Construction of Artin－Schelter Regular Algebras －Homogeneous PBW Deformation

D．－M．LU

Zhejiang University

＂Bridges between Noncommutative Algebra and Algebraic Geometry＂
Banff，September 12， 2016

Joint work with Y．SHEN and G．－S．ZHOU

Recall

Artin-Schelter regular (AS-regular, for short) algebras are known as noncommutative analogues of polynomial algebras.

Recall

Artin-Schelter regular (AS-regular, for short) algebras are known as noncommutative analogues of polynomial algebras.

One of the main projects is the classification of noetherian, AS-regular, connected graded algebras of global dimension n.

Recall

Artin-Schelter regular (AS-regular, for short) algebras are known as noncommutative analogues of polynomial algebras.

One of the main projects is the classification of noetherian, AS-regular, connected graded algebras of global dimension n.

Completed the classification results in low dimensions:

Recall

Artin-Schelter regular (AS-regular, for short) algebras are known as noncommutative analogues of polynomial algebras.

One of the main projects is the classification of noetherian, AS-regular, connected graded algebras of global dimension n.

Completed the classification results in low dimensions:

- 1-dim'I AS-regular algebra: $\mathbb{C}[x]$.

Recall

Artin-Schelter regular (AS-regular, for short) algebras are known as noncommutative analogues of polynomial algebras.

One of the main projects is the classification of noetherian, AS-regular, connected graded algebras of global dimension n.

Completed the classification results in low dimensions:

- 1-dim'I AS-regular algebra: $\mathbb{C}[x]$.
- 2-dim'I AS-regular algebras:

$$
A_{q}=\frac{\mathbb{C}\langle x, y\rangle}{(x y-q y x)}, \text { and } A_{J}=\frac{\mathbb{C}\langle x, y\rangle}{\left(x y-y x-y^{2}\right)}
$$

Recall

Artin-Schelter regular (AS-regular, for short) algebras are known as noncommutative analogues of polynomial algebras.

One of the main projects is the classification of noetherian, AS-regular, connected graded algebras of global dimension n.

Completed the classification results in low dimensions:

- 1-dim'I AS-regular algebra: $\mathbb{C}[x]$.
- 2-dim'I AS-regular algebras:

$$
A_{q}=\frac{\mathbb{C}\langle x, y\rangle}{(x y-q y x)}, \text { and } A_{J}=\frac{\mathbb{C}\langle x, y\rangle}{\left(x y-y x-y^{2}\right)}
$$

- AS-regular algebras of global dimension 3 were classified by Artin, Schelter, Tate and Van den Bergh.

4-dim'l AS-regular algebras

There are many partial results about 4-dim'I AS-regular algebras:

4-dim'l AS-regular algebras

There are many partial results about 4-dim'I AS-regular algebras:

- The 4-dim'I Sklyanin algebra (proved by Smith and Stafford in 1992).

4-dim'| AS-regular algebras

There are many partial results about 4-dim'I AS-regular algebras:

- The 4-dim'I Sklyanin algebra (proved by Smith and Stafford in 1992).
- Normal extension of 3-dim'I regular algebras.
- AS-regular algebras with finitely many point modules.
- Ore extension of 3-dim'I regular algebras.
- Quantum 2×2-matrices.
- $q \mathbb{P}^{3}$ containing a quadric.
- $q \mathbb{P}^{3}$ related to some Clifford algebras.
-

4-dim'| AS-regular algebras (continue)

Three types: (12221), (13431) and (14641)

4-dim'| AS-regular algebras (continue)

Three types: (12221), (13431) and (14641)

- (12221): [Palmieri-Wu-Zhang-L., 2007]

The following algebras are AS-regular of dimension 4:

1. $A(p):=\mathbb{C}\langle x, y\rangle /\left(x y^{2}-p^{2} y^{2} x, x^{3} y+p x^{2} y x+p^{2} x y x^{2}+p^{3} y x^{3}\right)$, where $0 \neq p \in \mathbb{C}$;
2. $B(p):=\mathbb{C}\langle x, y\rangle /\left(x y^{2}+i p^{2} y^{2} x, x^{3} y+p x^{2} y x+p^{2} x y x^{2}+p^{3} y x^{3}\right)$, where $0 \neq p \in \mathbb{C}$ and $i^{2}=-1$;
3. $C(p):=\mathbb{C}\langle x, y\rangle /\left(x y^{2}+p y x y+p^{2} y^{2} x, x^{3} y+j p^{3} y x^{3}\right)$, where $0 \neq p \in \mathbb{C}$ and $j^{2}+j+1=0$;
4. $D(v, p):=\mathbb{C}\langle x, y\rangle /\left(x y^{2}+v y x y+p^{2} y^{2} x, x^{3} y+(v+p) x^{2} y x+\right.$ $\left.\left(p v+p^{2}\right) x y x^{2}+p^{3} y x^{3}\right)$, where $v, p \in \mathbb{C}$ and $p \neq 0$.

4-dim'| AS-regular algebras (continue)

Three types: (12221), (13431) and (14641)

- (12221): [Palmieri-Wu-Zhang-L., 2007]

The following algebras are AS-regular of dimension 4:

1. $A(p):=\mathbb{C}\langle x, y\rangle /\left(x y^{2}-p^{2} y^{2} x, x^{3} y+p x^{2} y x+p^{2} x y x^{2}+p^{3} y x^{3}\right)$, where $0 \neq p \in \mathbb{C}$;
2. $B(p):=\mathbb{C}\langle x, y\rangle /\left(x y^{2}+i p^{2} y^{2} x, x^{3} y+p x^{2} y x+p^{2} x y x^{2}+p^{3} y x^{3}\right)$, where $0 \neq p \in \mathbb{C}$ and $i^{2}=-1$;
3. $C(p):=\mathbb{C}\langle x, y\rangle /\left(x y^{2}+p y x y+p^{2} y^{2} x, x^{3} y+j p^{3} y x^{3}\right)$, where $0 \neq p \in \mathbb{C}$ and $j^{2}+j+1=0$;
4. $D(v, p):=\mathbb{C}\langle x, y\rangle /\left(x y^{2}+v y x y+p^{2} y^{2} x, x^{3} y+(v+p) x^{2} y x+\right.$ $\left.\left(p v+p^{2}\right) x y x^{2}+p^{3} y x^{3}\right)$, where $v, p \in \mathbb{C}$ and $p \neq 0$.
These algebras form a complete list of generic AS-regular algebras generated by two elements of dimension 4.

