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Topics

@ From 3-Ensembles to Repulsive Particle Systems.
© How to tackle the new Interaction?

© Arbitrary 3 > 0: Bulk Correlations.

Qs=2

Correlations under Unfolding.

v

v

Empirical Spacings.

v

Edge Correlations.

v

Fluctuations and Deviations of the Largest Particle.

© Central Ideas of the Method.
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Motivation and Aim

Universality is one of the fundamental topics in Random Matrix Theory.
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Universality is one of the fundamental topics in Random Matrix Theory.
@ Universal RMT distributions found in many very different situations:

» Spacings between energy levels of excited heavy nuclei.

» Quantum chaology (Bohigas-Giannoni-Schmit conjecture).

» Spacings of zeros of the Riemann Zeta function on the critical line.
» Traffic spacings, birds’ spacings etc.
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Aim: Understand the emergence of universality in terms of the repulsion
arising between close eigenvalues

M. Venker (Bielefeld) Repulsive Particle Systems April 13,2016 3



Motivation and Aim

Universality is one of the fundamental topics in Random Matrix Theory.
@ Universal RMT distributions found in many very different situations:

» Spacings between energy levels of excited heavy nuclei.

» Quantum chaology (Bohigas-Giannoni-Schmit conjecture).

» Spacings of zeros of the Riemann Zeta function on the critical line.
» Traffic spacings, birds’ spacings etc.

@ Still lacks understanding. . .

Aim: Understand the emergence of universality in terms of the repulsion
arising between close eigenvalues/particles.
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Ubiquity of RMT Laws vs. Universality in RMT

@ General belief: RMT limit distributions are fundamental for many
strongly-correlated systems.
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Ubiquity of RMT Laws vs. Universality in RMT

@ General belief: RMT limit distributions are fundamental for many
strongly-correlated systems.

@ Belief mostly tested within RMT: Universality conjecture.
For 5-Ensembles: Show for fixed g8 > 0 that local statistics are
independent of the potential Q: R — R.

1
N,Q.B

TT 1% — x° e~ N Q)
i<j

PN7Q7,3(X) =
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Ubiquity of RMT Laws vs. Universality in RMT

@ General belief: RMT limit distributions are fundamental for many
strongly-correlated systems.

@ Belief mostly tested within RMT: Universality conjecture.
For 5-Ensembles: Show for fixed g8 > 0 that local statistics are
independent of the potential Q: R — R.

Pn.as(x) = |7 e A0,

X
N.Q.B i<j

@ Interacting particle approach: Goal is to model particles on the real line.
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Ubiquity of RMT Laws vs. Universality in RMT

@ General belief: RMT limit distributions are fundamental for many
strongly-correlated systems.

@ Belief mostly tested within RMT: Universality conjecture.
For 5-Ensembles: Show for fixed g8 > 0 that local statistics are
independent of the potential Q: R — R.

Pn,as(x) := |7 e~ N Q).

=X
N.Q.6 i<j
@ Interacting particle approach: Goal is to model particles on the real line.

Question: Why not change the interaction potential?



Repulsive Particle Systems

@ Known: Changing the 8 means changing the limit.
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Repulsive Particle Systems

@ Known: Changing the 8 means changing the limit.
@ Ain[;lx— xj|” should only matter for close particles.

@ |dea: Keep repulsion strength g for very close particles but change
interaction of particles at non-zero distance.
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Repulsive Particle Systems

@ Known: Changing the 5 means changing the limit.
@ ginJ[;lxi— x,-|B should only matter for close particles.

@ |dea: Keep repulsion strength g for very close particles but change
interaction of particles at non-zero distance.

@ Define repulsive particle system on RV

1 - :
Phios(x) = zp— [[ Ixi— 1" & S0 g fs
N.Q.8 i<j

with additional (smooth) pair potential h.
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Repulsive Particle Systems

@ Known: Changing the 5 means changing the limit.
@ gin[f;lxi— xj|B should only matter for close particles.

@ |dea: Keep repulsion strength g for very close particles but change
interaction of particles at non-zero distance.

