Local Statistics for Particle Systems with Repulsive Interaction

Martin Venker

Bielefeld University

Banff Workshop "Beta Ensembles: Universality, Integrability, and Asymptotics"

11.04.2016–15.04.2016

Topics

- **1** From β -Ensembles to Repulsive Particle Systems.
- 2 How to tackle the new Interaction?
- **3** Arbitrary $\beta > 0$: Bulk Correlations.
- **4** β **2**:
 - Correlations under Unfolding.
 - Empirical Spacings.
 - Edge Correlations.
 - Fluctuations and Deviations of the Largest Particle.
- Central Ideas of the Method.

Universality is one of the fundamental topics in Random Matrix Theory.

Universality is one of the fundamental topics in Random Matrix Theory.

- Universal RMT distributions found in many very different situations:
 - Spacings between energy levels of excited heavy nuclei.
 - Quantum chaology (Bohigas-Giannoni-Schmit conjecture).
 - Spacings of zeros of the Riemann Zeta function on the critical line.
 - Traffic spacings, birds' spacings etc.

Universality is one of the fundamental topics in Random Matrix Theory.

- Universal RMT distributions found in many very different situations:
 - Spacings between energy levels of excited heavy nuclei.
 - Quantum chaology (Bohigas-Giannoni-Schmit conjecture).
 - Spacings of zeros of the Riemann Zeta function on the critical line.
 - Traffic spacings, birds' spacings etc.
- Still lacks understanding...

Universality is one of the fundamental topics in Random Matrix Theory.

- Universal RMT distributions found in many very different situations:
 - Spacings between energy levels of excited heavy nuclei.
 - Quantum chaology (Bohigas-Giannoni-Schmit conjecture).
 - Spacings of zeros of the Riemann Zeta function on the critical line.
 - Traffic spacings, birds' spacings etc.
- Still lacks understanding...

Aim: Understand the emergence of universality in terms of the repulsion arising between close eigenvalues

Universality is one of the fundamental topics in Random Matrix Theory.

- Universal RMT distributions found in many very different situations:
 - Spacings between energy levels of excited heavy nuclei.
 - Quantum chaology (Bohigas-Giannoni-Schmit conjecture).
 - Spacings of zeros of the Riemann Zeta function on the critical line.
 - Traffic spacings, birds' spacings etc.
- Still lacks understanding...

Aim: Understand the emergence of universality in terms of the repulsion arising between close eigenvalues/particles.

 General belief: RMT limit distributions are fundamental for many strongly-correlated systems.

- General belief: RMT limit distributions are fundamental for many strongly-correlated systems.
- Belief mostly tested within RMT: Universality conjecture.
 For β-Ensembles: Show for fixed β > 0 that local statistics are independent of the potential Q: ℝ → ℝ.

$$P_{N,Q,\beta}(x) := \frac{1}{Z_{N,Q,\beta}} \prod_{i < j} |x_i - x_j|^{\beta} e^{-N \sum_{j=1}^N Q(x_j)}.$$

- General belief: RMT limit distributions are fundamental for many strongly-correlated systems.
- Belief mostly tested within RMT: Universality conjecture.
 For β-Ensembles: Show for fixed β > 0 that local statistics are independent of the potential Q: ℝ → ℝ.

$$P_{N,Q,\beta}(x) := \frac{1}{Z_{N,Q,\beta}} \prod_{i < j} |x_i - x_j|^{\beta} e^{-N \sum_{j=1}^{N} Q(x_j)}.$$

Interacting particle approach: Goal is to model particles on the real line.

- General belief: RMT limit distributions are fundamental for many strongly-correlated systems.
- Belief mostly tested within RMT: Universality conjecture.
 For β-Ensembles: Show for fixed β > 0 that local statistics are independent of the potential Q: R → R.

$$P_{N,Q,\beta}(x) := \frac{1}{Z_{N,Q,\beta}} \prod_{i < j} |x_i - x_j|^{\beta} e^{-N \sum_{j=1}^{N} Q(x_j)}.$$

Interacting particle approach: Goal is to model particles on the real line.

Question: Why not change the interaction potential?

• Known: Changing the β means changing the limit.

- Known: Changing the β means changing the limit.
- β in $\prod_{i < j} |x_i x_j|^{\beta}$ should only matter for close particles.

- Known: Changing the β means changing the limit.
- β in $\prod_{i < j} |x_i x_j|^{\beta}$ should only matter for close particles.
- Idea: Keep repulsion strength β for very close particles but change interaction of particles at non-zero distance.

- Known: Changing the β means changing the limit.
- β in $\prod_{i < j} |x_i x_j|^{\beta}$ should only matter for close particles.
- Idea: Keep repulsion strength β for very close particles but change interaction of particles at non-zero distance.
- Define repulsive particle system on \mathbb{R}^N

$$P_{N,Q,\beta}^{h}(x) := \frac{1}{Z_{N,Q,\beta}^{h}} \prod_{i < j} |x_{i} - x_{j}|^{\beta} e^{-\sum_{i < j} h(x_{i} - x_{j})} e^{-N \sum_{j=1}^{N} Q(x_{j})}$$

with additional (smooth) pair potential h.

- Known: Changing the β means changing the limit.
- β in $\prod_{i < j} |x_i x_j|^{\beta}$ should only matter for close particles.
- Idea: Keep repulsion strength β for very close particles but change interaction of particles at non-zero distance.
- Define repulsive particle system on \mathbb{R}^N

$$P_{N,Q,\beta}^{h}(x) := \frac{1}{Z_{N,Q,\beta}^{h}} \prod_{i < j} |x_{i} - x_{j}|^{\beta} e^{-\sum_{i < j} h(x_{i} - x_{j})} e^{-N \sum_{j=1}^{N} Q(x_{j})}$$

with additional (smooth) pair potential h.

Particles instead of eigenvalues!

Assumptions (to be cont.): h symmetric around 0, negative-definite.

Choose Gaussian process $(f(t))_{t\in\mathbb{R}}$ with mean 0 and $\mathbb{E} f(t)f(s)=-h(t-s)$. Then

$$\sum_{j=1}^N f(x_j) \sim \mathcal{N}\left(0, -\sum_{i,j} h(x_i - x_j)\right) \quad \text{ for all } x_1, \dots, x_N \in \mathbb{R} \text{ and }$$

Assumptions (to be cont.): h symmetric around 0, negative-definite.

Choose Gaussian process $(f(t))_{t\in\mathbb{R}}$ with mean 0 and $\mathbb{E} f(t)f(s)=-h(t-s)$. Then

$$\sum_{j=1}^N f(x_j) \sim \mathcal{N}\left(0, -\sum_{i,j} h(x_i - x_j)\right) \quad \text{ for all } x_1, \dots, x_N \in \mathbb{R} \ \text{ and }$$

$$\mathbb{E} \exp \left(\sum_{j=1}^{N} f(x_j) \right) = \exp \left(-\frac{1}{2} \sum_{i,j} h(x_i - x_j) \right)$$
$$= \exp \left(-\sum_{i < j} h(x_i - x_j) - \frac{N}{2} h(0) \right).$$

$$\prod_{i < j} |x_i - x_j|^{\beta} e^{-\sum_{i < j} h(x_i - x_j)} e^{-\sum_{j=1}^N NQ(x_j)} \propto \mathbb{E} \prod_{i < j} |x_i - x_j|^{\beta} e^{-\sum_{j=1}^N NQ(x_j) + f(x_j)}.$$

• "Average of β -Ensembles" with potentials Q + f/N!

$$\prod_{i < j} |x_i - x_j|^{\beta} e^{-\sum_{i < j} h(x_i - x_j)} e^{-\sum_{j=1}^N NQ(x_j)} \propto \mathbb{E} \prod_{i < j} |x_i - x_j|^{\beta} e^{-\sum_{j=1}^N NQ(x_j) + f(x_j)}.$$

- "Average of β -Ensembles" with potentials Q + f/N!
- Idea: Transport results from β -Ensembles to new ones.

$$\prod_{i < j} |x_i - x_j|^{\beta} e^{-\sum_{i < j} h(x_i - x_j)} e^{-\sum_{j=1}^N NQ(x_j)} \propto \mathbb{E} \prod_{i < j} |x_i - x_j|^{\beta} e^{-\sum_{j=1}^N NQ(x_j) + f(x_j)}.$$

- "Average of β -Ensembles" with potentials Q + f/N!
- Idea: Transport results from β -Ensembles to new ones.