4-dim'| AS-regular algebras (continue)

Three types: (12221), (13431) and (14641)

- (12221): [Palmieri-Wu-Zhang-L., 2007]

The following algebras are AS-regular of dimension 4:

1. $A(p):=\mathbb{C}\langle x, y\rangle /\left(x y^{2}-p^{2} y^{2} x, x^{3} y+p x^{2} y x+p^{2} x y x^{2}+p^{3} y x^{3}\right)$, where $0 \neq p \in \mathbb{C}$;
2. $B(p):=\mathbb{C}\langle x, y\rangle /\left(x y^{2}+i p^{2} y^{2} x, x^{3} y+p x^{2} y x+p^{2} x y x^{2}+p^{3} y x^{3}\right)$, where $0 \neq p \in \mathbb{C}$ and $i^{2}=-1$;
3. $C(p):=\mathbb{C}\langle x, y\rangle /\left(x y^{2}+p y x y+p^{2} y^{2} x, x^{3} y+j p^{3} y x^{3}\right)$, where $0 \neq p \in \mathbb{C}$ and $j^{2}+j+1=0$;
4. $D(v, p):=\mathbb{C}\langle x, y\rangle /\left(x y^{2}+v y x y+p^{2} y^{2} x, x^{3} y+(v+p) x^{2} y x+\right.$ $\left.\left(p v+p^{2}\right) x y x^{2}+p^{3} y x^{3}\right)$, where $v, p \in \mathbb{C}$ and $p \neq 0$.
These algebras form a complete list of generic AS-regular algebras generated by two elements of dimension 4.

- (13431):
[Rogalski-Zhang, 2012]

4-dim'| AS-regular algebras (continue)

Three types: (12221), (13431) and (14641)

- (12221): [Palmieri-Wu-Zhang-L., 2007]

The following algebras are AS-regular of dimension 4:

1. $A(p):=\mathbb{C}\langle x, y\rangle /\left(x y^{2}-p^{2} y^{2} x, x^{3} y+p x^{2} y x+p^{2} x y x^{2}+p^{3} y x^{3}\right)$, where $0 \neq p \in \mathbb{C}$;
2. $B(p):=\mathbb{C}\langle x, y\rangle /\left(x y^{2}+i p^{2} y^{2} x, x^{3} y+p x^{2} y x+p^{2} x y x^{2}+p^{3} y x^{3}\right)$, where $0 \neq p \in \mathbb{C}$ and $i^{2}=-1$;
3. $C(p):=\mathbb{C}\langle x, y\rangle /\left(x y^{2}+p y x y+p^{2} y^{2} x, x^{3} y+j p^{3} y x^{3}\right)$, where $0 \neq p \in \mathbb{C}$ and $j^{2}+j+1=0 ;$
4. $D(v, p):=\mathbb{C}\langle x, y\rangle /\left(x y^{2}+v y x y+p^{2} y^{2} x, x^{3} y+(v+p) x^{2} y x+\right.$ $\left.\left(p v+p^{2}\right) x y x^{2}+p^{3} y x^{3}\right)$, where $v, p \in \mathbb{C}$ and $p \neq 0$.
These algebras form a complete list of generic AS-regular algebras generated by two elements of dimension 4.

- (13431):
[Rogalski-Zhang, 2012]
- (14641):
[Zhang-Zhang, 2009]

5-dim'l AS-regular algebras with 2 generators

[Fløystad-Vatne, 2011] There are possible five resolution types of AS-regular algebras of dimension five with two generators under the natural extra conditions that the algebra is a domain

5-dim'l AS-regular algebras with 2 generators

[Fløystad-Vatne, 2011] There are possible five resolution types of AS-regular algebras of dimension five with two generators under the natural extra conditions that the algebra is a domain

- with 3 relations: $(3,5,5)$, or $(4,4,4)$, or $(3,4,7)$.

5-dim'l AS-regular algebras with 2 generators

[Fløystad-Vatne, 2011] There are possible five resolution types of AS-regular algebras of dimension five with two generators under the natural extra conditions that the algebra is a domain

- with 3 relations: $(3,5,5)$, or $(4,4,4)$, or $(3,4,7)$.
- with 4 relations: $(4,4,4,5)$.

5-dim'l AS-regular algebras with 2 generators

[Fløystad-Vatne, 2011] There are possible five resolution types of AS-regular algebras of dimension five with two generators under the natural extra conditions that the algebra is a domain

- with 3 relations: $(3,5,5)$, or $(4,4,4)$, or $(3,4,7)$.
- with 4 relations: $(4,4,4,5)$.
- with 5 relations: $(4,4,4,5,5)$.

5-dim'l AS-regular algebras with 2 generators

[Fløystad-Vatne, 2011] There are possible five resolution types of AS-regular algebras of dimension five with two generators under the natural extra conditions that the algebra is a domain

- with 3 relations: $(3,5,5)$, or $(4,4,4)$, or $(3,4,7)$.
- with 4 relations: $(4,4,4,5)$.
- with 5 relations: $(4,4,4,5,5)$.

The examples of types $(3,5,5),(4,4,4)$ and $(3,4,7)$ are showed in [Fløystad-Vatne, 2011].

5-dim'l AS-regular algebras with 2 generators

[Fløystad-Vatne, 2011] There are possible five resolution types of AS-regular algebras of dimension five with two generators under the natural extra conditions that the algebra is a domain

- with 3 relations: $(3,5,5)$, or $(4,4,4)$, or $(3,4,7)$.
- with 4 relations: $(4,4,4,5)$.
- with 5 relations: $(4,4,4,5,5)$.

The examples of types $(3,5,5),(4,4,4)$ and $(3,4,7)$ are showed in [Fløystad-Vatne, 2011].

A complete list of AS-regular algebras of type $(4,4,4)$ under a generic condition are worked out in [Wang-Wu, 2012].

