96h (4 days) and (c) 0h
and 24h (1 day).
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GEFS Pressure Example
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Discussion

I Nonstationarity: what is the goal?

I Estimation for large datasets: which scales do we care about?

I Multivariate processes: what are we modeling?
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