Instead of negative definiteness: Assume *h* is a Schwartz function.

Allows for Fourier techniques.

$$\prod_{i < j} |x_i - x_j|^{\beta} \, e^{-\sum_{i < j} h(x_i - x_j)} e^{-\sum_{j = 1}^N NQ(x_j)} \propto \mathbb{E} \prod_{i < j} |x_i - x_j|^{\beta} \, e^{-\sum_{j = 1}^N NQ(x_j) + f(x_j)}.$$

- "Average of β -Ensembles" with potentials Q + f/N!
- Idea: Transport results from β -Ensembles to new ones.

Instead of negative definiteness: Assume *h* is a Schwartz function.

- Allows for Fourier techniques.
- Can split $h = h^+ h^-$ with positive-definite functions h^{\pm} .

$$\prod_{i < j} |x_i - x_j|^{\beta} e^{-\sum_{i < j} h(x_i - x_j)} e^{-\sum_{j = 1}^N NQ(x_j)} \propto \mathbb{E} \prod_{i < j} |x_i - x_j|^{\beta} e^{-\sum_{j = 1}^N NQ(x_j) + f(x_j)}.$$

- "Average of β -Ensembles" with potentials Q + f/N!
- Idea: Transport results from β -Ensembles to new ones.

Instead of negative definiteness: Assume *h* is a Schwartz function.

- Allows for Fourier techniques.
- Can split $h = h^+ h^-$ with positive-definite functions h^{\pm} .
- Complex analysis (Vitali's Theorem): Suffices to consider
 h_z := zh⁺ h⁻ with negative z.

Repulsive Particles: Summary Assumptions

$$P^h_{N,Q,\beta}(x) = \frac{1}{Z^h_{N,Q,\beta}} \prod_{i < j} |x_i - x_j|^{\beta} e^{-\sum_{i < j} h(x_i - x_j)} e^{-N\sum_{j=1}^N Q(x_j)}.$$

Repulsive Particles: Summary Assumptions

$$P^{h}_{N,Q,\beta}(x) = \frac{1}{Z^{h}_{N,Q,\beta}} \prod_{i < j} |x_i - x_j|^{\beta} e^{-\sum_{i < j} h(x_i - x_j)} e^{-N\sum_{j=1}^{N} Q(x_j)}.$$

- Assumptions on h: symmetric around zero, Schwartz function, real analytic.
- Assumptions on potential Q: symmetric around zero, real analytic and for given h sufficiently uniformly convex: $\min_{t\in\mathbb{R}} Q''(t) > C(h) \geq 0$ (ensures uniqueness of equilibrium measure).

 $ho_{N,Q,eta}^{h,k}(x_1,\ldots,x_k):=\int_{\mathbb{R}^{N-k}}P_{N,Q,eta}^h(x)dx_{k+1}\ldots dx_N$: k-th correlation function.

 $ho_{N,Q,eta}^{h,k}(x_1,\ldots,x_k):=\int_{\mathbb{R}^{N-k}}P_{N,Q,eta}^h(x)dx_{k+1}\ldots dx_N$: k-th correlation function.

Theorem (Götze-V., AoP. '14)

There exists $\mu_{Q,\beta}^h$ probability measure with compact connected support and positive density on the interior, s.th.

$$ho_{N,Q,eta}^{h,k}(dt) o \left(\mu_{Q,eta}^h
ight)^{\otimes k}$$
 weakly, as $N o \infty$.

 $ho_{N,Q,eta}^{h,k}(x_1,\ldots,x_k):=\int_{\mathbb{R}^{N-k}}P_{N,Q,eta}^h(x)dx_{k+1}\ldots dx_N$: k-th correlation function.

Theorem (Götze-V., AoP. '14)

There exists $\mu_{Q,\beta}^h$ probability measure with compact connected support and positive density on the interior, s.th.

$$ho_{N,Q,eta}^{h,k}(extit{d}t)
ightarrow \left(\mu_{Q,eta}^{h}
ight)^{\otimes k}$$
 weakly, as $extit{N}
ightarrow \infty$.

Analogous results for β-Ensembles in Johansson'98.

 $ho_{N,Q,eta}^{h,k}(x_1,\ldots,x_k):=\int_{\mathbb{R}^{N-k}}P_{N,Q,eta}^h(x)dx_{k+1}\ldots dx_N$: k-th correlation function.

Theorem (Götze-V., AoP. '14)

There exists $\mu_{Q,\beta}^h$ probability measure with compact connected support and positive density on the interior, s.th.

$$ho_{N,Q,eta}^{h,k}(extit{d}t) o \left(\mu_{Q,eta}^h
ight)^{\otimes k}$$
 weakly, as $N o \infty$.

- Analogous results for β -Ensembles in Johansson'98.
- Global correlations first announced in Boutet de Monvel, Pastur, Shcherbina'95 for convex many-body interactions, expansion of the partition function in Borot, Guionnet, Kozlowski'15.

 $ho_{N,Q,eta}^{h,k}(x_1,\ldots,x_k):=\int_{\mathbb{R}^{N-k}}P_{N,Q,eta}^h(x)dx_{k+1}\ldots dx_N$: k-th correlation function.

Theorem (Götze-V., AoP. '14)

There exists $\mu_{Q,\beta}^h$ probability measure with compact connected support and positive density on the interior, s.th.

$$ho_{N,Q,eta}^{h,k}(extit{d}t)
ightarrow \left(\mu_{Q,eta}^h
ight)^{\otimes k}$$
 weakly, as $extit{N}
ightarrow \infty$.

- Analogous results for β -Ensembles in Johansson'98.
- Global correlations first announced in Boutet de Monvel, Pastur, Shcherbina'95 for convex many-body interactions, expansion of the partition function in Borot, Guionnet, Kozlowski'15.
- Somewhat related interactions occur for multi-matrix models (Figalli,Guionnet'14).

Local Bulk Correlations for arbitrary β : Averaged Vague Convergence

Compare local correlations of $P^h_{N,Q,\beta}$ with those of the Gaussian β -Ensemble $P_{N,G,\beta}$, i.e. $G(t):=t^2$, $\mu_{G,\beta}$ semicircle law, $\rho^k_{N,G,\beta}$ k—th correlation function.

Local Bulk Correlations for arbitrary β : Averaged Vague Convergence

Compare local correlations of $P^h_{N,Q,\beta}$ with those of the Gaussian β -Ensemble $P_{N,G,\beta}$, i.e. $G(t):=t^2$, $\mu_{G,\beta}$ semicircle law, $\rho^k_{N,G,\beta}$ k-th correlation function.

Theorem (V., ECP '13)

Let $0 < \xi < 1/2$ and $s_N := N^{-1+\xi}$.

