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Representation theory / Primitive ideals

of quantum grassmannians

Totally nonnegative (tnn for short)

grassmannians and their tnn cells

Poisson geometry: Symplectic leaves

in Poisson flag varieties
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Some quantum algebras

q ∈ C∗

Quantum affine spaces:

Oq•(CN) = Cq•[T1, . . . , TN ] = C〈T1, . . . , TN〉/(TiTj = q•ijTjTi).

Quantum tori:

Oq•((C×)N) = Cq•[T±1
1 , . . . , T±1

N ]

= C〈T±1
1 , . . . , T±1

N 〉/(TiTj = q•ijTjTi).

Quantum matrices: Oq(MN(C)) is “designed” to have Oq(CN)
as a left and right comodule algebra, with Oq(MN(C)) coacting
on Oq(CN) in the same way that O(MN(C)) coacts on O(CN).
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Quantum 2× 2 matrices

The coordinate ring of quantum 2× 2 matrices

Oq(M2(C)) := C
[
a b
c d

]
is generated by four indeterminates a, b, c, d subject to the follow-

ing rules:

ab = qba, cd = qdc

ac = qca, bd = qdb

bc = cb, ad− da = (q − q−1)cb.

The quantum determinant ad− qbc is a central element
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The algebra of m× p quantum matrices.

R = Oq (Mm,p(C)) := C

 Y1,1 . . . Y1,p
... ...

Ym,1 . . . Ym,p

,

where each 2× 2 sub-matrix is a copy of Oq (M2(C)).

Oq (Mm,p(C)) is an iterated Ore extension with the indetermi-

nates Yi,α adjoined in the lexicographic order and so is a noethe-

rian integral domain.

In the square case (m = p = n)

Dq =
∑
σ∈Sn

(−q)l(σ)Y1,σ(1) . . . Yn,σ(n)

is the quantum determinant. Dq is a central element.
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Quantum minors of R = Oq(Mm,p(C))

They are the quantum determinants of square sub-matrices of

Oq(Mm,p(C)).

More precisely, if I ⊆ [[1,m]] and Λ ⊆ [[1, p]] with | I |=| Λ |, the

quantum minor associated with the rows I and columns Λ is

[I | Λ] := Dq(Oq(MI,Λ(C))).

For example, [12|23] = Y1,2Y2,3− qY1,3Y2,2 is the quantum minor

of R associated with the rows 1,2, and the columns 2,3.
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The quantum grassmannian Gq(k, n)

The quantum grassmannian Gq(k, n) is the subalgebra of Oq(M(k, n))
generated by the maximal k × k quantum minors

Denote by [I] the quantum minor [1 . . . k|I].

Example Gq(2,4) is generated by the six quantum minors
[12], [13], [14], [23], [24], [34].

Most minors q•-commute, for example, [12] [34] = q2 [34] [12],
however, [13] [24] = [24] [13] + (q − q−1) [14] [23] and there is a
quantum Plücker relation

[12] [34]− q [13] [24] + q2 [14] [23] = 0.

Noncommutative dehomogenisation:

Gq(k, n)[[12...k]−1] ' Oq(M(k, n− k))[Z±1;σ]
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The prime spectrum of Oq(Mm,p(C))

We now assume that q ∈ C∗ is not a root of unity, and we set
R := Oq(Mm,p(C)).

• Goodearl-Letzter Prime ideals of R are completely prime.

The torus H := (C∗)m+p acts by automorphisms on R via :

(a1, . . . , am, b1, . . . , bp).Yi,α = aibαYi,α.

This action of H on R induces an action of H on Spec(R). We
denote by H-Spec(R) the set of those prime ideals in R which
are H-invariant.

• Goodearl-Letzter R has at most 2mp H-primes.

Note that 0 is always an H-prime ideal.
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Stratification Theorem (Goodearl-Letzter) :

If J ∈ H-Spec(R), then we set

SpecJ(R) := {P ∈ Spec(R) |
⋂
h∈H

h.P = J}.