@ Define repulsive particle system on RV

1 - :
Phios(x) = zp— [[ Ixi— 1" & S0 g fs
N.Q.8 i<j

with additional (smooth) pair potential h.

@ Particles instead of eigenvalues!
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How to tackle the new Interaction? Basic Idea |

Assumptions (to be cont.): h symmetric around 0, negative-definite.
Choose Gaussian process (f(t)):cr With mean 0 and Ef(t)f(s) = —h(t — s).
Then

N
Zf(X,)NN(O Zh —x,) forall xi,...,xy € R and
=
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How to tackle the new Interaction? Basic Idea |

Assumptions (to be cont.): h symmetric around 0, negative-definite.
Choose Gaussian process (f(t)):cr With mean 0 and Ef(t)f(s) = —h(t — s).
Then

N
> ) ~ N (O Zh —x,) forall xi,...,xy € R and

j=1
N

E exp (Z f(xj)) = exp (——Zh i — Xj )
j=1

- Z h(xi — x;) — Eh(O)).

i<j
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How to tackle the new Interaction? Basic Idea Il

[T —x17 e Tt e SEINQ) o [Tix-xl"e S NG+ ()
i<j i<j

@ “Average of S-Ensembles” with potentials Q + f/N!
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How to tackle the new Interaction? Basic Idea Il

[T —x17 e Tt e YN o [Tix-xl"e SNy NQO) ()
i<j i<j

@ “Average of S-Ensembles” with potentials Q + f/N!

@ |dea: Transport results from 3-Ensembles to new ones.
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How to tackle the new Interaction? Basic Idea Il

H |XI _ Xj|ﬂ e_ Zi<j h(Xi_X/)e_ Z]N:1 NQ(X!) o< E H |XI _ Xj|ﬂ e_ Z/N:1 NQ()(/)+f()(/)
i<j i<j

@ “Average of S-Ensembles” with potentials Q + f/N!

@ |dea: Transport results from 3-Ensembles to new ones.

Instead of negative definiteness: Assume his a Schwartz function.

@ Allows for Fourier techniques.
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How to tackle the new Interaction? Basic Idea Il

H |XI _ Xj|ﬂ e_ Z/<j h(Xi_)(f)e_ Z]N:1 NQ(X!) o< E H |XI _ Xj|ﬂ e_ Z/N:1 NQ()(/)+f()(/)
i<j i<j

@ “Average of -Ensembles” with potentials Q + f/N!
@ |dea: Transport results from 3-Ensembles to new ones.

Instead of negative definiteness: Assume his a Schwartz function.

@ Allows for Fourier techniques.

@ Can split h = h* — h~ with positive-definite functions h*.
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How to tackle the new Interaction? Basic Idea Il

H |Xi _ X]|ﬂ e Z/<j h(Xi_)(f)e_ ZjN:1 NQ(XI) o< E H |Xi _ Xj|’8 e ZJN:1 NQ()(/)+f()(/)
i<j i<j
@ “Average of S-Ensembles” with potentials Q + f/N!

@ |dea: Transport results from 3-Ensembles to new ones.

Instead of negative definiteness: Assume his a Schwartz function.

@ Allows for Fourier techniques.
@ Can split h = h* — h~ with positive-definite functions h*.

@ Complex analysis (Vitali's Theorem): Suffices to consider
h, := zh* — h~ with negative z.
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Repulsive Particles: Summary Assumptions

1 ) ,
Phios() = g T = n|" &St o),
N.Q.B i<j
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Repulsive Particles: Summary Assumptions

Phios() = zp— ] I~ x|’ & Bty o),

N.Q.B i<j

@ Assumptions on h: symmetric around zero, Schwartz function,
real analytic.

@ Assumptions on potential Q: symmetric around zero, real analytic
and for given h sufficiently uniformly convex:
min;cr Q"(t) > C(h) > 0 (ensures uniqueness of equilibrium

measure).
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Global Correlations

p',:,’ko s(X, e Xk) = gk Pl o 5(X)dXi+1 ... dXn © k-th correlation function.
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Global Correlations
p',z;’koﬁ(m s Xk) = fnek P,’\’,Vovﬁ(x)dxkﬂ ... dxy : k-th correlation function.
Theorem (Gétze-V., AoP. '14)

There exists u’& P probability measure with compact connected support and
positive density on the interior, s.th.