For $k=1,2,\ldots$, any $a\in \operatorname{supp}(\mu_{Q,\beta}^h)^\circ$, any $a'\in\operatorname{supp}(\mu_{G,\beta})^\circ$, any smooth function $f:\mathbb{R}^k\longrightarrow\mathbb{R}$ with compact support

$$\lim_{N \to \infty} \int dt^{k} f(t)
\int_{a-s_{N}}^{a+s_{N}} \frac{1}{\mu_{Q,\beta}^{h}(a)^{k}} \rho_{N,Q,\beta}^{h,k} \left(u + \frac{t_{1}}{N\mu_{Q,\beta}^{h}(a)}, \dots, u + \frac{t_{k}}{N\mu_{Q,\beta}^{h}(a)} \right) \frac{du}{2s_{N}}
- \int_{a'-s_{N}}^{a'+s_{N}} \frac{1}{\mu_{G,\beta}(a')^{k}} \rho_{N,G,\beta}^{k} \left(u' + \frac{t_{1}}{N\mu_{G,\beta}(a')}, \dots, u' + \frac{t_{k}}{N\mu_{G,\beta}(a')} \right) \frac{du'}{2s_{N}}
= 0.$$

Local Bulk Correlations for $\beta = 2$

From now on $\beta = 2$. Write $P_{N,Q}^h := P_{N,Q,2}^h$ etc.

Local Bulk Correlations for $\beta = 2$

From now on $\beta = 2$. Write $P_{N,Q}^h := P_{N,Q,2}^h$ etc.

Theorem (Götze-V., AoP '14)

For $k \geq 1$ we have uniformly on compacts in t_1, \ldots, t_k and uniformly in $a \in I, I \subset (\text{supp}\mu_Q^h)^\circ$ compact

$$\lim_{N \to \infty} \frac{1}{\mu_Q^h(a)^k} \rho_{N,Q}^{h,k} \left(a + \frac{t_1}{N \mu_Q^h(a)}, \dots, a + \frac{t_k}{N \mu_Q^h(a)} \right)$$

$$= \det \left[\frac{\sin \left(\pi(t_i - t_j) \right)}{\pi(t_i - t_j)} \right]_{1 \le i, j \le k}.$$

Local Bulk Correlations for $\beta = 2$

From now on $\beta = 2$. Write $P_{N,Q}^h := P_{N,Q,2}^h$ etc.

Theorem (Götze-V., AoP '14)

For $k \geq 1$ we have uniformly on compacts in t_1, \ldots, t_k and uniformly in $a \in I, I \subset (\text{supp}\mu_Q^h)^\circ$ compact

$$\lim_{N \to \infty} \frac{1}{\mu_Q^h(a)^k} \rho_{N,Q}^{h,k} \left(a + \frac{t_1}{N \mu_Q^h(a)}, \dots, a + \frac{t_k}{N \mu_Q^h(a)} \right)$$

$$= \det \left[\frac{\sin \left(\pi(t_i - t_j) \right)}{\pi(t_i - t_j)} \right]_{1 \le i, j \le k}.$$

Analogous results for β -Ensembles:

- $oldsymbol{\circ}$ eta= 2: Deift et al.'99; Pastur, Shcherbina'97,'08; Levin, Lubinsky'08–, many more.

Local Bulk Correlations for $\beta = 2$: Localized Scaling

• Scaling should ensure (asymptotic) mean spacing 1.

- Scaling should ensure (asymptotic) mean spacing 1.
- Localized particles: $N\mu_Q^h(a)x_1, \ldots, N\mu_Q^h(a)x_N$.

- Scaling should ensure (asymptotic) mean spacing 1.
- Localized particles: $N\mu_Q^h(a)x_1, \ldots, N\mu_Q^h(a)x_N$.
- Optimal rate of convergence for $\beta = 2$ -Ensembles (KSSV'14):

$$\begin{split} &\frac{1}{\mu_{Q}(a)^{k}}\rho_{N,Q}^{k}\left(a+\frac{t_{1}}{N\mu_{Q}(a)},\ldots,a+\frac{t_{k}}{N\mu_{Q}(a)}\right)\\ &=\det\left[\frac{\sin\left(\pi(t_{i}-t_{j})\right)}{\pi(t_{i}-t_{j})}\right]_{1\leq i,j\leq k}+\mathcal{O}\left(\frac{1+\sum_{i=1}^{k}|t_{i}|}{N}\right) \end{split}$$

uniformly for $t_1, \ldots, t_k = o(N)$.

- Scaling should ensure (asymptotic) mean spacing 1.
- Localized particles: $N\mu_Q^h(a)x_1, \ldots, N\mu_Q^h(a)x_N$.
- Optimal rate of convergence for $\beta = 2$ -Ensembles (KSSV'14):

$$\begin{split} &\frac{1}{\mu_{Q}(a)^{k}}\rho_{N,Q}^{k}\left(a+\frac{t_{1}}{N\mu_{Q}(a)},\ldots,a+\frac{t_{k}}{N\mu_{Q}(a)}\right)\\ &=\det\left[\frac{\sin\left(\pi(t_{i}-t_{j})\right)}{\pi(t_{i}-t_{j})}\right]_{1\leq i,j\leq k}+\mathcal{O}\left(\frac{1+\sum_{i=1}^{k}|t_{i}|}{N}\right) \end{split}$$

uniformly for $t_1, \ldots, t_k = o(N)$.

Allows to access statistics of o(N) localized particles.

- Scaling should ensure (asymptotic) mean spacing 1.
- Localized particles: $N\mu_Q^h(a)x_1, \ldots, N\mu_Q^h(a)x_N$.
- Optimal rate of convergence for $\beta = 2$ -Ensembles (KSSV'14):

$$\begin{split} &\frac{1}{\mu_{Q}(a)^k}\rho_{N,Q}^k\left(a+\frac{t_1}{N\mu_{Q}(a)},\ldots,a+\frac{t_k}{N\mu_{Q}(a)}\right)\\ &=\det\left[\frac{\sin\left(\pi(t_i-t_j)\right)}{\pi(t_i-t_j)}\right]_{1\leq i,j\leq k} + \mathcal{O}\left(\frac{1+\sum_{i=1}^k|t_i|}{N}\right) \end{split}$$

uniformly for $t_1, \ldots, t_k = o(N)$.

- Allows to access statistics of o(N) localized particles.
- Problem is that $\mu_O^h(a)$ is not constant.

• Unfolding: $NF_Q^h(x_1), \dots, NF_Q^h(x_N)$ with F_Q^h distribution function of μ_Q^h . Works throughout the whole spectrum (excluding the edges).

- Unfolding: $NF_Q^h(x_1), \dots, NF_Q^h(x_N)$ with F_Q^h distribution function of μ_Q^h . Works throughout the whole spectrum (excluding the edges).
- Allows to access $\mathcal{O}(N)$ unfolded particles.

- Unfolding: $NF_Q^h(x_1), \ldots, NF_Q^h(x_N)$ with F_Q^h distribution function of μ_Q^h . Works throughout the whole spectrum (excluding the edges).
- Allows to access $\mathcal{O}(N)$ unfolded particles.

Add. assumption: Fourier transform \hat{h} decays exponentially (f analytic a.s.).

- Unfolding: $NF_Q^h(x_1), \dots, NF_Q^h(x_N)$ with F_Q^h distribution function of μ_Q^h . Works throughout the whole spectrum (excluding the edges).
- Allows to access $\mathcal{O}(N)$ unfolded particles.