1. Spec(R) =
⊔

J∈H-Spec(R)

SpecJ(R)

2. SpecJ(R) ' Spec(C[Z±1
1 , ..., Z±1

n(J)])

3. The primitive ideals of R are precisely the primes maximal in
their H-strata.

4. The Dixmier-Moeglin Equivalence holds in R.
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Cauchon diagrams

A Cauchon diagram on an m × p array is an m × p array of
squares coloured either black or white such that for any square
that is coloured black the following holds:
Either each square strictly to its left is coloured black, or each
square strictly above is coloured black.

Here are an example and a non-example
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Parametrisation of H-Spec(Oq(Mm,p(C)))

• Cauchon (2003) There is a bijection between Cauchon dia-

grams on an m× p array and H− Spec(Oq(Mm,p(C))).

If C is a Cauchon diagram, then we denote by JC the unique

H-prime associated to C.

• L., Yakimov, Casteels H-primes are generated by quantum

minors.

• Dimensions of H-strata and the poset of H-primes are described

through another parametrization.
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Restricted permutations

S = {w ∈ Sm+p | − p ≤ w(i)− i ≤ m for all i = 1,2, . . . ,m+ p}.

In the 2× 2 case, this subposet of the Bruhat poset of S4 is

S = {w ∈ S4 | − 2 ≤ w(i)− i ≤ 2 for all i = 1,2,3,4}.
and is shown below.
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The poset H-Spec(Oq(Mm,p(C)))

Set

S := {σ ∈ Sm+p | −p ≤ σ(i)− i ≤ m, ∀i ∈ [[1,m+ p]]}

and

w0 :=

[
1 2 . . . p p+ 1 p+ 2 . . . p+m

m+ 1 m+ 2 . . . m+ p 1 2 . . . m

]
.

Then

S = {w ∈ Sm+p | w ≤ w0}

and

L. (2007) We have a poset isomorphism

H-Spec(Oq(Mm,p(C))) ' S.
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Pipe dreams

Previous results imply the existence of a bijection between the

set of m × p Cauchon diagrams and the set S of restricted per-

mutations.

This is no coincidence, and the connection between the two

posets can be illuminated by using Pipe Dreams.

The procedure to produce a restricted permutation from a Cau-

chon diagram goes as follows. Given a Cauchon diagram, replace

each black box by a cross, and each white box by an elbow joint,

that is:

↔ ↔
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Pipe dreams: an example

1

2

3

4

5

6

1 2 3

4 5 6

So the restricted permutation associated to this Cauchon dia-

gram is (3 4).

Observe that the all black diagram produces the restricted per-

mutation w0.

• dim SpecJc(R) is equal to the number of odd cycles in ww−1
0 .
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Dixmier-Moeglin Equivalence

P ∈ SpecA is called

• rational if Z(Frac(A/P )) algebraic over k;

• locally closed if the nonzero prime ideals in A/P have nonzero

intersection.

The algebra A is said to satisfy the Dixmier-Moeglin equivalence

if for every P ∈ SpecA, we have

Pprimitive⇔ P locally closed⇔ P rational.

The H-stratification theorem of Goodearl-Letzter allows to prove

that various quantum algebras have the DME.
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Strong DME

• prim.degP = inf{htQ | Q ∈ Prim(A/P )}.

• rat.degP = tr.degk Z(Frac(A/P )).

• loc.degP = inf{d |
⋂
Q∈Specd+1(A/P )Q 6= 0}.

(Specd+1A/P denotes the subspace of SpecA/P consisting of all

those prime ideals of height d+ 1.)

We say that A satisfies the strong Dixmier-Moeglin equivalence

if every P ∈ SpecA satisfies loc.degP = prim.degP = rat.degP .

17



Strong DME: example

The strong Dixmier-Moeglin equivalence is clearly at least as

strong as the Dixmier-Moeglin equivalence; in fact, a surprising

example shows that it is strictly stronger.

