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Subgroup Structure of Simple Algebraic Groups

Set-up

K : algebraically closed field, characteristic p ≥ 0.

G : Simple algebraic group over K .

History

1950s: Dynkin classifies maximal connected subgroups over C
1980s: Seitz extends Dynkin’s results into p > 0.

1990s onwards:

Liebeck + Seitz classify maximal connected subgroups, and
then maximal positive-dimensional subgroups.
Various extensions beyond maximal subgroups.
Serre introduces G -complete reducibility.

Open problem: Understand all reductive subgroups.
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Serre’s Point of View

Paradigm

Understanding subgroups H ≤ G ↔ Understanding homs H → G .

Fix H instead of G : ‘Generalised representation theory of H.’

If G = GLn(K ) then this is true representation theory of H.
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Complete Reducibility

Definition

A subgroup H ≤ P is G -completely reducible if:

H ≤ parabolic subgroup P of G ⇒ H ≤ Levi subgroup L of G .

For G = GL(V ):
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Complete Reducibility

Definition

A subgroup H ≤ P is G -completely reducible if:

H ≤ parabolic subgroup P of G ⇒ H ≤ Levi subgroup L of G .

For G = GL(V ):
Parabolic subgroup = Stabiliser of a flag

0 = V0 ≤ V1 ≤ . . .Vr = V

P =


A1 ∗ ∗ ∗
· A2 ∗ ∗

· · . . . ∗
· · · Ar
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Complete Reducibility

Definition

A subgroup H ≤ P is G -completely reducible if:

H ≤ parabolic subgroup P of G ⇒ H ≤ Levi subgroup L of G .

For G = GL(V ):
Levi subgroup = Stabiliser of a flag and a ‘complement’

V = V ′0 ≥ . . . ≥ V ′r = 0 where V = Vi ⊕ V ′i ∀ i .

P =


A1 ∗ ∗ ∗
· A2 ∗ ∗

· · . . . ∗
· · · Ar

, L =


A1 · · ·
· A2 · ·

· · . . . ·
· · · Ar



Alastair Litterick, University of Bielefeld Reductive Subgroups of Reductive Groups



Reductive Subgroups

Today: Consider connected subgroups only.

Fact (Borel + Tits)

If X ≤ G is G -completely reducible then X is reductive.

Converse holds for Char(K ) = 0 or ‘big’ (‘Maschke’s theorem’).

X is G -completely reducible
⇔

X is L-irreducible for some Levi subgroup L of G
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Reductive Subgroups

Two problems:

Classify L-irreducible subgroups for each Levi L of G .

For each parabolic P = Q o L, and each L-irreducible
reductive subgroup X , understand complements to Q in QX :

QX1 = QX , Q ∩ X1 = 1
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Complements and Cohomology

Problem

For each parabolic P = Q o L, and each L-irreducible reductive
subgroup X , understand complements to Q in QX .
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Complements and Cohomology

Problem

For each parabolic P = Q o L, and each L-irreducible reductive
subgroup X , understand complements to Q in QX .

Complements to Q in such a semidirect product have the form

{(φ(x), x) : x ∈ X}

where φ : X → Q is a 1-cocycle:

φ(x1x2) = φ(x1) (x1 · φ(x2))

Define Z 1(X ,Q) = {cocycles X → Q}.
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Complements and Cohomology

Problem

For each parabolic P = Q o L, and each L-irreducible reductive
subgroup X , understand complements to Q in QX .

Z 1(X ,Q) = {cocycles X → Q}

Complements corresponding to φ1 and φ2 are conjugate in QX iff
there exists q ∈ Q with

φ1(x) = q−1φ2(x)(x · q) ∀ x ∈ X

equivalence classes are first cohomology classes, H1(X ,Q).
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Complements and Cohomology

Problem

For each parabolic P = Q o L, and each L-irreducible reductive
subgroup X , understand complements to Q in QX .

=

Problem

For each parabolic P = Q o L, and each L-irreducible reductive
subgroup X , understand H1(X ,Q).
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Non-abelian Cohomology

If Q is abelian then Z 1(X ,Q) and H1(X ,Q) are vector spaces.

