Reductive Subgroups of Reductive Groups

Alastair Litterick, University of Bielefeld

BIRS, 15th November 2016

- K: algebraically closed field, characteristic $p \ge 0$.
- G: Simple algebraic group over K.

Subgroup Structure of Simple Algebraic Groups

Set-up

- K: algebraically closed field, characteristic $p \ge 0$.
- G: Simple algebraic group over K.

History

 $\bullet\,$ 1950s: Dynkin classifies maximal connected subgroups over $\mathbb C$

- K: algebraically closed field, characteristic $p \ge 0$.
- G: Simple algebraic group over K.

- $\bullet\,$ 1950s: Dynkin classifies maximal connected subgroups over $\mathbb C$
- 1980s: Seitz extends Dynkin's results into p > 0.

- K: algebraically closed field, characteristic $p \ge 0$.
- G: Simple algebraic group over K.

- $\bullet\,$ 1950s: Dynkin classifies maximal connected subgroups over $\mathbb C$
- 1980s: Seitz extends Dynkin's results into p > 0.
- 1990s onwards:

- K: algebraically closed field, characteristic $p \ge 0$.
- G: Simple algebraic group over K.

- $\bullet\,$ 1950s: Dynkin classifies maximal connected subgroups over $\mathbb C$
- 1980s: Seitz extends Dynkin's results into p > 0.
- 1990s onwards:
 - Liebeck + Seitz classify maximal connected subgroups, and then maximal positive-dimensional subgroups.

- K: algebraically closed field, characteristic $p \ge 0$.
- G: Simple algebraic group over K.

- $\bullet\,$ 1950s: Dynkin classifies maximal connected subgroups over $\mathbb C$
- 1980s: Seitz extends Dynkin's results into p > 0.
- 1990s onwards:
 - Liebeck + Seitz classify maximal connected subgroups, and then maximal positive-dimensional subgroups.
 - Various extensions beyond maximal subgroups.

- K: algebraically closed field, characteristic $p \ge 0$.
- G: Simple algebraic group over K.

- $\bullet\,$ 1950s: Dynkin classifies maximal connected subgroups over $\mathbb C$
- 1980s: Seitz extends Dynkin's results into p > 0.
- 1990s onwards:
 - Liebeck + Seitz classify maximal connected subgroups, and then maximal positive-dimensional subgroups.
 - Various extensions beyond maximal subgroups.
 - Serre introduces G-complete reducibility.
- Open problem: Understand all reductive subgroups.

Paradigm

Understanding subgroups $H \leq G \leftrightarrow$ Understanding homs $H \rightarrow G$.

Paradigm

Understanding subgroups $H \leq G \leftrightarrow$ Understanding homs $H \rightarrow G$.

Fix H instead of G: 'Generalised representation theory of H.'

Paradigm

Understanding subgroups $H \leq G \leftrightarrow$ Understanding homs $H \rightarrow G$.

Fix H instead of G: 'Generalised representation theory of H.'

If $G = GL_n(K)$ then this is true representation theory of H.

Definition

A subgroup $H \leq P$ is *G*-completely reducible if:

 $H \leq$ parabolic subgroup P of $G \Rightarrow H \leq$ Levi subgroup L of G.

→ < Ξ → <</p>

Definition

A subgroup $H \leq P$ is *G*-completely reducible if:

 $H \leq$ parabolic subgroup P of $G \Rightarrow H \leq$ Levi subgroup L of G.

For G = GL(V): Parabolic subgroup = Stabiliser of a flag

$$0 = V_0 \leq V_1 \leq \ldots V_r = V$$

$$P = \begin{pmatrix} A_1 & * & * & * \\ \hline & A_2 & * & * \\ \hline & & \ddots & \ddots & * \\ \hline & & \ddots & \ddots & * \\ \hline & & & \ddots & \ddots & A_r \end{pmatrix}$$

Definition

A subgroup $H \leq P$ is *G*-completely reducible if:

 $H \leq$ parabolic subgroup P of $G \Rightarrow H \leq$ Levi subgroup L of G.

For G = GL(V): Levi subgroup = Stabiliser of a flag and a 'complement'

$$V = V'_0 \ge \ldots \ge V'_r = 0$$
 where $V = V_i \oplus V'_i \ \forall i$.

∃ ▶

Fact (Borel + Tits)

If $X \leq G$ is G-completely reducible then X is reductive.

→ <

Fact (Borel + Tits)

If $X \leq G$ is G-completely reducible then X is reductive.

Converse holds for Char(K) = 0 or 'big' ('Maschke's theorem').

Fact (Borel + Tits)

If $X \leq G$ is G-completely reducible then X is reductive.