Add. assumption: Fourier transform \widehat{h} decays exponentially (f analytic a.s.). With $I_N \subset [0,N]$ such that $\frac{1}{N} \mathrm{dist}(I_N,\{0,N\}) \geq c > 0$ for N large enough

Theorem (Schubert-V., EJP '15)

With
$$\widehat{t}_j := (F_Q^h)^{-1}(t_j/N)$$

$$\frac{1}{\prod_{i=1}^k \mu_O^h(\widehat{t_i})} \rho_{N,Q}^{h,k}(\widehat{t_1},\ldots,\widehat{t_k}) = \det \left[\frac{\sin(\pi(t_i-t_j))}{\pi(t_i-t_j)} \right]_{1 \leq i,j \leq k} + o(1)$$

uniform for $t_1, \ldots, t_k \in I_N$.

- Transform μ_Q^h to uniform distribution.
- Unfolding: $NF_Q^h(x_1), \ldots, NF_Q^h(x_N)$ with F_Q^h distribution function of μ_Q^h . Works throughout the whole spectrum (excluding the edges).
- Allows to access $\mathcal{O}(N)$ unfolded particles.

Add. assumption: Fourier transform \widehat{h} decays exponentially (f analytic a.s.). With $I_N \subset [0, N]$ such that $\frac{1}{N} \mathrm{dist}(I_N, \{0, N\}) \geq c > 0$ for N large enough

Theorem (Schubert-V., EJP '15)

With $\hat{t}_j := (F_Q^h)^{-1}(t_j/N)$ and h negative-definite,

$$\frac{1}{\prod_{i=1}^k \mu_O^h(\widehat{t_j})} \rho_{N,Q}^{h,k}(\widehat{t_1},\dots,\widehat{t_k}) = \det \left[\frac{\sin(\pi(t_i-t_j))}{\pi(t_i-t_j)} \right]_{1 \leq i,j \leq k} + \mathcal{O}\left(\frac{1}{N^{1-\varepsilon}}\right)$$

uniform for $t_1, \ldots, t_k \in I_N$ and any $\varepsilon > 0$.

- Transform μ_Q^h to uniform distribution.
- Unfolding: $NF_Q^h(x_1), \ldots, NF_Q^h(x_N)$ with F_Q^h distribution function of μ_Q^h . Works throughout the whole spectrum (excluding the edges).
- Allows to access $\mathcal{O}(N)$ unfolded particles.

Add. assumption: Fourier transform \widehat{h} decays exponentially (f analytic a.s.). With $I_N \subset [0, N]$ such that $\frac{1}{N} \mathrm{dist}(I_N, \{0, N\}) \geq c > 0$ for N large enough

Theorem (Schubert-V., EJP '15)

With $\hat{t}_j := (F_Q^h)^{-1}(t_j/N)$ and h = 0 ($\beta = 2$ -Ensemble),

$$\frac{1}{\prod_{i=1}^k \mu_Q(\widehat{t_j})} \rho_{N,Q}^k(\widehat{t_1},\ldots,\widehat{t_k}) = \det \left[\frac{\sin(\pi(t_i-t_j))}{\pi(t_i-t_j)} \right]_{1 \leq i,j \leq k} + \mathcal{O}\left(\frac{1}{N}\right)$$

uniform for $t_1, \ldots, t_k \in I_N$ and any $\varepsilon > 0$.

Nearest Neighbor Spacings

• Let $x_1 \le x_2 \le \cdots \le x_N$ and I_N interval, nearest neighbor spacings in I_N :

$$\sigma(I_N,x):=\sum_{x_j,x_{j+1}\in I_N}\delta_{x_{j+1}-x_j}.$$

Nearest Neighbor Spacings

• Let $x_1 \le x_2 \le \cdots \le x_N$ and I_N interval, nearest neighbor spacings in I_N :

$$\sigma(I_N,x):=\sum_{x_j,x_{j+1}\in I_N}\delta_{x_{j+1}-x_j}.$$

• Classical result (Deift et al. 99): $a \in \operatorname{supp}\mu_Q^\circ$, $t_N \to \infty$ and $t_N/N \to 0$, s given, localized scaling $x_{\text{loc}} := N\mu_Q(a)x$,

$$\lim_{N\to\infty}\mathbb{E}_{N,Q}\frac{1}{2t_N\mu_Q(a)}\int_0^s d\sigma\big((a-t_N,a+t_N),x_{\text{loc}}\big)=G(s),$$

Nearest Neighbor Spacings

• Let $x_1 \le x_2 \le \cdots \le x_N$ and I_N interval, nearest neighbor spacings in I_N :

$$\sigma(I_N,x):=\sum_{x_j,x_{j+1}\in I_N}\delta_{x_{j+1}-x_j}.$$

• Classical result (Deift et al. 99): $a \in \text{supp}\mu_Q^\circ$, $t_N \to \infty$ and $t_N/N \to 0$, s given, localized scaling $x_{\text{loc}} := N\mu_Q(a)x$,

$$\lim_{N\to\infty}\mathbb{E}_{N,Q}\frac{1}{2t_N\mu_Q(a)}\int_0^s d\sigma\big((a-t_N,a+t_N),x_{\mathsf{loc}}\big)=G(s),$$

with G being the distribution function of the Gaudin distribution,

$$G(s) := \sum_{k>2} \frac{(-1)^k}{(k-1)!} \int_{[0,s]^{k-1}} \det \left[(S(z_i - z_j))_{1 \le i,j \le k} \right] |_{z_1 = 0} dz_2 \dots dz_k,$$

where S is the sine kernel.

More recently (Tao'13; Erdős, Yau'15; Bekerman, Figalli, Guionnet'15; cf.
 Figalli, Guionnet'14) for any index set / excluding edge indices

$$\lim_{N\to\infty} \mathbb{E}_{N,Q} \frac{1}{|I|} \sum_{i\in I} g\Big(\mu_Q(q_i) N(x_{i+1} - x_i)\Big) = \int g(s) dG(s)$$

with q_i being the i/N-quantile of μ_Q , g test function.

More recently (Tao'13; Erdős, Yau'15; Bekerman, Figalli, Guionnet'15; cf.
 Figalli, Guionnet'14) for any index set / excluding edge indices

$$\lim_{N\to\infty} \mathbb{E}_{N,Q} \frac{1}{|I|} \sum_{i\in I} g\Big(\mu_Q(q_i) N(x_{i+1} - x_i)\Big) = \int g(s) dG(s)$$

with q_i being the i/N-quantile of μ_Q , g test function.

Not empirical, but expected spacing distribution.

More recently (Tao'13; Erdős, Yau'15; Bekerman, Figalli, Guionnet'15; cf.
 Figalli, Guionnet'14) for any index set / excluding edge indices

$$\lim_{N\to\infty} \mathbb{E}_{N,Q} \frac{1}{|I|} \sum_{i\in I} g\Big(\mu_Q(q_i) N(x_{i+1} - x_i)\Big) = \int g(s) dG(s)$$

with q_i being the i/N-quantile of μ_Q , g test function.

• Not empirical, but expected spacing distribution. $\sigma(I_N, x)$ vs. intensity measure $\mathbb{E}_{N,Q}\sigma(I_N, x)$.

More recently (Tao'13; Erdős, Yau'15; Bekerman, Figalli, Guionnet'15; cf.
 Figalli, Guionnet'14) for any index set / excluding edge indices

$$\lim_{N\to\infty} \mathbb{E}_{N,Q} \frac{1}{|I|} \sum_{i\in I} g\Big(\mu_Q(q_i) N(x_{i+1} - x_i)\Big) = \int g(s) dG(s)$$

with q_i being the i/N-quantile of μ_Q , g test function.