Example: Let us consider the zero ideal of U(sl2(C)): we have

prim.deg(0) = rat.deg(0) = 1 but loc.deg(0) = 2.
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Strong DME: general result

• For any P ∈ SpecA, we have loc.degP ≥ prim.degP .

• If every prime factor of A has a localisation (by a finitely gen-

erated denominator set) which satisfies the SDME, then

loc.degP = prim.degP

for all P ∈ SpecA.
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Strong DME: quantum matrices

Thm (Bell-L-Nolan): Quantum matrices have the Strong DME

Our strategy is to relate the prime and primitive spectra of the

algebras in which we are interested to those of algebras which

are more easily understood:

Quantum Matrices
⇑

Quantum affine spaces
⇑

Quantum tori
⇑

Commutative affine domains.
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The quantum grassmannian Gq(k, n)

The quantum grassmannian Gq(k, n) is the subalgebra of Oq(M(k, n))
generated by the maximal k × k quantum minors

Denote by [I] the quantum minor [1 . . . k|I]. There is a torus
action of H = (C∗)n given by column multiplication. There are
finitely many H-primes.

Example Gq(2,4) is generated by the six quantum minors
[12], [13], [14], [23], [24], [34].

Most minors q•-commute, for example, [12] [34] = q2 [34] [12],
however, [13] [24] = [24] [13] + (q − q−1) [14] [23] and there is a
quantum Plücker relation

[12] [34]− q [13] [24] + q2 [14] [23] = 0.

Partial order:
[i1 < · · · < ik] ≤ [j1 < · · · < jk] whenever is ≤ js for all s.
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Quantum Schubert variety corresp to [135]
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Schubert cell: use noncommutative dehomogenisation at [135]
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L, Lenagan and Rigal (2008) There is a bijection between

H − Spec(Gq(k, n)) (ignoring the irrelevant ideal) and Cauchon

diagrams on Young diagrams that fit inside a k × (n− k) array

The theorem is proved by defining quantum algebras with a

straightening law, quantum Schubert varieties, quantum Schu-

bert cells, partition subalgebras of quantum matrices and using

a non-commutative version of dehomogenisation.
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Sketch of proof

Let P be an H-prime (different from the augmentation ideal).
Choose a quantum minor γ with γ /∈ P but η < γ ⇒ η ∈ P

Claim: If η � γ, then η ∈ P .

So γ is unique for this P .

Hence P induces an H-prime of

Gq(k, n)

Iγ
[γ−1]

where Iγ := 〈η ∈ π|η � γ〉

This algebra is isomorphic via noncommutative dehomogenisa-
tion to Aλ[Z±1;σγ], where λ is a partition that fits into the par-
tition (n− k)k and Aλ is the subalgebra of Oq(Mk,n−k) generated
by those Yij with j ≤ λi.
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Schubert cell for [135]

1

2
3

4
5

6

H-prime in Schubert cell [135]

1

2
3

4
5

6
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The quantum grassmannian Gq(k, n): open questions

Conjecture (2007): H-primes are generated by quantum Plücker

coordinates.

Questions:

1. Can we specify the quantum Plücker coordinates in a given

H-prime?

2. Can we describe the poset of H-primes in Gq(k, n)? (Yakimov’s

conjecture)

3. Does Gq(k, n) have the SDME?
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The totally nonnegative
world
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Totally nonnegative (tnn for short) matrices

A matrix A in Mm,p is totally nonnegative if each of its minors

is nonnegative.

A point P in the grassmannian Gkn(R) is totally nonnegative if

its Plücker coordinates can be represented by the k × k minors

of a k × n matrix A such that each of these k × k minors are

nonnegative.

Cells are specified by stating precisely which minors are zero. If

Z is a subset of minors then S◦Z is the cell where minors in Z are

zero (and those not in Z are nonzero, so positive).

# minors of an n× n matrix =
∑n
k=1

(
n
k

)2
=
(

2n
n

)
− 1 ≈ 4n√

πn
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Example In Mtnn
2 the cell S◦{[2|2]} is empty.