Otherwise, they are a priori merely pointed sets.

Example

X : Simple algebraic group. V : X -module.

G = GL(V ⊕ K ), P = StabG (V ), L = StabG (V ⊕ K ).

Take X < L. Then Q ∼= V as X -modules,
hence H1(X ,Q) is a vector space.
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Example

X : Simple algebraic group. V : X -module with dimH1(X ,V ) = 1.

G = GL(V ⊕K ⊕K ), P = StabG (V ), L = StabG (V ⊕K ⊕K ).

Then X < L, and Q is nilpotent of class 2:

Z = Z (Q) = [Q,Q] ∼= V , Q/[Q,Q] ∼= V ⊕ K

and H1(X ,Q) fits into an exact sequence:

It turns out that H1(X ,Q) ‘looks like’ a pair of lines!
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Results

Theorem (Liebeck, Seitz)

If G is simple of exceptional type and p > 7, then all reductive
subgroups are G -cr.

Theorem (L., Thomas)

If G is simple of exceptional type and p is good for G then
non-G -cr reductive subgroups are classified.

p ∈ {5, 7}, subgroups of types A1 and G2 only.

Observation

In every case, H1(X ,Q) ‘looks like’ an affine variety.
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Conjecture

Let X be reductive, and let Q be a unipotent affine algebraic
X -group, with a central filtration

Q = Q(1) ≥ Q(2) ≥ . . . ≥ Q(r + 1) = 0

where each section Q(i)/Q(i + 1) =: Vi is a rational X -module.

Then H1(X ,Q) is a finite union of subspaces of

r⊕
i=1

H1(X ,Vi ).

Moreover, the maps in the long exact sequence of cohomology are
morphisms of affine varieties.
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Bad characteristic example

Example

G = E8, p = 2, P = Q o L, L = E6T2.
E6 has a well-known irreducible subgroup X = D4.

Q is nilpotent of class 5:

Q = Q(1) B Q(2) B Q(3) B Q(4) B Q(5) B Q(6) = 1,

Q(1)/Q(2) ∼= V ⊕ K ⊕ K ,

Q(2)/Q(3) ∼= V ⊕ K ,

Q(3)/Q(4) ∼= V ⊕ K ,

Q(4)/Q(5) ∼= K ,

Q(5)/Q(6) ∼= K

where V is irreducible of dimension 26 and H1(X ,V ) = K 2.
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The Conjecture is Probably False but Also Sort-of True

Known:

Z 1(X ,Q) is a closed subset of QN for some N > 0.

H1(X ,Q) is the quotient of Z 1(X ,Q) under an action of Q.

There is a sub-torus of G acting on H1(X ,Q).

But this isn’t enough!

Example

Let (K ,+) act on K 2 via λ · (x , y) = (x , y + λx).

Orbits are singletons {(0, y)} and vertical lines x = a 6= 0.

Quotient space ‘looks like a pair of lines’, but isn’t a variety.

Ongoing: How much can we rescue?
(Étale slices, other types of quotients, larger categories, . . . )
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Reductive subgroups: Their Classification So Far

G = E8 E7 E6 F4 G2

X = A1 2 3 5 7 2 3 5 7 2 3 5 2 3 2
A2 2 3 2 3 2 3 3
B2 2 5 2 2 2
G2 2 3 7 2 7
A3 2 2
B3 2 2 2 2
C3 3
B4 2
C4 2 2
D4 2 2
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Reductive subgroups: Their Classification So Far

G = E8 E7 E6 F4 G2

X = A1 2 3 5 7 2 3 5 7 2 3 5 2 3 2
A2 2 3 2 3 2 3 3
B2 2 5 2 2 2
G2 2 3 7 2 7
A3 2 2
B3 2 2 2 2
C3 3
B4 2
C4 2 2
D4 2 2

Red: Understood (Liebeck, Saxl, Testerman)
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A2 2 3 2 3 2 3 3
B2 2 5 2 2 2
G2 2 3 7 2 7
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C3 3
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