- Not empirical, but expected spacing distribution. $\sigma(I_N, x)$ vs. intensity measure $\mathbb{E}_{N,Q}\sigma(I_N, x)$.
- ullet Empirical spacings considered in Schubert'15: $t_N o \infty$ and $t_N/N o 0$,

$$\lim_{N\to\infty} \mathbb{E}_{N,Q}\left(\sup_{s\in\mathbb{R}}\left|\int_0^s \frac{1}{2t_N\mu_Q(a)}d\sigma((a-t_N,a+t_N),x_{\text{loc}})-G(s)\right|\right)=0.$$

More recently (Tao'13; Erdős, Yau'15; Bekerman, Figalli, Guionnet'15; cf.
 Figalli, Guionnet'14) for any index set I excluding edge indices

$$\lim_{N\to\infty} \mathbb{E}_{N,Q} \frac{1}{|I|} \sum_{i\in I} g\Big(\mu_Q(q_i) N(x_{i+1} - x_i)\Big) = \int g(s) dG(s)$$

with q_i being the i/N-quantile of μ_Q , g test function.

- Not empirical, but expected spacing distribution. $\sigma(I_N, x)$ vs. intensity measure $\mathbb{E}_{N,Q}\sigma(I_N, x)$.
- Empirical spacings considered in Schubert'15: $t_N \to \infty$ and $t_N/N \to 0$,

$$\lim_{N\to\infty} \mathbb{E}_{N,Q}\left(\sup_{s\in\mathbb{R}}\left|\int_0^s \frac{1}{2t_N\mu_Q(a)}d\sigma((a-t_N,a+t_N),x_{\text{loc}})-G(s)\right|\right)=0.$$

However, only a tiny fraction of all spacings is considered!

Nearest Neighbor Spacings: New Results

$$\widehat{\sigma}(I_N, x) := \frac{1}{\int_0^\infty d\sigma(I_N, x)} \sigma(I_N, x), \qquad (x_{\mathsf{unf}})_i := NF_Q^h(x_i).$$

Theorem (Schubert-V., EJP'15)

$$\lim_{N\to\infty}\mathbb{E}^h_{N,Q}\left(\sup_{s\in\mathbb{R}}\left|\int_0^s d\widehat{\sigma}([0,N],x_{\mathsf{unf}})-G(s)\right|\right)=0.$$

Nearest Neighbor Spacings: New Results

$$\widehat{\sigma}(I_N,x) := rac{1}{\int_0^\infty d\sigma(I_N,x)} \sigma(I_N,x), \qquad \quad (x_{\mathsf{unf}})_i := NF_Q^h(x_i).$$

Theorem (Schubert-V., EJP'15)

$$\lim_{N\to\infty}\mathbb{E}^h_{N,Q}\left(\sup_{s\in\mathbb{R}}\left|\int_0^s d\widehat{\sigma}([0,N],x_{\mathsf{unf}})-G(s)\right|\right)=0.$$

Let h negative-definite. If $I_N \subset [0, N]$ with $\frac{1}{N} \text{dist}(I_N, \{0, N\}) \ge c > 0$ for N large enough, then for any $\varepsilon > 0$

$$\mathbb{E}_{N,Q}^{h}\left(\sup_{s\in\mathbb{R}}\left|\int_{0}^{s}d\widehat{\sigma}(I_{N},x_{\mathsf{unf}})-G(s)\right|\right)=\mathcal{O}\left(|I_{N}|^{-\frac{1}{4}+\varepsilon}\right).$$

Nearest Neighbor Spacings: New Results

$$\widehat{\sigma}(I_N,x) := rac{1}{\int_0^\infty d\sigma(I_N,x)} \sigma(I_N,x), \qquad \quad (x_{\mathrm{unf}})_i := NF_Q^h(x_i).$$

Theorem (Schubert-V., EJP'15)

$$\lim_{N\to\infty}\mathbb{E}_{N,Q}^{h}\left(\sup_{s\in\mathbb{R}}\left|\int_{0}^{s}d\widehat{\sigma}([0,N],x_{\mathrm{unf}})-G(s)\right|\right)=0.$$

Let *h* negative-definite. If $I_N \subset [0, N]$ with $\frac{1}{N} \text{dist}(I_N, \{0, N\}) \ge c > 0$ for *N* large enough, then for any $\varepsilon > 0$

$$\mathbb{E}_{N,Q}^{h}\left(\sup_{s\in\mathbb{R}}\left|\int_{0}^{s}d\widehat{\sigma}(I_{N},X_{\mathsf{unf}})-G(s)\right|\right)=\mathcal{O}\left(|I_{N}|^{-\frac{1}{4}+\varepsilon}\right).$$

If h arbitrary, then error is o(1).

Edge Correlations for Repulsive Particles

$$P_{N,Q}^{h}(x) = \frac{1}{Z_{N,Q}^{h}} \prod_{i < j} |x_i - x_j|^2 e^{-\sum_{i < j} h(x_i - x_j) - N \sum_{j=1}^{N} Q(x_j)}.$$

Theorem (Kriecherbauer-V.,'15)

Let $\operatorname{supp}\mu_Q^h = [-b,b]$. There exists $c^* > 0$ such that for q < 0 < p and $t \in [q,pN^{4/15}]^k$

$$\left(\frac{N^{1/3}}{c^*}\right)^k \rho_{N,Q}^{h,k} \left(b + \frac{t_1}{c^*N^{2/3}}, \dots, b + \frac{t_k}{c^*N^{2/3}}\right) = \det\left[K_{Ai}(t_i, t_j)\right]_{1 \leq i, j \leq k} + o(1).$$

Edge Correlations for Repulsive Particles

$$P_{N,Q}^{h}(x) = \frac{1}{Z_{N,Q}^{h}} \prod_{i < j} |x_i - x_j|^2 e^{-\sum_{i < j} h(x_i - x_j) - N \sum_{j=1}^{N} Q(x_j)}.$$

Theorem (Kriecherbauer-V.,'15)

Let $\operatorname{supp}\mu_Q^h = [-b,b]$. There exists $c^* > 0$ such that for q < 0 < p and $t \in [q,pN^{4/15}]^k$

$$\left(\frac{N^{1/3}}{c^*}\right)^k \rho_{N,Q}^{h,k} \left(b + \frac{t_1}{c^*N^{2/3}}, \dots, b + \frac{t_k}{c^*N^{2/3}}\right) = \det\left[K_{Ai}(t_i, t_j)\right]_{1 \leq i, j \leq k} + o(1).$$

If *h* is negative-definite $(\hat{h} \leq 0)$, then replace o(1) by $\mathcal{O}(N^{-1/3+\varepsilon})$, $\varepsilon > 0$.

Edge Correlations for Repulsive Particles

$$P_{N,Q}^{h}(x) = \frac{1}{Z_{N,Q}^{h}} \prod_{i < j} |x_i - x_j|^2 e^{-\sum_{i < j} h(x_i - x_j) - N \sum_{j=1}^{N} Q(x_j)}.$$

Theorem (Kriecherbauer-V.,'15)

Let supp $\mu_{O}^{h} = [-b, b]$. There exists $c^* > 0$ such that for q < 0 < p and $t \in [a, pN^{4/15}]^k$

$$\left(\frac{N^{1/3}}{c^*}\right)^k \rho_{N,Q}^{h,k}\left(b + \frac{t_1}{c^*N^{2/3}}, \dots, b + \frac{t_k}{c^*N^{2/3}}\right) = \det\left[K_{Ai}(t_i, t_j)\right]_{1 \leq i, j \leq k} + o(1).$$

If *h* is negative-definite $(\hat{h} \leq 0)$, then replace o(1) by $\mathcal{O}(N^{-1/3+\varepsilon})$, $\varepsilon > 0$.