PG 5(dt) — (ugﬁ)@)k weakly, as N — oc.
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p',z;’koﬁ(m s Xk) = fnek P,’\’,Vovﬁ(x)dxkﬁ ... dxy : k-th correlation function.
Theorem (Gétze-V., AoP. '14)

There exists N’c’;, P probability measure with compact connected support and
positive density on the interior, s.th.

pN 0s(dt) = (Mgﬁ)@)k weakly, as N — oo.

@ Analogous results for 5-Ensembles in Johansson’9s.
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Global Correlations
p',(,’koﬂ(m s Xk) = fnek P,’\’,VQ,B(X)dka ... adxy : k-th correlation function.
Theorem (Gétze-V., AoP. '14)

There exists u’&; P probability measure with compact connected support and
positive density on the interior, s.th.

PG 5(dt) — (Mgﬁ)@)k weakly, as N — oc.

@ Analogous results for 3-Ensembles in Johansson'9s.

@ Global correlations first announced in Boutet de Monvel,Pastur,Shcherbina’95
for convex many-body interactions, expansion of the partition function in

Borot,Guionnet,Kozlowski'15.
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Global Correlations
p',(,’koﬂ(m s Xk) = fnek P,’\’,VQ,B(X)dka ... adxy : k-th correlation function.
Theorem (Gétze-V., AoP. '14)

There exists u’é, P probability measure with compact connected support and
positive density on the interior, s.th.

PG 5(dt) — (Mgﬁ)@)k weakly, as N — oc.

@ Analogous results for 3-Ensembles in Johansson'9s.

@ Global correlations first announced in Boutet de Monvel,Pastur,Shcherbina’95
for convex many-body interactions, expansion of the partition function in
Borot,Guionnet,Kozlowski'15.

@ Somewhat related interactions occur for multi-matrix models
(Figalli,Guionnet'14).
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Local Bulk Correlations for arbitrary 3: Averaged Vague Convergence

Compare local correlations of P,’JLQ, 5 With those of the Gaussian -Ensemble
Pn.Gs,i.e. G(t) = t?, ug s semicircle law, p’,§,7G”3 k—th correlation function.
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Local Bulk Correlations for arbitrary 3: Averaged Vague Convergence
Compare local correlations of P,’(,’O’ s with those of the Gaussian 3-Ensemble
Pn.g s, i.e. G(t) = 2, pg s semicircle law, pﬂGﬁ k—th correlation function.
Theorem (v, EcpP '13)

Let0 < ¢ <1/2and sy := N~'+¢,

Fork=1,2,...,anyac supp(u’c’,yﬂ)c’, any & € supp(ug,g)°, any smooth
function f : R — R with compact support

3 k
Nlinoo/dt f(t)
SN 1 h.k ty t du
— Ut — Ut |
/a—sN N’c’),g(a)k N’Oﬂ( Nﬂg,g(a) Nl/cl),ﬁ(a) 2sn

_/a'+SN -1 pk <u/+ t1 u/+ tk > du/
a—sy Hap(@)k NP Nugp(@) Nugs(a@)) 2sn

=0.
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Local Bulk Correlations for g = 2

From now on 3 = 2. Write Pf} , := P 5, etc.
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Local Bulk Correlations for g = 2
From now on 3 = 2. Write Pf} , := P} 5, etc.

Theorem (Gotze-V., AoP '14)
For k > 1 we have uniformly on compacts in ¢, ..., t and uniformly in

ael, lc (suppug)o compact

im ik (g B gy
N=oo ufh(a)k "M@ Nub(a)” " Nuf(a)

_ sin (71'(t,' — t))
= det lﬂ(t,—t/)l

} 1<ij<k
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Local Bulk Correlations for g = 2
From now on 3 = 2. Write Pf} , := P} 5, etc.
Theorem (Gétze-V., AoP '14)
For k > 1 we have uniformly on compacts in ¢, ..., t and uniformly in
ael, lc (suppug)o compact
im k(e I gy
N=voo pft(a)k "N a Nub(a)” " Nuf(a)

sin (7r(t,- = t/))