5-dim'I AS-regular algebras with 2 generators

[Fløystad-Vatne, 2011] There are possible five resolution types of AS-regular algebras of dimension five with two generators under the natural extra conditions that the algebra is a domain

- with 3 relations: $(3,5,5)$, or $(4,4,4)$, or $(3,4,7)$.
- with 4 relations: $(4,4,4,5)$.
- with 5 relations: $(4,4,4,5,5)$.

The examples of types $(3,5,5),(4,4,4)$ and $(3,4,7)$ are showed in [Fløystad-Vatne, 2011].

A complete list of AS-regular algebras of type $(4,4,4)$ under a generic condition are worked out in [Wang-Wu, 2012].

A complete classification of AS-regular \mathbb{Z}^{2}-graded algebras of all types above are finished in [Zhou-L., 2014].

The 5-dim'I AS-regular algebras of type $(4,4,4,5,5)$

[Zhou-L., 2014] Let $\mathcal{G}=\left\{\mathcal{G}(p, j): p \neq 0, j^{4}=1\right\}$, where $\mathcal{G}(p, j)=k\left\langle x_{1}, x_{2}\right\rangle /\left(f_{1}, f_{2}, f_{3}, f_{4}, f_{5}\right)$ is the \mathbb{Z}^{2}-graded algebra with five relations

$$
\begin{aligned}
& f_{1}=x_{2} x_{1}^{3}+p x_{1} x_{2} x_{1}^{2}+p^{2} x_{1}^{2} x_{2} x_{1}+p^{3} x_{1}^{3} x_{2} \\
& f_{2}= \\
& x_{2}^{2} x_{1}^{2}+p x_{2} x_{1} x_{2} x_{1}+p^{2} x_{2} x_{1}^{2} x_{2}+p^{2} x_{1} x_{2}^{2} x_{1}+p^{3} x_{1} x_{2} x_{1} x_{2}+p^{4} x_{1}^{2} x_{2}^{2} \\
& f_{3}= \\
& x_{2}^{3} x_{1}+p x_{2}^{2} x_{1} x_{2}+p^{2} x_{2} x_{1} x_{2}^{2}+p^{3} x_{1} x_{2}^{3}, \\
& f_{4}= \\
& \quad x_{2} x_{1} x_{2} x_{1}^{2}+p x_{2} x_{1}^{2} x_{2} x_{1}+p^{2} j x_{1} x_{2} x_{1} x_{2} x_{1}+p^{3}(j-1) x_{1} x_{2} x_{1}^{2} x_{2} \\
& \quad \quad \quad+p^{3}\left(j-j^{2}\right) x_{1}^{2} x_{2}^{2} x_{1}+p^{4}(j-1) x_{1}^{2} x_{2} x_{1} x_{2}+p^{5}\left(-1+j-j^{3}\right) x_{1}^{3} x_{2}^{2} \\
& f_{5}= \\
& \\
& \quad x_{2}^{2} x_{1} x_{2} x_{1}+p x_{2} x_{1} x_{2}^{2} x_{1}+p^{2} j x_{2} x_{1} x_{2} x_{1} x_{2}+p^{3}\left(j-j^{2}\right) x_{2} x_{1}^{2} x_{2}^{2} \\
& \quad \quad+p^{3}(j-1) x_{1} x_{2}^{2} x_{1} x_{2}+p^{4}(j-1) x_{1} x_{2} x_{1} x_{2}^{2}+p^{5}\left(-1+j-j^{3}\right) x_{1}^{2} x_{2}^{3} .
\end{aligned}
$$

The 5-dim'I AS-regular algebras of type $(4,4,4,5,5)$

[Zhou-L., 2014] Let $\mathcal{G}=\left\{\mathcal{G}(p, j): p \neq 0, j^{4}=1\right\}$, where $\mathcal{G}(p, j)=k\left\langle x_{1}, x_{2}\right\rangle /\left(f_{1}, f_{2}, f_{3}, f_{4}, f_{5}\right)$ is the \mathbb{Z}^{2}-graded algebra with five relations

$$
\begin{aligned}
& f_{1}=x_{2} x_{1}^{3}+p x_{1} x_{2} x_{1}^{2}+p^{2} x_{1}^{2} x_{2} x_{1}+p^{3} x_{1}^{3} x_{2}, \\
& f_{2}= \\
& x_{2}^{2} x_{1}^{2}+p x_{2} x_{1} x_{2} x_{1}+p^{2} x_{2} x_{1}^{2} x_{2}+p^{2} x_{1} x_{2}^{2} x_{1}+p^{3} x_{1} x_{2} x_{1} x_{2}+p^{4} x_{1}^{2} x_{2}^{2}, \\
& f_{3}= \\
& x_{2}^{3} x_{1}+p x_{2}^{2} x_{1} x_{2}+p^{2} x_{2} x_{1} x_{2}^{2}+p^{3} x_{1} x_{2}^{3}, \\
& f_{4}= \\
& \quad x_{2} x_{1} x_{2} x_{1}^{2}+p x_{2} x_{1}^{2} x_{2} x_{1}+p^{2} j x_{1} x_{2} x_{1} x_{2} x_{1}+p^{3}(j-1) x_{1} x_{2} x_{1}^{2} x_{2} \\
& \quad \quad+p^{3}\left(j-j^{2}\right) x_{1}^{2} x_{2}^{2} x_{1}+p^{4}(j-1) x_{1}^{2} x_{2} x_{1} x_{2}+p^{5}\left(-1+j-j^{3}\right) x_{1}^{3} x_{2}^{2}, \\
& f_{5}= \\
& \quad x_{2}^{2} x_{1} x_{2} x_{1}+p x_{2} x_{1} x_{2}^{2} x_{1}+p^{2} j x_{2} x_{1} x_{2} x_{1} x_{2}+p^{3}\left(j-j^{2}\right) x_{2} x_{1}^{2} x_{2}^{2} \\
& \quad \quad+p^{3}(j-1) x_{1} x_{2}^{2} x_{1} x_{2}+p^{4}(j-1) x_{1} x_{2} x_{1} x_{2}^{2}+p^{5}\left(-1+j-j^{3}\right) x_{1}^{2} x_{2}^{3} .
\end{aligned}
$$

Question: Is there a 5-dimensional AS-regular algebra with 2 generators and 4 relations?