Converse holds for Char(K) = 0 or 'big' ('Maschke's theorem').

X is G-completely reducible \Leftrightarrow X is L-irreducible for some Levi subgroup L of G Two problems:

- Classify *L*-irreducible subgroups for each Levi *L* of *G*.
- For each parabolic $P = Q \rtimes L$, and each *L*-irreducible reductive subgroup *X*, understand *complements* to *Q* in *QX*:

$$QX_1 = QX, \qquad Q \cap X_1 = 1$$

For each parabolic $P = Q \rtimes L$, and each L-irreducible reductive subgroup X, understand complements to Q in QX.

★ ∃ →

For each parabolic $P = Q \rtimes L$, and each L-irreducible reductive subgroup X, understand complements to Q in QX.

Complements to Q in such a semidirect product have the form

 $\{(\phi(x),x) : x \in X\}$

where $\phi : X \rightarrow Q$ is a *1-cocycle*:

$$\phi(x_1x_2) = \phi(x_1)(x_1 \cdot \phi(x_2))$$

For each parabolic $P = Q \rtimes L$, and each L-irreducible reductive subgroup X, understand complements to Q in QX.

Complements to ${\it Q}$ in such a semidirect product have the form

 $\{(\phi(x),x) : x \in X\}$

where $\phi : X \rightarrow Q$ is a *1-cocycle*:

$$\phi(x_1x_2) = \phi(x_1) (x_1 \cdot \phi(x_2))$$

Define $Z^1(X, Q) = \{ \text{cocycles } X \to Q \}.$

For each parabolic $P = Q \rtimes L$, and each L-irreducible reductive subgroup X, understand complements to Q in QX.

$$Z^1(X,Q) = \{ \text{cocycles } X o Q \}$$

★ ∃ →

For each parabolic $P = Q \rtimes L$, and each L-irreducible reductive subgroup X, understand complements to Q in QX.

$$Z^1(X,Q) = \{ \text{cocycles } X \to Q \}$$

Complements corresponding to ϕ_1 and ϕ_2 are conjugate in QX iff there exists $q \in Q$ with

$$\phi_1(x) = q^{-1}\phi_2(x)(x \cdot q) \quad \forall \ x \in X$$

equivalence classes are first cohomology classes, $H^1(X, Q)$.

For each parabolic $P = Q \rtimes L$, and each L-irreducible reductive subgroup X, understand complements to Q in QX.

Problem

For each parabolic $P = Q \rtimes L$, and each L-irreducible reductive subgroup X, understand $H^1(X, Q)$.

• If Q is abelian then $Z^1(X, Q)$ and $H^1(X, Q)$ are vector spaces.

- If Q is abelian then $Z^1(X, Q)$ and $H^1(X, Q)$ are vector spaces.
- Otherwise, they are a priori merely pointed sets.

- If Q is abelian then $Z^1(X, Q)$ and $H^1(X, Q)$ are vector spaces.
- Otherwise, they are a priori merely pointed sets.

X : Simple algebraic group. V: X-module.

$$G = GL(V \oplus K), P = \operatorname{Stab}_G(V), L = \operatorname{Stab}_G(V \oplus K).$$

Take
$$X < L$$
. Then $Q \cong V$ as X-modules,
hence $H^1(X, Q)$ is a vector space.

X : Simple algebraic group. V: X-module with dim $H^1(X, V) = 1$.

< ∃ > <

X : Simple algebraic group. V: X-module with dim $H^1(X, V) = 1$.

 $G = GL(V \oplus K \oplus K), \quad P = \operatorname{Stab}_G(V), \quad L = \operatorname{Stab}_G(V \oplus K \oplus K).$

A 3 3 4 4

э

X : Simple algebraic group. V: X-module with dim $H^1(X, V) = 1$.

 $G = GL(V \oplus K \oplus K), \quad P = \operatorname{Stab}_{G}(V), \quad L = \operatorname{Stab}_{G}(V \oplus K \oplus K).$ Then X < L, and Q is nilpotent of class 2:

 $Z = Z(Q) = [Q, Q] \cong V, \quad Q/[Q, Q] \cong V \oplus K$

X : Simple algebraic group. V: X-module with dim $H^1(X, V) = 1$.

 $G = GL(V \oplus K \oplus K), \quad P = \operatorname{Stab}_{G}(V), \quad L = \operatorname{Stab}_{G}(V \oplus K \oplus K).$ Then X < L, and Q is nilpotent of class 2: $Z = Z(Q) = [Q, Q] \cong V, \quad Q/[Q, Q] \cong V \oplus K$ and $H^{1}(X, Q)$ fits into an exact sequence: $0 \to H^{0}(X, Z) \to H^{0}(X, Q) \to H^{0}(X, Q/Z)$ $\to H^{1}(X, Z) \to H^{1}(X, Q) \to H^{1}(X, Q/Z) \to H^{2}(X, Z)$

X : Simple algebraic group. V: X-module with dim $H^1(X, V) = 1$.

