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Recall

Artin-Schelter regular (AS-regular, for short) algebras are known as
noncommutative analogues of polynomial algebras.

One of the main projects is the classification of noetherian,
AS-regular, connected graded algebras of global dimension n.

Completed the classification results in low dimensions:

I 1-dim’l AS-regular algebra: C[x].

I 2-dim’l AS-regular algebras:

Aq =
C〈x, y〉

(xy − qyx)
, and AJ =

C〈x, y〉
(xy − yx− y2)

.

I AS-regular algebras of global dimension 3 were classified by
Artin, Schelter, Tate and Van den Bergh.
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4-dim’l AS-regular algebras

There are many partial results about 4-dim’l AS-regular algebras:

I The 4-dim’l Sklyanin algebra (proved by Smith and Stafford in
1992).

I Normal extension of 3-dim’l regular algebras.

I AS-regular algebras with finitely many point modules.

I Ore extension of 3-dim’l regular algebras.

I Quantum 2× 2-matrices.

I qP3 containing a quadric.

I qP3 related to some Clifford algebras.

I · · · · · ·
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4-dim’l AS-regular algebras (continue)

Three types: (12221), (13431) and (14641)

I (12221): [Palmieri-Wu-Zhang-L., 2007]

The following algebras are AS-regular of dimension 4:

1. A(p) := C〈x, y〉/(xy2−p2y2x, x3y+px2yx+p2xyx2+p3yx3),
where 0 6= p ∈ C;

2. B(p) := C〈x, y〉/(xy2+ip2y2x, x3y+px2yx+p2xyx2+p3yx3),
where 0 6= p ∈ C and i2 = −1;

3. C(p) := C〈x, y〉/(xy2 + pyxy + p2y2x, x3y + jp3yx3), where
0 6= p ∈ C and j2 + j + 1 = 0;

4. D(v, p) := C〈x, y〉/(xy2 + vyxy+ p2y2x, x3y+ (v+ p)x2yx+
(pv + p2)xyx2 + p3yx3), where v, p ∈ C and p 6= 0.

These algebras form a complete list of generic AS-regular
algebras generated by two elements of dimension 4.

I (13431): . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Rogalski-Zhang, 2012]

I (14641): . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Zhang-Zhang, 2009]
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5-dim’l AS-regular algebras with 2 generators

[Fløystad-Vatne, 2011] There are possible five resolution types of
AS-regular algebras of dimension five with two generators under
the natural extra conditions that the algebra is a domain

I with 3 relations: (3,5,5), or (4,4,4), or (3,4,7).

I with 4 relations: (4,4,4,5).

I with 5 relations: (4,4,4,5,5).

The examples of types (3,5,5), (4,4,4) and (3,4,7) are showed in
[Fløystad-Vatne, 2011].

A complete list of AS-regular algebras of type (4,4,4) under a
generic condition are worked out in [Wang-Wu, 2012].

A complete classification of AS-regular Z2-graded algebras of all
types above are finished in [Zhou-L., 2014].
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The 5-dim’l AS-regular algebras of type (4,4,4,5,5)

[Zhou-L., 2014] Let G = {G(p, j) : p 6= 0, j4 = 1}, where
G(p, j) = k〈x1, x2〉/(f1, f2, f3, f4, f5) is the Z2-graded algebra
with five relations

f1 = x2x
3
1 + px1x2x

2
1 + p2x2

1x2x1 + p3x3
1x2,

f2 = x2
2x

2
1 + px2x1x2x1 + p2x2x

2
1x2 + p2x1x

2
2x1 + p3x1x2x1x2 + p4x2

1x
2
2,

f3 = x3
2x1 + px2

2x1x2 + p2x2x1x
2
2 + p3x1x

3
2,

f4 = x2x1x2x
2
1 + px2x

2
1x2x1 + p2jx1x2x1x2x1 + p3(j − 1)x1x2x

2
1x2

+ p3(j − j2)x2
1x

2
2x1 + p4(j − 1)x2

1x2x1x2 + p5(−1 + j − j3)x3
1x

2
2,

f5 = x2
2x1x2x1 + px2x1x

2
2x1 + p2jx2x1x2x1x2 + p3(j − j2)x2x

2
1x

2
2

+ p3(j − 1)x1x
2
2x1x2 + p4(j − 1)x1x2x1x

2
2 + p5(−1 + j − j3)x2

1x
3
2.

Question: Is there a 5-dimensional AS-regular algebra with 2
generators and 4 relations?
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Motivation

An observation is that there is a common property in these
algebras mentioned above: all of them can be endowed with an
appropriate Z2-grading.

A question follows: how to find new AS-regular algebras without
the hypothesis on grading?