Motivation

An observation is that there is a common property in these algebras mentioned above: all of them can be endowed with an appropriate \mathbb{Z}^{2}-grading.

Motivation

An observation is that there is a common property in these algebras mentioned above: all of them can be endowed with an appropriate \mathbb{Z}^{2}-grading.

A question follows: how to find new AS-regular algebras without the hypothesis on grading?

Motivation

An observation is that there is a common property in these algebras mentioned above: all of them can be endowed with an appropriate \mathbb{Z}^{2}-grading.

A question follows: how to find new AS-regular algebras without the hypothesis on grading?

Goal: give an effective method to construct AS-regular algebras without \mathbb{Z}^{2}-grading.

Motivation

An observation is that there is a common property in these algebras mentioned above: all of them can be endowed with an appropriate \mathbb{Z}^{2}-grading.

A question follows: how to find new AS-regular algebras without the hypothesis on grading?

Goal: give an effective method to construct AS-regular algebras without \mathbb{Z}^{2}-grading.

Convention:

- k is a fixed algebraically closed field of characteristic zero.
- all algebras are generated in degree 1 .
- r is a positive integer (>1).

Order and filtration

Normal map $\|\cdot\|: \mathbb{Z}^{r} \rightarrow \mathbb{Z},\left(a_{1}, \cdots, a_{r}\right) \mapsto \sum_{i=1}^{r} a_{i}$.

Order and filtration

Normal map $\|\cdot\|: \mathbb{Z}^{r} \rightarrow \mathbb{Z},\left(a_{1}, \cdots, a_{r}\right) \mapsto \sum_{i=1}^{r} a_{i}$.
Admissible order $<$ on $\mathbb{Z}^{r}: \alpha=\left(a_{1}, \cdots, a_{r}\right), \beta=\left(b_{1}, \cdots, b_{r}\right)$

$$
\alpha<\beta \Longleftrightarrow\left\{\begin{array}{l}
\|\alpha\|<\|\beta\|, \text { or } \\
\|\alpha\|=\|\beta\|, \exists t, a_{i}=b_{i}(i<t), a_{t}<b_{t}
\end{array}\right.
$$

Order and filtration

Normal map $\|\cdot\|: \mathbb{Z}^{r} \rightarrow \mathbb{Z},\left(a_{1}, \cdots, a_{r}\right) \mapsto \sum_{i=1}^{r} a_{i}$.
Admissible order $<$ on $\mathbb{Z}^{r}: \alpha=\left(a_{1}, \cdots, a_{r}\right), \beta=\left(b_{1}, \cdots, b_{r}\right)$

$$
\alpha<\beta \Longleftrightarrow\left\{\begin{array}{l}
\|\alpha\|<\|\beta\|, \text { or } \\
\|\alpha\|=\|\beta\|, \exists t, a_{i}=b_{i}(i<t), a_{t}<b_{t} .
\end{array}\right.
$$

$X=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$, with a partition $\left\{X_{1}, \cdots, X_{r}\right\}$ and a \mathbb{Z}^{r}-grading: $\operatorname{deg} x:=\left(\delta_{1 i}, \cdots, \delta_{r i}\right)$ for $x \in X_{i}$.

Order and filtration

Normal map $\|\cdot\|: \mathbb{Z}^{r} \rightarrow \mathbb{Z},\left(a_{1}, \cdots, a_{r}\right) \mapsto \sum_{i=1}^{r} a_{i}$.
Admissible order $<$ on $\mathbb{Z}^{r}: \alpha=\left(a_{1}, \cdots, a_{r}\right), \beta=\left(b_{1}, \cdots, b_{r}\right)$

$$
\alpha<\beta \Longleftrightarrow\left\{\begin{array}{l}
\|\alpha\|<\|\beta\|, \text { or } \\
\|\alpha\|=\|\beta\|, \exists t, a_{i}=b_{i}(i<t), a_{t}<b_{t} .
\end{array}\right.
$$

$X=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$, with a partition $\left\{X_{1}, \cdots, X_{r}\right\}$ and a \mathbb{Z}^{r}-grading: $\operatorname{deg} x:=\left(\delta_{1 i}, \cdots, \delta_{r i}\right)$ for $x \in X_{i}$.
X^{*} : the set of words generated by X including the empty word 1. monomial ordering on X^{*}, then induces a \mathbb{Z}^{r}-graded admissible ordering on X^{*}

Order and filtration

Normal map $\|\cdot\|: \mathbb{Z}^{r} \rightarrow \mathbb{Z},\left(a_{1}, \cdots, a_{r}\right) \mapsto \sum_{i=1}^{r} a_{i}$.
Admissible order $<$ on $\mathbb{Z}^{r}: \alpha=\left(a_{1}, \cdots, a_{r}\right), \beta=\left(b_{1}, \cdots, b_{r}\right)$

$$
\alpha<\beta \Longleftrightarrow\left\{\begin{array}{l}
\|\alpha\|<\|\beta\|, \text { or } \\
\|\alpha\|=\|\beta\|, \exists t, a_{i}=b_{i}(i<t), a_{t}<b_{t} .
\end{array}\right.
$$

$X=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$, with a partition $\left\{X_{1}, \cdots, X_{r}\right\}$ and a \mathbb{Z}^{r}-grading: $\operatorname{deg} x:=\left(\delta_{1 i}, \cdots, \delta_{r i}\right)$ for $x \in X_{i}$.
X^{*} : the set of words generated by X including the empty word 1. monomial ordering on X^{*}, then induces a \mathbb{Z}^{r}-graded admissible ordering on X^{*}
$\rightsquigarrow \mathbb{Z}^{r}$-filtration on $k\langle X\rangle$:

$$
F_{\alpha}(k\langle X\rangle):= \begin{cases}0, & \text { if } \alpha<0 \\ \operatorname{Span}_{k}\left\{u \in X^{*} \mid \operatorname{deg} u \leq \alpha\right\}, & \text { if } \alpha \geq 0\end{cases}
$$

\mathbb{Z}^{r}-graded algebras

Let $A=\bigoplus_{\alpha \in \mathbb{Z}^{r}} A_{\alpha}$ be a \mathbb{Z}^{r}-graded aglebra.