Edge universality for β-Ensembles: Ramirez, Rider, Virag'11; Krishnapur, Rider, Virag'15;

Bourgade, Erdős, Yau'14; Bekerman, Figalli, Guionnet'15; cf. Figalli, Guionnet'14

Theorem (Kriecherbauer-V.,'15)

For any (fixed) $s \in \mathbb{R}$,

$$P_{N,Q}^{h}\left((x_{\max} - b) \, c^* N^{2/3} \le s \right) = F_{TW}(s) + o(1).$$

where F_{TW} is the distribution function of the $(\beta=2)$ Tracy-Widom distribution. If h is negative-definite $(\widehat{h} \leq 0)$, then replace o(1) by $\mathcal{O}(N^{-1/3+\varepsilon})$ for any $\varepsilon>0$.

Theorem (Kriecherbauer-V.,'15)

For any (fixed) $s \in \mathbb{R}$,

$$P_{N,Q}^h\left(\left(x_{\mathsf{max}}-b\right)c^*N^{2/3}\leq s
ight)=F_{\mathsf{TW}}(s)+o(1).$$

where F_{TW} is the distribution function of the $(\beta=2)$ Tracy-Widom distribution. If h is negative-definite $(\widehat{h} \leq 0)$, then replace o(1) by $\mathcal{O}(N^{-1/3+\varepsilon})$ for any $\varepsilon>0$.

What about deviations $P_{N,Q}^h\left((x_{\max}-b)\,c^*N^{2/3}>s\right)$ for $s=s_N\to\infty$? (Upper tail deviations)

Theorem (Kriecherbauer-V.,'15)

For any (fixed) $s \in \mathbb{R}$,

$$P_{N,Q}^h\left(\left(x_{\mathsf{max}}-b\right)c^*N^{2/3}\leq s
ight)=F_{\mathsf{TW}}(s)+o(1).$$

where F_{TW} is the distribution function of the $(\beta=2)$ Tracy-Widom distribution. If h is negative-definite $(\widehat{h} \leq 0)$, then replace o(1) by $\mathcal{O}(N^{-1/3+\varepsilon})$ for any $\varepsilon>0$.

What about deviations $P_{N,Q}^h\left((x_{\max}-b)\,c^*N^{2/3}>s\right)$ for $s=s_N\to\infty$? (Upper tail deviations)

• Moderate deviations: $s \to \infty$, but $t = b + \frac{s}{c^* N^{2/3}} \to b$.

Theorem (Kriecherbauer-V.,'15)

For any (fixed) $s \in \mathbb{R}$,

$$P_{N,Q}^h\left(\left(x_{\mathsf{max}}-b\right)c^*N^{2/3}\leq s
ight)=F_{\mathsf{TW}}(s)+o(1).$$

where F_{TW} is the distribution function of the $(\beta=2)$ Tracy-Widom distribution. If h is negative-definite $(\widehat{h} \leq 0)$, then replace o(1) by $\mathcal{O}(N^{-1/3+\varepsilon})$ for any $\varepsilon>0$.

What about deviations $P_{N,Q}^h\left((x_{\max}-b)\,c^*N^{2/3}>s\right)$ for $s=s_N\to\infty$? (Upper tail deviations)

• Moderate deviations: $s \to \infty$, but $t = b + \frac{s}{c^* N^{2/3}} \to b$. Should still be in realm of the Tracy-Widom law, hence universal!

Theorem (Kriecherbauer-V.,'15)

For any (fixed) $s \in \mathbb{R}$,

$$P_{N,Q}^{h}\left((x_{\max} - b) \, c^* N^{2/3} \le s \right) = F_{TW}(s) + o(1).$$

where F_{TW} is the distribution function of the $(\beta=2)$ Tracy-Widom distribution. If h is negative-definite $(\widehat{h} \leq 0)$, then replace o(1) by $\mathcal{O}(N^{-1/3+\varepsilon})$ for any $\varepsilon>0$.

What about deviations $P_{N,Q}^h\left((x_{\max}-b)\,c^*N^{2/3}>s\right)$ for $s=s_N\to\infty$? (Upper tail deviations)

- Moderate deviations: $s \to \infty$, but $t = b + \frac{s}{c^*N^{2/3}} \to b$. Should still be in realm of the Tracy-Widom law, hence universal!
- Large deviations: $s \to \infty$ and $t = b + \frac{s}{c^* N^{2/3}} > b$.

Theorem (Kriecherbauer-V.,'15)

For any (fixed) $s \in \mathbb{R}$,

$$P_{N,Q}^{h}\left((x_{\max} - b) \, c^* N^{2/3} \le s \right) = F_{TW}(s) + o(1).$$

where F_{TW} is the distribution function of the $(\beta=2)$ Tracy-Widom distribution. If h is negative-definite $(\widehat{h} \leq 0)$, then replace o(1) by $\mathcal{O}(N^{-1/3+\varepsilon})$ for any $\varepsilon>0$.

What about deviations $P_{N,Q}^h\left((x_{\max}-b)\,c^*N^{2/3}>s\right)$ for $s=s_N\to\infty$? (Upper tail deviations)

- Moderate deviations: $s \to \infty$, but $t = b + \frac{s}{c^* N^{2/3}} \to b$. Should still be in realm of the Tracy-Widom law, hence universal!
- Large deviations: $s \to \infty$ and $t = b + \frac{s}{c^*N^{2/3}} > b$. Non-universal!

Moderate Deviations: Logarithmic Form

Moderate deviations in logarithmic form:

Theorem (Kriecherbauer-V.,'15)

$$\frac{\log P_{N,Q}^h\left((x_{\max}-b)c^*N^{2/3}>s\right)}{s^{3/2}}=-\frac{4}{3}+o(1)$$

with o(1) uniform in $s \in [1, o(N^{2/3})]$.

Moderate Deviations: Logarithmic Form

Moderate deviations in logarithmic form:

Theorem (Kriecherbauer-V.,'15)

$$\frac{\log P_{N,Q}^{h}\left((x_{\max}-b)c^{*}N^{2/3}>s\right)}{s^{3/2}}=-\frac{4}{3}+o(1)$$

with o(1) uniform in $s \in [1, o(N^{2/3})]$. For h negative definite, replace o(1) by $-\frac{\log(16\pi s^{3/2})}{s^{3/2}} + \mathcal{O}\left(\frac{s}{N^{2/3}}\right) + \mathcal{O}\left(\frac{1}{s^3}\right).$

Uses known right-tail asymptotics for Tracy-Widom distribution:

$$1 - F_{\text{TW}}(s) = \frac{1}{16\pi} \frac{e^{-\frac{4}{3}s^{3/2}}}{s^{3/2}} \left(1 + \mathcal{O}\left(\frac{1}{s^{3/2}}\right) \right), \quad \text{for } s \to \infty.$$

Moderate Deviations: Non-Logarithmic Form

Theorem (Kriecherbauer-V.,'15)

$$\frac{P_{N,Q}^{h}\left((x_{\max} - b)c^{*}N^{2/3} > s\right)}{(1 - F_{TW}(s))} = \exp\left(s^{3/2}\sum_{j=1}^{\infty}d_{j}\left(\frac{s}{N^{2/3}}\right)^{j}\right)(1 + o(1))$$

uniformly for $s = o(N^{2/3})$ with coefficients d_i depending on Q and h.