= det
(i — )

1<ij<k

Analogous results for 5-Ensembiles:
@ (3 = 2: Deift et al’99; Pastur,Shcherbina’97,08; Levin,Lubinsky’08-, Mmany more.
@ General ﬂ: Valko,Virag’09; Bourgade,Erd6s,Yau'14; Shcherbina’14;

Bekerman, Figalli,Guionnet15. Gompare with Figalli,Guionnet'14.
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Local Bulk Correlations for 5 = 2: Localized Scaling

@ Scaling should ensure (asymptotic) mean spacing 1.
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Local Bulk Correlations for 5 = 2: Localized Scaling

@ Scaling should ensure (asymptotic) mean spacing 1.

@ Localized particles: Nub(a)xi, ..., Nub(a)xy.
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Local Bulk Correlations for 5 = 2: Localized Scaling

@ Scaling should ensure (asymptotic) mean spacing 1.
@ Localized particles: Nub(a)xi, ..., Nub(a)xy.
@ Optimal rate of convergence for 5 = 2-Ensembles (KSSV'14):

;pk <a+ _h Ay t_k)
pg(a)k"Ne Nuo(a)” 7~ Nug(a)

L [sin(x(t — 1)) 14+ 30, |t
_det{ 7r(t;—t/) ]1§i,j§k+0 ( N )

uniformly for tq,. .., & = o(N).
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Local Bulk Correlations for 5 = 2: Localized Scaling

@ Scaling should ensure (asymptotic) mean spacing 1.
@ Localized particles: Nub(a)xi, ..., Nub(a)xy.
@ Optimal rate of convergence for 5 = 2-Ensembles (KSSV'14):

;pk <a+ _h Ay t_k)
pg(a)k"Ne Nuo(a)” 7~ Nug(a)

L [sin(x(t — 1)) 14+ 30, |t
_det{ 7r(ti—t/) ]1§i,j§k+0 ( N )

uniformly for tq,. .., & = o(N).

@ Allows to access statistics of o(N) localized particles.
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Local Bulk Correlations for 5 = 2: Localized Scaling

@ Scaling should ensure (asymptotic) mean spacing 1.
@ Localized particles: Nub(a)xi, ..., Nub(a)xy.

@ Optimal rate of convergence for 5 = 2-Ensembles (KSSV'14):

LI <a+ b a+ b )

na@f "M\ Nug(a)” % Nug(a)

_det{sin(w(tf—q»] o (1t
71'(ti - t/) 1<ij<k N

uniformly for tq,. .., & = o(N).
@ Allows to access statistics of o(N) localized particles.

@ Problem is that xf(a) is not constant.
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Local Bulk Correlations for 5 = 2: Unfolding

@ Unfolding: NFj(x1), ..., NFi(xn) with F} distribution function of z.f}.
Works throughout the whole spectrum (excluding the edges).
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@ Unfolding: NFj(x1), ..., NFi(xn) with F} distribution function of z.f}.
Works throughout the whole spectrum (excluding the edges).

@ Allows to access O(N) unfolded particles.
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Local Bulk Correlations for 5 = 2: Unfolding

@ Unfolding: NFj(x1), ..., NFi(xn) with F} distribution function of z.f}.
Works throughout the whole spectrum (excluding the edges).

@ Allows to access O(N) unfolded particles.

Add. assumption: Fourier transform h decays exponentially (f analytic a.s.).
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Local Bulk Correlations for 5 = 2: Unfolding

@ Unfolding: NFj(x1), ..., NFi(xn) with F} distribution function of z.f}.
Works throughout the whole spectrum (excluding the edges).

@ Allows to access O(N) unfolded particles.

Add. assumption: Fourier transform h decays exponentially (f analytic a.s.).
. 1
With Iy C [0, N] such that Ndlst(l,\,, {0,N}) > ¢ > 0 for N large enough

Theorem (Schubert-V., EJP '15)
With 5 == (F§)~" (4/N)

1 - sin(m(t; — 1)
—Ap (t1, ., tx) = det {— +o(1)
T @) m(ti=8)  Ji<ijex
uniform for t;, ...t € In.
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Local Bulk Correlations for 5 = 2: Unfolding

@ Transform u’é to uniform distribution.