\mathbb{Z}^{r}-graded algebras

Let $A=\bigoplus_{\alpha \in \mathbb{Z}^{r}} A_{\alpha}$ be a \mathbb{Z}^{r}-graded aglebra.

For a homogeneous element $a \in A_{\alpha}$, denote $\left\{\begin{array}{l}\operatorname{deg} a=\alpha, \\ \operatorname{tdeg} a=\|\alpha\| .\end{array}\right.$

\mathbb{Z}^{r}-graded algebras

Let $A=\bigoplus_{\alpha \in \mathbb{Z}^{r}} A_{\alpha}$ be a \mathbb{Z}^{r}-graded aglebra.

For a homogeneous element $a \in A_{\alpha}$, denote $\left\{\begin{array}{l}\operatorname{deg} a=\alpha, \\ \operatorname{tdeg} a=\|\alpha\| .\end{array}\right.$
A is connected if $A_{\alpha}=0$ for all $\alpha \notin \mathbb{N}^{r}$ and $A_{0}=k$.

\mathbb{Z}^{r}-graded algebras

Let $A=\bigoplus_{\alpha \in \mathbb{Z}^{r}} A_{\alpha}$ be a \mathbb{Z}^{r}-graded aglebra.
For a homogeneous element $a \in A_{\alpha}$, denote $\left\{\begin{array}{l}\operatorname{deg} a=\alpha, \\ \operatorname{tdeg} a=\|\alpha\| .\end{array}\right.$
A is connected if $A_{\alpha}=0$ for all $\alpha \notin \mathbb{N}^{r}$ and $A_{0}=k$.

The associated \mathbb{Z}-graded algebra $A^{\mathrm{gr}}=\bigoplus_{i \in \mathbb{Z}}\left(A^{\mathrm{gr}}\right)_{i}$, where

$$
\left(A^{\mathrm{gr}}\right)_{i}=\bigoplus_{\|\alpha\|=i} A_{\alpha}, \text { for all } i
$$

Homogeneous PBW deformation

Let $A=k\langle X\rangle /(S)$ be a connected \mathbb{Z}^{r}-graded algebra, where X is the minimal generating set and $r>1$.

Homogeneous PBW deformation

Let $A=k\langle X\rangle /(S)$ be a connected \mathbb{Z}^{r}-graded algebra, where X is the minimal generating set and $r>1$.
S consists of \mathbb{Z}^{r}-homogeneous elements in $k\langle X\rangle$.

Homogeneous PBW deformation

Let $A=k\langle X\rangle /(S)$ be a connected \mathbb{Z}^{r}-graded algebra, where X is the minimal generating set and $r>1$.
S consists of \mathbb{Z}^{r}-homogeneous elements in $k\langle X\rangle$.

For any $s \in S$, define a new element $p_{s} \in k\langle X\rangle$ by

$$
p_{s}=s+\bar{s}, \quad \bar{s} \in k\langle X\rangle,
$$

satisfying $\bar{s}=0$, or $\operatorname{deg} \bar{s}<\operatorname{deg} s$ and $\operatorname{tdeg} \bar{s}=\operatorname{tdeg} s$.

Homogeneous PBW deformation

Let $A=k\langle X\rangle /(S)$ be a connected \mathbb{Z}^{r}-graded algebra, where X is the minimal generating set and $r>1$.
S consists of \mathbb{Z}^{r}-homogeneous elements in $k\langle X\rangle$.

For any $s \in S$, define a new element $p_{s} \in k\langle X\rangle$ by

$$
p_{s}=s+\bar{s}, \quad \bar{s} \in k\langle X\rangle,
$$

satisfying $\bar{s}=0$, or $\operatorname{deg} \bar{s}<\operatorname{deg} s$ and $\operatorname{tdeg} \bar{s}=\operatorname{tdeg} s$.
The new set $P=\left\{p_{s} \mid s \in S\right\}$ products a \mathbb{Z}-graded algebra

$$
U=k\langle X\rangle /(P)
$$

There is a natural \mathbb{Z}^{r}-filtration on U defined by

$$
F_{\alpha} U=\frac{F_{\alpha} k\langle X\rangle+(P)}{(P)}
$$

where $F_{\alpha} k\langle X\rangle=\operatorname{Span}_{k}\left\{u \in X^{*} \mid \operatorname{deg} u \leq \alpha\right\}$ for any $\alpha \in \mathbb{Z}^{r}$.

There is a natural \mathbb{Z}^{r}-filtration on U defined by

$$
F_{\alpha} U=\frac{F_{\alpha} k\langle X\rangle+(P)}{(P)}
$$

where $F_{\alpha} k\langle X\rangle=\operatorname{Span}_{k}\left\{u \in X^{*} \mid \operatorname{deg} u \leq \alpha\right\}$ for any $\alpha \in \mathbb{Z}^{r}$.

The associated \mathbb{Z}^{r}-graded algebra is denoted by $G^{r}(U)$.

There is a natural \mathbb{Z}^{r}-filtration on U defined by

$$
F_{\alpha} U=\frac{F_{\alpha} k\langle X\rangle+(P)}{(P)}
$$

where $F_{\alpha} k\langle X\rangle=\operatorname{Span}_{k}\left\{u \in X^{*} \mid \operatorname{deg} u \leq \alpha\right\}$ for any $\alpha \in \mathbb{Z}^{r}$.
The associated \mathbb{Z}^{r}-graded algebra is denoted by $G^{r}(U)$.
There exists a natural \mathbb{Z}^{r}-graded epimorphism

$$
\varphi: A \rightarrow G^{r}(U)
$$

There is a natural \mathbb{Z}^{r}-filtration on U defined by

$$
F_{\alpha} U=\frac{F_{\alpha} k\langle X\rangle+(P)}{(P)}
$$

where $F_{\alpha} k\langle X\rangle=\operatorname{Span}_{k}\left\{u \in X^{*} \mid \operatorname{deg} u \leq \alpha\right\}$ for any $\alpha \in \mathbb{Z}^{r}$.
The associated \mathbb{Z}^{r}-graded algebra is denoted by $G^{r}(U)$.
There exists a natural \mathbb{Z}^{r}-graded epimorphism

$$
\varphi: A \rightarrow G^{r}(U)
$$

Definition
We say that U is a homogeneous PBW deformation of A, if φ is an isomorphism.