Moderate Deviations: Non-Logarithmic Form

Theorem (Kriecherbauer-V.,'15)

$$\frac{P_{N,Q}^{h}\left((x_{\max} - b)c^{*}N^{2/3} > s\right)}{(1 - F_{TW}(s))} = \exp\left(s^{3/2}\sum_{j=1}^{\infty}d_{j}\left(\frac{s}{N^{2/3}}\right)^{j}\right)(1 + o(1))$$

uniformly for $s = o(N^{2/3})$ with coefficients d_i depending on Q and h.

 To be compared with result in classical probability (Cramér'38) for sums of i.i.d. r.v. X_i with mean μ and variance σ²:

$$\frac{P\left(\frac{\sum_{i=1}^{N} X_i - \mu}{\sigma \sqrt{N}} > s\right)}{(1 - \Phi(s))} = \exp\left(s^2 \sum_{j=1}^{\infty} a_j \left(\frac{s}{\sqrt{N}}\right)^j\right) (1 + o(1)).$$

Moderate Deviations: Non-Logarithmic Form

Theorem (Kriecherbauer-V.,'15)

$$\frac{P_{N,Q}^{h}\left((x_{\max} - b)c^{*}N^{2/3} > s\right)}{(1 - F_{TW}(s))} = \exp\left(s^{3/2}\sum_{j=1}^{\infty}d_{j}\left(\frac{s}{N^{2/3}}\right)^{j}\right)(1 + o(1))$$

uniformly for $s = o(N^{2/3})$ with coefficients d_i depending on Q and h.

• To be compared with result in classical probability (Cramér'38) for sums of i.i.d. r.v. X_i with mean μ and variance σ^2 :

$$\frac{P\left(\frac{\sum_{j=1}^{N}X_{j}-\mu}{\sigma\sqrt{N}}>s\right)}{(1-\Phi(s))}=\exp\left(s^{2}\sum_{j=1}^{\infty}a_{j}\left(\frac{s}{\sqrt{N}}\right)^{j}\right)(1+o(1)).$$

Describes the transition from universality to non-universality!

Asymptotics for the largest Particle: Large Deviations

Theorem (Kriecherbauer-V.,'15)

Let M>b and $0<\varepsilon<2/3$. Then uniformly for $t\in[b+N^{-\varepsilon},M]$ (large deviations),

$$\frac{\log P_{N,Q}^{h}\left(x_{\max}>t\right)}{N}=-\eta_{Q,h}(t)-\frac{\log \left(N(t-b)^{3/2}\right)}{N}+\mathcal{O}\left(\frac{1}{N}\right),$$

where the \mathcal{O} term is uniform in N and in $t \in (b + N^{-2/3}, T)$ and the rate function is

$$\eta_{Q,h}(t) = -2\int \log|t-s|\,d\mu_Q^h(s) + \int h(t-s)d\mu_Q^h(s) + Q(t) - C.$$

Asymptotics for the largest Particle: Large Deviations

Theorem (Kriecherbauer-V.,'15)

Let M>b and $0<\varepsilon<2/3$. Then uniformly for $t\in[b+N^{-\varepsilon},M]$ (large deviations),

$$\frac{\log P_{N,Q}^{h}\left(x_{\max}>t\right)}{N}=-\eta_{Q,h}(t)-\frac{\log \left(N(t-b)^{3/2}\right)}{N}+\mathcal{O}\left(\frac{1}{N}\right),$$

where the \mathcal{O} term is uniform in N and in $t \in (b + N^{-2/3}, T)$ and the rate function is

$$\eta_{Q,h}(t) = -2\int \log|t-s|\,d\mu_Q^h(s) + \int h(t-s)d\mu_Q^h(s) + Q(t) - C.$$

• Without rate in Borot, Guionnet, Kozlowski'15. Non-logarithmic form for $\beta = 2$ -Ensembles in Eichelsbacher, Kriecherbauer, Schüler'16.

Asymptotics for the largest Particle: Large Deviations

Theorem (Kriecherbauer-V.,'15)

Let M>b and $0<\varepsilon<2/3$. Then uniformly for $t\in[b+N^{-\varepsilon},M]$ (large deviations),

$$\frac{\log P_{N,Q}^{h}\left(x_{\max}>t\right)}{N}=-\eta_{Q,h}(t)-\frac{\log \left(N(t-b)^{3/2}\right)}{N}+\mathcal{O}\left(\frac{1}{N}\right),$$

where the \mathcal{O} term is uniform in N and in $t \in (b + N^{-2/3}, T)$ and the rate function is

$$\eta_{Q,h}(t) = -2\int \log|t-s|\,d\mu_Q^h(s) + \int h(t-s)d\mu_Q^h(s) + Q(t) - C.$$

- Without rate in Borot, Guionnet, Kozlowski'15. Non-logarithmic form for β = 2-Ensembles in Eichelsbacher, Kriecherbauer, Schüler'16.
- Conjecture new source of non-universality.

$$P_{N,Q,\beta}^{h}(x) = \frac{1}{Z_{N,Q,\beta}^{h}} \prod_{i < j} |x_{j} - x_{i}|^{\beta} e^{-\sum_{i < j} h(x_{i} - x_{j}) - N \sum_{j=1}^{N} Q(x_{j})}.$$

• Idea: Compare $P_{N,Q,\beta}^h$ with β -Ensemble $P_{N,V,\beta}$ that has the same limiting measure.

$$P_{N,Q,\beta}^{h}(x) = \frac{1}{Z_{N,Q,\beta}^{h}} \prod_{i < i} |x_{i} - x_{i}|^{\beta} e^{-\sum_{i < j} h(x_{i} - x_{j}) - N \sum_{j=1}^{N} Q(x_{j})}.$$

- Idea: Compare $P_{N,Q,\beta}^h$ with β -Ensemble $P_{N,V,\beta}$ that has the same limiting measure.
- ullet Let μ probability measure on $\mathbb R$. Hoeffding type decomposition

$$\sum_{i < j} h(x_i - x_j) = c_N + N \sum_{j=1}^N h_{\mu}(x_j) - \mathcal{U}_{\mu}(x),$$

where c_N is a constant, $h_\mu(t):=\int h(t-s)d\mu(s)$ and \mathcal{U}_μ is the quadratic statistic

$$\mathcal{U}_{\mu}(x) := -rac{1}{2} \left(\sum_{i,j=1}^{N} h(x_i - x_j) - h_{\mu}(x_i) - h_{\mu}(x_j) + h_{\mu\mu} \right).$$

Now, with
$$V_{\mu}(t):=Q(t)+h_{\mu}(t)$$

$$\begin{split} P_{N,Q,\beta}^{h}(x) &= \frac{1}{Z_{N,Q,\beta}^{h}} \prod_{i < j} |x_{i} - x_{j}|^{\beta} e^{-\sum_{i < j} h(x_{i} - x_{j}) - N \sum_{j=1}^{N} Q(x_{j})} \\ &= \frac{e^{-c_{N}} Z_{N,V_{\mu},\beta}}{Z_{N,Q,\beta}^{h}} \frac{1}{Z_{N,V_{\mu},\beta}} \prod_{i < j} |x_{i} - x_{j}|^{\beta} e^{-N \sum_{j=1}^{N} V_{\mu}(x_{j}) + \mathcal{U}_{\mu}(x)} \end{split}$$