Goal: give an effective method to construct AS-regular algebras
without Z2-grading.

Convention:
◦ k is a fixed algebraically closed field of characteristic zero.

◦ all algebras are generated in degree 1.

◦ r is a positive integer (> 1).
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Order and filtration
Normal map ‖ · ‖ : Zr → Z, (a1, · · · , ar) 7→

∑r
i=1 ai.

Admissible order < on Zr: α = (a1, · · · , ar), β = (b1, · · · , br)

α < β ⇐⇒
{
‖α‖ < ‖β‖, or
‖α‖ = ‖β‖, ∃t, ai = bi(i < t), at < bt.

X = {x1, x2, · · · , xn}, with a partition {X1, · · · , Xr} and a
Zr-grading: deg x := (δ1i, · · · , δri) for x ∈ Xi.

X∗: the set of words generated by X including the empty word 1.
monomial ordering on X∗, then induces a Zr-graded admissible
ordering on X∗

 Zr-filtration on k〈X〉:

Fα(k〈X〉) :=

{
0, if α < 0;
Spank{u ∈ X∗ | deg u ≤ α}, if α ≥ 0.
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Zr-graded algebras

Let A =
⊕

α∈Zr Aα be a Zr-graded aglebra.

For a homogeneous element a ∈ Aα, denote

{
deg a = α,
tdeg a = ‖α‖.

A is connected if Aα = 0 for all α 6∈ Nr and A0 = k.

The associated Z-graded algebra Agr =
⊕

i∈Z (Agr)i, where

(Agr)i =
⊕
‖α‖=i

Aα, for all i.
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Homogeneous PBW deformation

Let A = k〈X〉/(S) be a connected Zr-graded algebra, where X is
the minimal generating set and r > 1.

S consists of Zr-homogeneous elements in k〈X〉.

For any s ∈ S, define a new element ps ∈ k〈X〉 by

ps = s+ s̄, s̄ ∈ k〈X〉,

satisfying s̄ = 0, or deg s̄ < deg s and tdeg s̄ = tdeg s.

The new set P = {ps | s ∈ S} products a Z-graded algebra

U = k〈X〉/(P ).



Homogeneous PBW deformation

Let A = k〈X〉/(S) be a connected Zr-graded algebra, where X is
the minimal generating set and r > 1.

S consists of Zr-homogeneous elements in k〈X〉.

For any s ∈ S, define a new element ps ∈ k〈X〉 by

ps = s+ s̄, s̄ ∈ k〈X〉,

satisfying s̄ = 0, or deg s̄ < deg s and tdeg s̄ = tdeg s.

The new set P = {ps | s ∈ S} products a Z-graded algebra

U = k〈X〉/(P ).



Homogeneous PBW deformation

Let A = k〈X〉/(S) be a connected Zr-graded algebra, where X is
the minimal generating set and r > 1.

S consists of Zr-homogeneous elements in k〈X〉.

For any s ∈ S, define a new element ps ∈ k〈X〉 by

ps = s+ s̄, s̄ ∈ k〈X〉,

satisfying s̄ = 0, or deg s̄ < deg s and tdeg s̄ = tdeg s.

The new set P = {ps | s ∈ S} products a Z-graded algebra

U = k〈X〉/(P ).



Homogeneous PBW deformation

Let A = k〈X〉/(S) be a connected Zr-graded algebra, where X is
the minimal generating set and r > 1.

S consists of Zr-homogeneous elements in k〈X〉.

For any s ∈ S, define a new element ps ∈ k〈X〉 by

ps = s+ s̄, s̄ ∈ k〈X〉,

satisfying s̄ = 0, or deg s̄ < deg s and tdeg s̄ = tdeg s.

The new set P = {ps | s ∈ S} products a Z-graded algebra

U = k〈X〉/(P ).



There is a natural Zr-filtration on U defined by

Fα U =
Fα k〈X〉+ (P )

(P )
,

where Fα k〈X〉 = Spank{u ∈ X∗ | deg u ≤ α} for any α ∈ Zr.

The associated Zr-graded algebra is denoted by Gr(U).

There exists a natural Zr-graded epimorphism

ϕ : A→ Gr(U).

Definition
We say that U is a homogeneous PBW deformation of A, if ϕ is
an isomorphism.
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Examples

1. Graded Ore extension A[z;σ, δ] is a homogeneous PBW
deformation of A[z;σ].

2. Double Ore extension AP [y1, y2;σ, δ, τ ] is a homogeneous
PBW deformation of trimmed Double Ore extension
AP [y1, y2;σ].
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Gröbner basis

k〈X〉: the Zr-graded algebra defined above.