Examples

1. Graded Ore extension $A[z ; \sigma, \delta]$ is a homogeneous PBW deformation of $A[z ; \sigma]$.

Examples

1. Graded Ore extension $A[z ; \sigma, \delta]$ is a homogeneous PBW deformation of $A[z ; \sigma]$.
2. Double Ore extension $A_{P}\left[y_{1}, y_{2} ; \sigma, \delta, \tau\right]$ is a homogeneous PBW deformation of trimmed Double Ore extension $A_{P}\left[y_{1}, y_{2} ; \sigma\right]$.

Gröbner basis

$k\langle X\rangle$: the \mathbb{Z}^{r}-graded algebra defined above.

Gröbner basis

$k\langle X\rangle$: the \mathbb{Z}^{r}-graded algebra defined above.
For any $f \in k\langle X\rangle$, write $f=f_{1}+f_{2}+\cdots+f_{q}$, where f_{i} 's are \mathbb{Z}^{r}-homogeneous polynomials with $\operatorname{deg} f_{1}<\cdots<\operatorname{deg} f_{q}$.

Gröbner basis

$k\langle X\rangle$: the \mathbb{Z}^{r}-graded algebra defined above.
For any $f \in k\langle X\rangle$, write $f=f_{1}+f_{2}+\cdots+f_{q}$, where f_{i} 's are \mathbb{Z}^{r}-homogeneous polynomials with $\operatorname{deg} f_{1}<\cdots<\operatorname{deg} f_{q}$.

Denote the leading homogeneous polynomial of f as

$$
\mathrm{LH}(f)=f_{q} .
$$

Gröbner basis

$k\langle X\rangle$: the \mathbb{Z}^{r}-graded algebra defined above.
For any $f \in k\langle X\rangle$, write $f=f_{1}+f_{2}+\cdots+f_{q}$, where f_{i} 's are \mathbb{Z}^{r}-homogeneous polynomials with $\operatorname{deg} f_{1}<\cdots<\operatorname{deg} f_{q}$.

Denote the leading homogeneous polynomial of f as

$$
\mathrm{LH}(f)=f_{q} .
$$

Theorem (H.-S. Li)
Let $U=k\langle X\rangle /(P)$ and $G^{r}(U)$ defined as above. Suppose \mathcal{G} is the Gröbner basis of (P). Then

$$
G^{r}(U) \cong k\langle X\rangle /(\operatorname{LH}(\mathcal{G}))
$$

- H.-S. Li, Gröbner bases in ring theory, Word Scientific Pub. Co. Pte. Ltd., (2012).

Gröbner basis

Theorem
Let $A=k\langle X\rangle /(S)$ be a connected \mathbb{Z}^{r}-graded algebra and $U=k\langle X\rangle /(P)$ be defined as above. Suppose \mathcal{G} is the Gröbner basis of (P). Then the following are equivalent

Gröbner basis

Theorem
Let $A=k\langle X\rangle /(S)$ be a connected \mathbb{Z}^{r}-graded algebra and $U=k\langle X\rangle /(P)$ be defined as above. Suppose \mathcal{G} is the Gröbner basis of (P). Then the following are equivalent

- U is a homogeneous PBW deformation of A.

Gröbner basis

Theorem
Let $A=k\langle X\rangle /(S)$ be a connected \mathbb{Z}^{r}-graded algebra and $U=k\langle X\rangle /(P)$ be defined as above. Suppose \mathcal{G} is the Gröbner basis of (P). Then the following are equivalent

- U is a homogeneous PBW deformation of A.
- $(S)=(\operatorname{LH}(\mathcal{G}))$.

Gröbner basis

Theorem
Let $A=k\langle X\rangle /(S)$ be a connected \mathbb{Z}^{r}-graded algebra and $U=k\langle X\rangle /(P)$ be defined as above. Suppose \mathcal{G} is the Gröbner basis of (P). Then the following are equivalent

- U is a homogeneous PBW deformation of A.
- $(S)=(\operatorname{LH}(\mathcal{G}))$.
- $\mathrm{LH}(\mathcal{G})$ is a Gröbner basis of (S).

Gröbner basis

Theorem
Let $A=k\langle X\rangle /(S)$ be a connected \mathbb{Z}^{r}-graded algebra and $U=k\langle X\rangle /(P)$ be defined as above. Suppose \mathcal{G} is the Gröbner basis of (P). Then the following are equivalent

- U is a homogeneous PBW deformation of A.
- $(S)=(\mathrm{LH}(\mathcal{G}))$.
- $\mathrm{LH}(\mathcal{G})$ is a Gröbner basis of (S).
- $H_{A g r}(t)=H_{U}(t)$.

Artin-Schelter regular algebras

Definition (Artin-Schelter)

Let A be a connected graded algebra. We say it is Artin-Schelter regular if

1. A has finite global dimension d;
2. A has finite GK-dimension;
3. A is Gorenstein, that is

$$
\underline{\operatorname{Ext}}_{A}^{i}(k, A)=\left\{\begin{array}{cc}
0, & i \neq d \\
k(\gamma), & i=d
\end{array}\right.
$$

Artin-Schelter regular algebras

Definition (Artin-Schelter)

Let A be a connected graded algebra. We say it is Artin-Schelter regular if

1. A has finite global dimension d;
2. A has finite GK-dimension;
3. A is Gorenstein, that is

$$
\underline{\operatorname{Ext}}_{A}^{i}(k, A)=\left\{\begin{array}{cc}
0, & i \neq d \\
k(\gamma), & i=d
\end{array}\right.
$$

Proposition

Let A be a connected \mathbb{Z}^{r}-graded algebra. Then A is AS-regular if and only if $A^{g r}$ is AS-regular. Moreover, if A is of Gorenstein parameter γ, then $A^{g r}$ is of Gorenstein parameter $\|\gamma\|$.