@ Unfolding: NFJ(x1), ..., NFi(xn) with F§ distribution function of 3.
Works throughout the whole spectrum (excluding the edges).

@ Allows to access O(N) unfolded particles.

Add. assumption: Fourier transform h decays exponentially (f analytic a.s.).
With Iy C [0, N] such that 1Ndist(/,\,, {0,N}) > ¢ > 0 for N large enough

Theorem (Schubert-V., EJP '15)
With % := (F5)~"(t;/N) and h negative-definite,

: ) — dot | STt = 1) e
Ty 1t (?/)pNO(thm’tk)_det[ m(ti = t) ]1</',/‘</<+O<N1>

uniform for t;, ..., f € Iy and any € > 0.

[

y
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Local Bulk Correlations for 5 = 2: Unfolding

@ Transform u’é to uniform distribution.

@ Unfolding: NFJ(x1), ..., NFi(xn) with F§ distribution function of 3.
Works throughout the whole spectrum (excluding the edges).

@ Allows to access O(N) unfolded particles.

Add. assumption: Fourier transform h decays exponentially (f analytic a.s.).
With Iy C [0, N] such that 1Ndist(/,\,, {0,N}) > ¢ > 0 for N large enough

Theorem (Schubert-V., EJP '15)
With % := (F5)~"(t;/N) and h = 0 (3 = 2-Ensemble),

e sin(x(t — 1)) 1
— (t1,...,tk):det[ +0(~
I na(®) ™ 6= g N

uniform for t;, ..., f € Iy and any € > 0.

y
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Nearest Neighbor Spacings

@ Let x; < x <--- < xy and Iy interval, nearest neighbor spacings in Iy:

o, X) =" D by,

Xj Xj+1€In
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Nearest Neighbor Spacings

@ Let x; < x <--- < xy and Iy interval, nearest neighbor spacings in Iy:

ol X) =D Oy,

Xj Xj+1€In

@ Classical result (Deift et al. 99): a € supppug, iv — oo and ty/N — 0, s
given, localized scaling Xioc := Nug(a)x,

I|m En 2tNMQ(a)/ do((a—ty,a+ ty), Xoc) = G(S),
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Nearest Neighbor Spacings

@ Let x; < x <--- < xy and Iy interval, nearest neighbor spacings in Iy:

ol X) =D Oy,

X, Xjp1€In

@ Classical result (Deift et al. 99): a € supppug, iv — oo and ty/N — 0, s
given, localized scaling Xoc := Nug(a)x,

I|m En.q 2tNMQ(a)/ do((a—tn, a+ tn), Xioc) = G(S),

with G being the distribution function of the Gaudin distribution,

k
o kg2 (k —1)1)' /0 o e (S(@ = 2D lzi—00Ze . A2k

where S is the sine kernel.
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Nearest Neighbor Spacings: Kolmogorov Distance

@ More recently (Tao’13; Erdés,Yau'15; Bekerman,Figalli, Guionnet'15; cf.
Figalli,Guionnet'14) for any index set / excluding edge indices

N—oco

with g; being the i/N-quantile of nq, g test function.

M. Venker (Bielefeld) Repulsive Particle Systems
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Nearest Neighbor Spacings: Kolmogorov Distance

@ More recently (Tao’13; Erdés,Yau'15; Bekerman,Figalli, Guionnet'15; cf.
Figalli,Guionnet'14) for any index set / excluding edge indices

N—oco

im Enary 3 0(0(@Ns.s —x) = [ a(s)da(s
iel

with g; being the i/N-quantile of nq, g test function.

@ Not empirical, but expected spacing distribution.
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Nearest Neighbor Spacings: Kolmogorov Distance

@ More recently (Tao’13; Erdés,Yau'15; Bekerman,Figalli, Guionnet'15; cf.
Figalli,Guionnet'14) for any index set / excluding edge indices

N—oco

im Enary 3 0(0(@Ns.s —x) = [ a(s)da(s
iel

with g; being the i/N-quantile of nq, g test function.