For any f ∈ k〈X〉, write f = f1 + f2 + · · ·+ fq, wherefi’s are
Zr-homogeneous polynomials with deg f1 < · · · < deg fq.

Denote the leading homogeneous polynomial of f as

LH(f) = fq.

Theorem (H.-S. Li)

Let U = k〈X〉/(P ) and Gr(U) defined as above. Suppose G is the
Gröbner basis of (P ). Then

Gr(U) ∼= k〈X〉/(LH(G)).

• H.-S. Li, Gröbner bases in ring theory, Word Scientific Pub. Co. Pte. Ltd., (2012).
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Gröbner basis

Theorem
Let A = k〈X〉/(S) be a connected Zr-graded algebra and
U = k〈X〉/(P ) be defined as above. Suppose G is the Gröbner
basis of (P ). Then the following are equivalent

I U is a homogeneous PBW deformation of A.

I (S) = (LH(G)).

I LH(G) is a Gröbner basis of (S).

I HAgr(t) = HU (t).
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Artin-Schelter regular algebras

Definition (Artin-Schelter)

Let A be a connected graded algebra. We say it is Artin-Schelter
regular if

1. A has finite global dimension d;

2. A has finite GK-dimension;

3. A is Gorenstein, that is

ExtiA(k,A) =

{
0, i 6= d,

k(γ), i = d.

Proposition

Let A be a connected Zr-graded algebra. Then A is AS-regular if
and only if Agr is AS-regular. Moreover, if A is of Gorenstein
parameter γ, then Agr is of Gorenstein parameter ‖γ‖.
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Example

The quantum plane A(q) = k〈x, y〉/(xy − qyx) (0 6= q ∈ k) with
deg x = (1, 0) and deg y = (0, 1), so P = {xy − qyx+ py2}.

Check: P is the Gröbner basis of (P ), and LH(P ) = {xy − qyx},
and so U(A(q)) = k〈x, y〉/(xy − qyx+ py2) is a homogeneous
PBW-deformation of A(q).

Up to graded isomorphism, there are two cases:

I q 6= 1: U(A(q)) ∼= Aq by the map x 7→ x− p
1−qy, y 7→ y.

I q = 1: U(A(1)) ∼= AJ , (p 6= 0), the Jordan plane. It is also a
homogeneous PBW-deformation of A(1) which is an
enveloping algebra of Lie algebra.

As a consequence, each homogeneous PBW-deformation of A(q) is
an AS-regular algebra.
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Artin-Schelter regular criterion

Theorem
Let A = k〈x, y〉/(S) be a connected Zr-graded algebra, and U be
a homogeneous PBW deformation of A. Then:

I gl dimU ≤ gl dimA;

I GKdimU =GKdimA;

I if A is AS-regular, then so is U ;

I if A is strongly noetherian, then so is U ;

I if A is Auslander regular, then so is U ;

I if A is Cohen-Macaulay, then so is U .
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The 4-dim’l AS-regular algebra of Jordan type

Take A = D(−2,−1) = k〈x, y〉/(g1, g2), the enveloping algebra of
positively graded Lie algebra of dimension 4, where

g1 = xy2 − 2yxy + y2x,

g2 = x3y − 3x2yx+ 3xyx2 − yx3.

A is a Z2-graded algebra with deg x = (1, 0) and deg y = (0, 1).
Then the Gröbner basis G of the ideal (g1, g2) is {g1, g2, g3}, where

g3 = x2yxy − 3xyx2y + 2xyxyx+ 3yx2yx− 5yxyx2 + 2y2x3.

Let U(A) = k〈x, y〉/(P ), where P is the reduced form: xy2 − 2yxy + y2x+ ay3,
x3y − 3x2yx+ 3xyx2 − yx3 + b1xyxy + b2yx2y

+b3yxyx+ b4y2x2 + c1y2xy + c2y3x+ dy4

∣∣∣∣∣∣
a, bi, cj , d ∈ k
i = 1, 2, 3, 4
j = 1, 2

 .
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With the help of Maple, we get

Theorem
The algebra J = J (u, v, w) = k〈x, y〉/(f1, f2) is an AS-regular
algebra of global dimension 4, where

f1 = xy2 − 2yxy + y2x,

f2 = x3y − 3x2yx+ 3xyx2 − yx3 + (1− u)xyxy + uyx2y

+ (u− 3)yxyx+ (2− u)y2x2 − vy2xy + vy3x+ wy4,

and u, v, w ∈ k.

If k is algebraically closed of characteristic 0, then it is, up to
isomorphism, the unique AS-regular algebra of global dimension 4
which is generated by two elements whose Frobenius data is of
Jordan type.

Note: In other cases, the Frobenius data falls within diagonal type.
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Thank You!