Example

The quantum plane $\mathfrak{A}(q)=k\langle x, y\rangle /(x y-q y x)(0 \neq q \in k)$ with $\operatorname{deg} x=(1,0)$ and $\operatorname{deg} y=(0,1)$, so $P=\left\{x y-q y x+p y^{2}\right\}$.

Example

The quantum plane $\mathfrak{A}(q)=k\langle x, y\rangle /(x y-q y x)(0 \neq q \in k)$ with $\operatorname{deg} x=(1,0)$ and $\operatorname{deg} y=(0,1)$, so $P=\left\{x y-q y x+p y^{2}\right\}$.
Check: P is the Gröbner basis of (P), and $\mathrm{LH}(P)=\{x y-q y x\}$, and so $U(\mathfrak{A}(q))=k\langle x, y\rangle /\left(x y-q y x+p y^{2}\right)$ is a homogeneous PBW-deformation of $\mathfrak{A}(q)$.

Example

The quantum plane $\mathfrak{A}(q)=k\langle x, y\rangle /(x y-q y x)(0 \neq q \in k)$ with $\operatorname{deg} x=(1,0)$ and $\operatorname{deg} y=(0,1)$, so $P=\left\{x y-q y x+p y^{2}\right\}$.
Check: P is the Gröbner basis of (P), and $\mathrm{LH}(P)=\{x y-q y x\}$, and so $U(\mathfrak{A}(q))=k\langle x, y\rangle /\left(x y-q y x+p y^{2}\right)$ is a homogeneous PBW-deformation of $\mathfrak{A}(q)$.

Up to graded isomorphism, there are two cases:

- $q \neq 1: U(\mathfrak{A}(q)) \cong A_{q}$ by the map $x \mapsto x-\frac{p}{1-q} y, y \mapsto y$.

Example

The quantum plane $\mathfrak{A}(q)=k\langle x, y\rangle /(x y-q y x)(0 \neq q \in k)$ with $\operatorname{deg} x=(1,0)$ and $\operatorname{deg} y=(0,1)$, so $P=\left\{x y-q y x+p y^{2}\right\}$.
Check: P is the Gröbner basis of (P), and $\mathrm{LH}(P)=\{x y-q y x\}$, and so $U(\mathfrak{A}(q))=k\langle x, y\rangle /\left(x y-q y x+p y^{2}\right)$ is a homogeneous PBW-deformation of $\mathfrak{A}(q)$.

Up to graded isomorphism, there are two cases:

- $q \neq 1: U(\mathfrak{A}(q)) \cong A_{q}$ by the map $x \mapsto x-\frac{p}{1-q} y, y \mapsto y$.
- $q=1: U(\mathfrak{A}(1)) \cong A_{J},(p \neq 0)$, the Jordan plane. It is also a homogeneous PBW-deformation of $\mathfrak{A}(1)$ which is an enveloping algebra of Lie algebra.

Example

The quantum plane $\mathfrak{A}(q)=k\langle x, y\rangle /(x y-q y x)(0 \neq q \in k)$ with $\operatorname{deg} x=(1,0)$ and $\operatorname{deg} y=(0,1)$, so $P=\left\{x y-q y x+p y^{2}\right\}$.
Check: P is the Gröbner basis of (P), and $\mathrm{LH}(P)=\{x y-q y x\}$, and so $U(\mathfrak{A}(q))=k\langle x, y\rangle /\left(x y-q y x+p y^{2}\right)$ is a homogeneous PBW-deformation of $\mathfrak{A}(q)$.

Up to graded isomorphism, there are two cases:

- $q \neq 1: U(\mathfrak{A}(q)) \cong A_{q}$ by the map $x \mapsto x-\frac{p}{1-q} y, y \mapsto y$.
- $q=1: U(\mathfrak{A}(1)) \cong A_{J},(p \neq 0)$, the Jordan plane. It is also a homogeneous PBW-deformation of $\mathfrak{A}(1)$ which is an enveloping algebra of Lie algebra.

As a consequence, each homogeneous PBW-deformation of $\mathfrak{A}(q)$ is an AS-regular algebra.

Artin-Schelter regular criterion

Theorem
Let $A=k\langle x, y\rangle /(S)$ be a connected \mathbb{Z}^{r}-graded algebra, and U be a homogeneous PBW deformation of A. Then:

- $g l \operatorname{dim} U \leq g l \operatorname{dim} A$;

Artin-Schelter regular criterion

Theorem
Let $A=k\langle x, y\rangle /(S)$ be a connected \mathbb{Z}^{r}-graded algebra, and U be a homogeneous PBW deformation of A. Then:

- $g l \operatorname{dim} U \leq g l \operatorname{dim} A$;
- GKdim $U=G K \operatorname{dim} A$;

Artin-Schelter regular criterion

Theorem
Let $A=k\langle x, y\rangle /(S)$ be a connected \mathbb{Z}^{r}-graded algebra, and U be a homogeneous PBW deformation of A. Then:

- $g l \operatorname{dim} U \leq g l \operatorname{dim} A$;
- GKdim $U=G K \operatorname{dim} A$;
- if A is AS-regular, then so is U;

Artin-Schelter regular criterion

Theorem
Let $A=k\langle x, y\rangle /(S)$ be a connected \mathbb{Z}^{r}-graded algebra, and U be a homogeneous PBW deformation of A. Then:

- $g l \operatorname{dim} U \leq g l \operatorname{dim} A$;
- GKdim $U=G K \operatorname{dim} A$;
- if A is AS-regular, then so is U;
- if A is strongly noetherian, then so is U;

Artin-Schelter regular criterion

Theorem
Let $A=k\langle x, y\rangle /(S)$ be a connected \mathbb{Z}^{r}-graded algebra, and U be a homogeneous PBW deformation of A. Then:

- $g l \operatorname{dim} U \leq g l \operatorname{dim} A$;
- GKdim $U=G K \operatorname{dim} A$;
- if A is AS-regular, then so is U;
- if A is strongly noetherian, then so is U;
- if A is Auslander regular, then so is U;

Artin-Schelter regular criterion

Theorem
Let $A=k\langle x, y\rangle /(S)$ be a connected \mathbb{Z}^{r}-graded algebra, and U be a homogeneous PBW deformation of A. Then:

- $g l \operatorname{dim} U \leq g l \operatorname{dim} A$;
- GKdim $U=G K \operatorname{dim} A$;
- if A is AS-regular, then so is U;
- if A is strongly noetherian, then so is U;
- if A is Auslander regular, then so is U;
- if A is Cohen-Macaulay, then so is U.