Now, with
$$V_{\mu}(t):=Q(t)+h_{\mu}(t)$$

$$\begin{split} P_{N,Q,\beta}^{h}(x) &= \frac{1}{Z_{N,Q,\beta}^{h}} \prod_{i < j} |x_{i} - x_{j}|^{\beta} e^{-\sum_{i < j} h(x_{i} - x_{j}) - N \sum_{j=1}^{N} Q(x_{j})} \\ &= \frac{e^{-c_{N}} Z_{N,V_{\mu},\beta}}{Z_{N,Q,\beta}^{h}} \frac{1}{Z_{N,V_{\mu},\beta}} \prod_{i < j} |x_{i} - x_{j}|^{\beta} e^{-N \sum_{j=1}^{N} V_{\mu}(x_{j}) + \mathcal{U}_{\mu}(x)} \end{split}$$

• Choose μ such that \mathcal{U}_{μ} is small under $P_{N,V_{\mu},\beta}$. But \mathcal{U}_{μ} is centered under μ ! Thus

 $=\frac{e^{-c_{N}}Z_{N,V_{\mu},\beta}}{Z_{N,Q,\beta}^{h}}\frac{1}{Z_{N,V_{\mu},\beta}}\prod_{i < i}|x_{i}-x_{j}|^{\beta}e^{-N\sum_{j=1}^{N}V_{\mu}(x_{j})+\mathcal{U}_{\mu}(x)}$

Now, with
$$V_{\mu}(t) := Q(t) + h_{\mu}(t)$$

$$P_{N,Q,\beta}^{h}(x) = \frac{1}{Z_{N,Q,\beta}^{h}} \prod_{i < j} |x_{i} - x_{j}|^{\beta} e^{-\sum_{i < j} h(x_{i} - x_{j}) - N \sum_{j=1}^{N} Q(x_{j})}$$

• Choose
$$\mu$$
 such that \mathcal{U}_{μ} is small under $P_{N,V_{\mu},\beta}$. But \mathcal{U}_{μ} is centered under μ ! Thus μ must be chosen as the equilibrium measure to V_{μ} !

Now, with
$$V_{\mu}(t):=Q(t)+h_{\mu}(t)$$

$$\begin{split} P_{N,Q,\beta}^{h}(x) &= \frac{1}{Z_{N,Q,\beta}^{h}} \prod_{i < j} |x_{i} - x_{j}|^{\beta} e^{-\sum_{i < j} h(x_{i} - x_{j}) - N \sum_{j=1}^{N} Q(x_{j})} \\ &= \frac{e^{-c_{N}} Z_{N,V_{\mu},\beta}}{Z_{N,Q,\beta}^{h}} \frac{1}{Z_{N,V_{\mu},\beta}} \prod_{i < j} |x_{i} - x_{j}|^{\beta} e^{-N \sum_{j=1}^{N} V_{\mu}(x_{j}) + \mathcal{U}_{\mu}(x)} \end{split}$$

- Choose μ such that \mathcal{U}_{μ} is small under $P_{N,V_{\mu},\beta}$. But \mathcal{U}_{μ} is centered under μ ! Thus μ must be chosen as the equilibrium measure to V_{μ} !
- Solve this implicit problem by applying a fixed point theorem: get $\mu_{Q,\beta}^h$. $V:=Q+h_{\mu^h}$.

Now, with
$$V_{\mu}(t):=Q(t)+h_{\mu}(t)$$

$$\begin{split} P_{N,Q,\beta}^{h}(x) &= \frac{1}{Z_{N,Q,\beta}^{h}} \prod_{i < j} |x_{i} - x_{j}|^{\beta} e^{-\sum_{i < j} h(x_{i} - x_{j}) - N \sum_{j=1}^{N} Q(x_{j})} \\ &= \frac{e^{-c_{N}} Z_{N,V_{\mu},\beta}}{Z_{N,Q,\beta}^{h}} \frac{1}{Z_{N,V_{\mu},\beta}} \prod_{i < j} |x_{i} - x_{j}|^{\beta} e^{-N \sum_{j=1}^{N} V_{\mu}(x_{j}) + \mathcal{U}_{\mu}(x)} \end{split}$$

- Choose μ such that \mathcal{U}_{μ} is small under $P_{N,V_{\mu},\beta}$. But \mathcal{U}_{μ} is centered under μ ! Thus μ must be chosen as the equilibrium measure to V_{μ} !
- Solve this implicit problem by applying a fixed point theorem: get $\mu_{Q,\beta}^h$. $V:=Q+h_{\mu^h}$.
- Show that $\mathcal{U}=\mathcal{U}_{\mu^h_{Q,\beta}}$ is indeed just a perturbation. Here convexity used (concentration inequalities).

Ideas of the Method: Linearization

• Linearization trick: Recall that for -h positive definite $(-\hat{h} \ge 0)$

$$\exp(-\frac{1}{2}\sum_{i,j}h(x_i-x_j))=\mathbb{E}\exp(\sum_{j=1}^Nf(x_j)).$$

Moreover

Ideas of the Method: Linearization

• Linearization trick: Recall that for -h positive definite $(-\hat{h} \ge 0)$

$$\exp(-\frac{1}{2}\sum_{i,j}h(x_i-x_j))=\mathbb{E}\exp(\sum_{j=1}^Nf(x_j)).$$

Moreover

$$\exp(\mathcal{U}(x)) = \mathbb{E} \exp(\sum_{i=1}^{N} f(x_i) - N \int f d\mu_{Q,\beta}^h).$$

Now add f to the potential: ensembles with densities proportional to

$$\prod_{i < j} |x_i - x_j|^{\beta} e^{-\sum_{j=1}^N NV(x_j) + f(x_j)}.$$

Perturbation f does not change global or local asymptotics.

$$P^{h}_{N,Q,\beta}(x) = \frac{1}{Z^{h}_{N,Q,\beta}} \prod_{i < j} |x_i - x_j|^{\beta} e^{-\sum_{i < j} h(x_i - x_j) - N \sum_{j=1}^{N} Q(x_j)}$$

Summary:

 Extension of classical random matrix models to more general particle systems with repulsion.

$$P^{h}_{N,Q,\beta}(x) = \frac{1}{Z^{h}_{N,Q,\beta}} \prod_{i < j} |x_i - x_j|^{\beta} e^{-\sum_{i < j} h(x_i - x_j) - N \sum_{j=1}^{N} Q(x_j)}$$

Summary:

- Extension of classical random matrix models to more general particle systems with repulsion.
- New class exhibits the same universal local laws in the bulk and at the edge.

$$P_{N,Q,\beta}^{h}(x) = \frac{1}{Z_{N,Q,\beta}^{h}} \prod_{i < j} |x_{i} - x_{j}|^{\beta} e^{-\sum_{i < j} h(x_{i} - x_{j}) - N \sum_{j=1}^{N} Q(x_{j})}$$

Summary:

- Extension of classical random matrix models to more general particle systems with repulsion.
- New class exhibits the same universal local laws in the bulk and at the edge.
- Additional interaction can be linearized: Average of β -Ensembles.

$$P_{N,Q,\beta}^{h}(x) = \frac{1}{Z_{N,Q,\beta}^{h}} \prod_{i < j} |x_{i} - x_{j}|^{\beta} e^{-\sum_{i < j} h(x_{i} - x_{j}) - N \sum_{j=1}^{N} Q(x_{j})}$$

Summary:

- Extension of classical random matrix models to more general particle systems with repulsion.
- New class exhibits the same universal local laws in the bulk and at the edge.
- Additional interaction can be linearized: Average of β -Ensembles.

Thank you for your attention!