 $G = GL(V \oplus K \oplus K), \quad P = \operatorname{Stab}_G(V), \quad L = \operatorname{Stab}_G(V \oplus K \oplus K).$ Then X < L, and Q is nilpotent of class 2: $Z = Z(Q) = [Q, Q] \cong V, \quad Q/[Q, Q] \cong V \oplus K$ and $H^1(X, Q)$ fits into an exact sequence: $0 \to 0 \to K \xrightarrow{\sim} K \xrightarrow{0} K \to H^1(X, Q) \to K \to H^2(X, Z)$

X : Simple algebraic group. V: X-module with dim $H^1(X, V) = 1$.

 $G = GL(V \oplus K \oplus K), \quad P = \operatorname{Stab}_{G}(V), \quad L = \operatorname{Stab}_{G}(V \oplus K \oplus K).$ Then X < L, and Q is nilpotent of class 2: $Z = Z(Q) = [Q, Q] \cong V, \quad Q/[Q, Q] \cong V \oplus K$ and $H^{1}(X, Q)$ fits into an exact sequence: $0 \to 0 \to K \xrightarrow{\sim} K \xrightarrow{0} K \to H^{1}(X, Q) \to K \to 0$

X : Simple algebraic group. V: X-module with dim $H^1(X, V) = 1$.

 $G = GL(V \oplus K \oplus K), \quad P = \operatorname{Stab}_G(V), \quad L = \operatorname{Stab}_G(V \oplus K \oplus K).$ Then X < L, and Q is nilpotent of class 2: $Z = Z(Q) = [Q, Q] \cong V, \quad Q/[Q, Q] \cong V \oplus K$ and $H^1(X, Q)$ fits into an exact sequence: $0 \to 0 \to K \xrightarrow{\sim} K \xrightarrow{0} K \to H^1(X, Q) \to K \to 0$ It turns out that $H^1(X, Q)$ 'looks like' a pair of lines!

Theorem (Liebeck, Seitz)

If G is simple of exceptional type and p > 7, then all reductive subgroups are G-cr.

→ < Ξ → <</p>

Theorem (Liebeck, Seitz)

If G is simple of exceptional type and p > 7, then all reductive subgroups are G-cr.

Theorem (L., Thomas)

If G is simple of exceptional type and p is good for G then non-G-cr reductive subgroups are classified.

 $p \in \{5,7\}$, subgroups of types A_1 and G_2 only.

Theorem (Liebeck, Seitz)

If G is simple of exceptional type and p > 7, then all reductive subgroups are G-cr.

Theorem (L., Thomas)

If G is simple of exceptional type and p is good for G then non-G-cr reductive subgroups are classified.

 $p \in \{5,7\}$, subgroups of types A_1 and G_2 only.

Observation

In every case, $H^1(X, Q)$ 'looks like' an affine variety.

Conjecture

Let X be reductive, and let Q be a unipotent affine algebraic X-group, with a central filtration

$$Q=Q(1)\geq Q(2)\geq \ldots \geq Q(r+1)=0$$

where each section $Q(i)/Q(i+1) =: V_i$ is a rational X-module. Then $H^1(X, Q)$ is a finite union of subspaces of

$$\bigoplus_{i=1}^r H^1(X, V_i).$$

Moreover, the maps in the long exact sequence of cohomology are morphisms of affine varieties.

Bad characteristic example

Example

 $G = E_8$, p = 2, $P = Q \rtimes L$, $L = E_6 T_2$. E_6 has a well-known irreducible subgroup $X = D_4$. Q is nilpotent of class 5:

Bad characteristic example

Example

 $G = E_8$, p = 2, $P = Q \rtimes L$, $L = E_6 T_2$. E_6 has a well-known irreducible subgroup $X = D_4$. Q is nilpotent of class 5: $Q = Q(1) \triangleright Q(2) \triangleright Q(3) \triangleright Q(4) \triangleright Q(5) \triangleright Q(6) = 1,$ $Q(1)/Q(2) \cong V \oplus K \oplus K$ $Q(2)/Q(3) \cong V \oplus K$ $Q(3)/Q(4) \cong V \oplus K$ $Q(4)/Q(5) \cong K$ $Q(5)/Q(6) \cong K$

where V is irreducible of dimension 26 and $H^1(X, V) = K^2$.