For, suppose that

(
a b
c d

)
is tnn and d = 0.

Then a, b, c ≥ 0 and also ad− bc ≥ 0.

Thus, −bc ≥ 0 and hence bc = 0 so that b = 0 or c = 0.
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It is often easier to work in the totally non-negative grassman-

nian.

Example The 2× 2 minors of(
0 1 a b
−1 0 c d

)
are

[12] = 1, [13] = a, [14] = b, [23] = c, [24] = d, [34] = ad− bc,

so this matrix represents a point in the nonnegative 2 × 4 real

grassmannian if and only if the matrix

(
a b
c d

)
is totally nonneg-

ative.

Postnikov has obtained a bijection between the non-empty tnn

cells in Gtnn
kn and various combinatorial objects such as Le-diagrams,

decorated permutations, network diagrams, etc.
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A Young diagram with entries either 0 or 1 is said to be a
Le-diagram if it satisfies the following rule: if there is a 0 in a
given square then either each square to the left is also filled with
0 or each square above is also filled with 0.

An example of a Le-diagram on the Young diagram representing
the partition λ = (5,4,3,3,1) is

1 1 0 1 0
0 0 0 1
1 1 1
0 0 1
1

A non-example is

1 1 0 1 0
0 0 1 0
1 1 1
0 0 1
1

38



• Postnikov (arXiv:math/0609764) There is a bijection be-

tween Le-diagrams (=Cauchon diagrams) on partitions that fit

into a k × (n− k) array and non-empty cells S◦Z in Gtnn
kn .

(A Young diagram representing a partition λ = (λ1, λ2, . . . , λk) fits

inside a k×(n−k) array provided that (n−k) ≥ λ1 ≥ λ2 ≥ λk ≥ 0.)

For 2 × 2 matrices, this says that there is a bijection between

Le-diagrams on 2× 2 arrays and non-empty cells in Mtnn
2 .
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The next page is from Lauren Williams’ thesis and shows the

non-empty cells in the totally non-negative 2× 4 real grassman-

nian.
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TNN versus Quantum

Goodearl-L.-Lenagan (2011) Let F be a family of minors in

the coordinate ring of Mm,p(C), and let Fq be the corresponding

family of quantum minors in Oq(Mm,p(C)). Then the following

are equivalent:

1. The totally nonnegative cell associated to F is non-empty.

2. Fq is the set of all quantum minors that belong to torus-

invariant prime in Oq(Mm,p(C)).
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Positroid varieties

Knutson-Lam-Speyer Let F be a family of Plücker coordinates

that defines a nonempty cell in the tnn grassmannian. Then 〈F 〉
is a prime ideal.

There are several descriptions of the above family F using com-

binatorial tools such as grassmann necklaces, planar networks,

etc.
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4
5

6

• •

• •

•

There is a vertex disjoint set

of paths from {1,3} to {2,4}
so [245] is positive on this

corresponding cell.

There is no vertex disjoint set

of paths from {1,3} to {4,6}
so [456] is zero on this cell.
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Quantum Plücker coordinates in a given H-prime

L-Lenagan-Nolan Let F be a family of Plücker coordinates and

Fq the corresponding family of quantum Plücker coordinates.

TFAE

• The totally nonnegative cell associated to F in Gtnn
kn is non-

empty.

• Fq is the set of all quantum minors that belong to torus-

invariant prime in Gq(k, n).

Strategy: Let C be a Cauchon diagram of shape λ. Then we

prove that [I] ∈ JC iff there are no vertex disjoint set of paths

from λ \ I to I \ λ in the Postnikov graph.

Consequence: We have an explicit description of these families

thanks to work of Oh.
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There is a vertex disjoint set

of paths from {1,3} to {2,4}
so [245] is not in the prime.

There is no vertex disjoint set

of paths from {1,3} to {4,6}
so [456] is in the prime.
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