The 4-dim'| AS-regular algebra of Jordan type

Take $A=D(-2,-1)=k\langle x, y\rangle /\left(g_{1}, g_{2}\right)$, the enveloping algebra of positively graded Lie algebra of dimension 4 , where

$$
\begin{aligned}
& g_{1}=x y^{2}-2 y x y+y^{2} x, \\
& g_{2}=x^{3} y-3 x^{2} y x+3 x y x^{2}-y x^{3} .
\end{aligned}
$$

The 4-dim'l AS-regular algebra of Jordan type

Take $A=D(-2,-1)=k\langle x, y\rangle /\left(g_{1}, g_{2}\right)$, the enveloping algebra of positively graded Lie algebra of dimension 4 , where

$$
\begin{aligned}
& g_{1}=x y^{2}-2 y x y+y^{2} x, \\
& g_{2}=x^{3} y-3 x^{2} y x+3 x y x^{2}-y x^{3} .
\end{aligned}
$$

A is a \mathbb{Z}^{2}-graded algebra with $\operatorname{deg} x=(1,0)$ and $\operatorname{deg} y=(0,1)$. Then the Gröbner basis \mathcal{G} of the ideal $\left(g_{1}, g_{2}\right)$ is $\left\{g_{1}, g_{2}, g_{3}\right\}$, where

$$
g_{3}=x^{2} y x y-3 x y x^{2} y+2 x y x y x+3 y x^{2} y x-5 y x y x^{2}+2 y^{2} x^{3} .
$$

The 4-dim'l AS-regular algebra of Jordan type

Take $A=D(-2,-1)=k\langle x, y\rangle /\left(g_{1}, g_{2}\right)$, the enveloping algebra of positively graded Lie algebra of dimension 4 , where

$$
\begin{aligned}
& g_{1}=x y^{2}-2 y x y+y^{2} x, \\
& g_{2}=x^{3} y-3 x^{2} y x+3 x y x^{2}-y x^{3} .
\end{aligned}
$$

A is a \mathbb{Z}^{2}-graded algebra with $\operatorname{deg} x=(1,0)$ and $\operatorname{deg} y=(0,1)$. Then the Gröbner basis \mathcal{G} of the ideal $\left(g_{1}, g_{2}\right)$ is $\left\{g_{1}, g_{2}, g_{3}\right\}$, where

$$
g_{3}=x^{2} y x y-3 x y x^{2} y+2 x y x y x+3 y x^{2} y x-5 y x y x^{2}+2 y^{2} x^{3} .
$$

Let $U(A)=k\langle x, y\rangle /(P)$, where P is the reduced form:

$$
\left\{\begin{array}{c|l}
x y^{2}-2 y x y+y^{2} x+a y^{3}, & a, b_{i}, c_{j}, d \in k \\
x^{3} y-3 x^{2} y x+3 x y x^{2}-y x^{3}+b_{1} x y x y+b_{2} y x^{2} y & i=1,2,3,4 \\
+b_{3} y x y x+b_{4} y^{2} x^{2}+c_{1} y^{2} x y+c_{2} y^{3} x+d y^{4} & j=1,2
\end{array}\right\} .
$$

With the help of Maple, we get
Theorem
The algebra $\mathcal{J}=\mathcal{J}(u, v, w)=k\langle x, y\rangle /\left(f_{1}, f_{2}\right)$ is an AS-regular algebra of global dimension 4 , where

$$
\begin{aligned}
& f_{1}=x y^{2}-2 y x y+y^{2} x \\
& f_{2}=x^{3} y-3 x^{2} y x+3 x y x^{2}-y x^{3}+(1-u) x y x y+u y x^{2} y \\
& \\
& \quad+(u-3) y x y x+(2-u) y^{2} x^{2}-v y^{2} x y+v y^{3} x+w y^{4}
\end{aligned}
$$

and $u, v, w \in k$.

With the help of Maple, we get

Theorem

The algebra $\mathcal{J}=\mathcal{J}(u, v, w)=k\langle x, y\rangle /\left(f_{1}, f_{2}\right)$ is an AS-regular algebra of global dimension 4 , where

$$
\begin{aligned}
& f_{1}=x y^{2}-2 y x y+y^{2} x \\
& f_{2}=x^{3} y-3 x^{2} y x+3 x y x^{2}-y x^{3}+(1-u) x y x y+u y x^{2} y \\
& \\
& \quad+(u-3) y x y x+(2-u) y^{2} x^{2}-v y^{2} x y+v y^{3} x+w y^{4}
\end{aligned}
$$

and $u, v, w \in k$.
If k is algebraically closed of characteristic 0 , then it is, up to isomorphism, the unique AS-regular algebra of global dimension 4 which is generated by two elements whose Frobenius data is of Jordan type.

With the help of Maple, we get

Theorem

The algebra $\mathcal{J}=\mathcal{J}(u, v, w)=k\langle x, y\rangle /\left(f_{1}, f_{2}\right)$ is an AS-regular algebra of global dimension 4 , where

$$
\begin{aligned}
& f_{1}=x y^{2}-2 y x y+y^{2} x \\
& f_{2}=x^{3} y-3 x^{2} y x+3 x y x^{2}-y x^{3}+(1-u) x y x y+u y x^{2} y \\
& \\
& \quad+(u-3) y x y x+(2-u) y^{2} x^{2}-v y^{2} x y+v y^{3} x+w y^{4}
\end{aligned}
$$

and $u, v, w \in k$.
If k is algebraically closed of characteristic 0 , then it is, up to isomorphism, the unique AS-regular algebra of global dimension 4 which is generated by two elements whose Frobenius data is of Jordan type.

Note: In other cases, the Frobenius data falls within diagonal type.

Thank You!