イロト イ得ト イヨト イヨト

- $Z^1(X, Q)$ is a closed subset of Q^N for some N > 0.
- $H^1(X, Q)$ is the quotient of $Z^1(X, Q)$ under an action of Q.
- There is a sub-torus of G acting on $H^1(X, Q)$.

- $Z^1(X, Q)$ is a closed subset of Q^N for some N > 0.
- $H^1(X, Q)$ is the quotient of $Z^1(X, Q)$ under an action of Q.
- There is a sub-torus of G acting on $H^1(X, Q)$.

But this isn't enough!

Example

Let
$$(K, +)$$
 act on K^2 via $\lambda \cdot (x, y) = (x, y + \lambda x)$.

Orbits are singletons $\{(0, y)\}$ and vertical lines $x = a \neq 0$.

- $Z^1(X, Q)$ is a closed subset of Q^N for some N > 0.
- $H^1(X, Q)$ is the quotient of $Z^1(X, Q)$ under an action of Q.
- There is a sub-torus of G acting on $H^1(X, Q)$.

But this isn't enough!

Example

Let
$$(K, +)$$
 act on K^2 via $\lambda \cdot (x, y) = (x, y + \lambda x)$.

Orbits are singletons $\{(0, y)\}$ and vertical lines $x = a \neq 0$.

Quotient space 'looks like a pair of lines', but isn't a variety.

- $Z^1(X, Q)$ is a closed subset of Q^N for some N > 0.
- $H^1(X, Q)$ is the quotient of $Z^1(X, Q)$ under an action of Q.
- There is a sub-torus of G acting on $H^1(X, Q)$.

But this isn't enough!

Example

Let
$$(K, +)$$
 act on K^2 via $\lambda \cdot (x, y) = (x, y + \lambda x)$.

Orbits are singletons $\{(0, y)\}$ and vertical lines $x = a \neq 0$.

Quotient space 'looks like a pair of lines', but isn't a variety.

Ongoing: How much can we rescue? (Étale slices, other types of quotients, larger categories, ...)

<i>G</i> =	E ₈	E ₇	E ₆	F_4	G ₂
$X = A_1$	2357	2357	235	23	2
A_2	23	23	23	3	
B_2	25	2	2	2	
G ₂	237	27			
A_3	2	2			
B_3	2	2	2	2	
<i>C</i> ₃	3				
B_4	2				
<i>C</i> ₄	2	2			
D_4	2	2			

3 🖌 🖌 3

<i>G</i> =	E ₈	E ₇	E ₆	F ₄	G ₂
$X = A_1$	2357	2357	235	23	2
A_2	23	23	23	3	
B_2	25	2	2	2	
G ₂	237	27			
A_3	2	2			
B_3	2	2	2	2	
<i>C</i> ₃	3				
B_4	2				
<i>C</i> ₄	2	2			
D_4	2	2			
	1 . 1	/	<u>с і т</u>)

Red: Understood (Liebeck, Saxl, Testerman)

<i>G</i> =	E ₈	E ₇	E ₆	F_4	G ₂
$X = A_1$	2357	2357	235	23	2
A_2	23	23	23	3	
B_2	25	2	2	2	
G ₂	237	27			
A_3	2	2			
B_3	2	2	2	2	
<i>C</i> ₃	3				
B_4	2				
<i>C</i> ₄	2	2			
D_4	2	2			
Red: Understood (Stewart)					

・ 御 と ・ 臣 と ・ 臣 と

3

<i>G</i> =	E ₈	E ₇	E ₆	F_4	G ₂
$X = A_1$	235 <mark>7</mark>	2 3 <mark>5 7</mark>	23 <mark>5</mark>	23	2
A_2	23	23	23	3	
B_2	25	2	2	2	
G ₂	23 <mark>7</mark>	2 7			
A_3	2	2			
B_3	2	2	2	2	
<i>C</i> ₃	3				
B_4	2				
<i>C</i> ₄	2	2			
D_4	2	2			
Red: Understood (L., Thomas)					

▶ ★ 문 ▶ ★ 문 ▶

э

<i>G</i> =	E ₈	E ₇	E ₆	F_4	G ₂
$X = A_1$	2357	2 3 <mark>5 7</mark>	23 <mark>5</mark>	23	2
A_2	2 <mark>3</mark>	2 <mark>3</mark>	2 <mark>3</mark>	3	
B_2	2 <mark>5</mark>	2	2	2	
G_2	2 <mark>3 7</mark>	27			
A_3	2	2			
B_3	2	2	2	2	
<i>C</i> ₃	3				
B_4	2				
<i>C</i> ₄	2	2			
D_4	2	2			
Red: Understood (L., Thomas, unpublished)					