@ Not empirical, but expected spacing distribution. o(/y, x) vs. intensity

measure Ey qo (v, X).
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Nearest Neighbor Spacings: Kolmogorov Distance

@ More recently (Tao’13; Erdés,Yau'15; Bekerman,Figalli, Guionnet'15; cf.
Figalli,Guionnet'14) for any index set / excluding edge indices

im Enary 3 0(0(@Ns.s —x) = [ a(s)da(s
iel

N— oo

with g; being the i/N-quantile of nq, g test function.

@ Not empirical, but expected spacing distribution. o(/y, x) vs. intensity
measure Ey qo (v, X).

@ Empirical spacings considered in Schubert'15: ty — oo and fy/N — 0,

S
. 1
NIH)noo EN7Q <Sup /c; mdg((a - tN, a-+ tN)7X|OC) - G(S)

seR
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Nearest Neighbor Spacings: Kolmogorov Distance

@ More recently (Tao’13; Erdés,Yau'15; Bekerman,Figalli, Guionnet'15; cf.
Figalli,Guionnet'14) for any index set / excluding edge indices

im Enary 3 0(0(@Ns.s —x) = [ a(s)da(s
iel

N— oo

with g; being the i/N-quantile of nq, g test function.

@ Not empirical, but expected spacing distribution. o(/y, x) vs. intensity
measure Ey qo (v, X).

@ Empirical spacings considered in Schubert'15: ty — oo and fy/N — 0,

S
. 1
NIH)noo EN7Q <Sup /0 mdg((a - tN, a-+ tN)7X|OC) - G(S)

seR

However, only a tiny fraction of all spacings is considered!
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Nearest Neighbor Spacings: New Results
a(IN,X) = mU(IN,X), (Xunf),' = NFg(X,)

Theorem (Schubert-V., EJP’15)

/ " 45([0, N1, Xom) — G(S)

)-o

lim ER (sup
N.Q
N—oo SER
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Nearest Neighbor Spacings: New Results
a'\(IN,X) = WU(IN,X), (Xunf),' = NFg(X,)

Theorem (Schubert-V., EJP’15)

/ " 46((0, N1, Xom) — G(5)

)-o

Let h negative-definite. If Iy C [0, N] with %Idist(l,\,, {O,N})>c>0for N
large enough, then for any e > 0

lim ER (sup
N.Q
N— oo SER

/0 " 05 (I, xont) — G()

) =0 (ini+).

Ef.q <sup
SER
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a'\(IN,X) = WU(IN,X), (Xunf),' = NFg(X,)

Theorem (Schubert-V., EJP’15)

/ " 46((0, N1, Xom) — G(5)

)-o

Let h negative-definite. If Iy C [0, N] with %Idist(l,\,, {O,N})>c>0for N
large enough, then for any e > 0

lim ER (sup
N.Q
N— oo SER

S
Ef <sup /0 A5 (I, Xnt) — G(S)

seR

) =0 (ini+).

If h arbitrary, then error is o(1).
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Edge Correlations for Repulsive Particles

/11 H Ix; — xj|? @ i< M=) =N it Q) |
e i<j

Theorem (kriecherbauer-V.;15)

Let suppu, = [—b, b]. There exists ¢* > 0 such that for g < 0 < p and
t € [q, pN*/ 1)K

N1/3 hk t1 tk
o ) Pna\Pt Ginare e b ez ) = detlRailh i)l ek + O(1):
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Edge Correlations for Repulsive Particles

/11 H Ix; — xj|? @ i< M=) =N it Q) |
e i<j

Theorem (kriecherbauer-V.;15)

Let suppu, = [—b, b]. There exists ¢* > 0 such that for g < 0 < p and
t € [q, pN*/ 1)K

NEN" e b il b be ) _ get[k 1
o) PNa\ Pt e Pt Goners | = detRailt Bl ek + 0(1).

~

If his negative-definite (h < 0), then replace o(1) by O(N~1/3+¢), ¢ > 0.
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Edge Correlations for Repulsive Particles

1 S~ :
Pha(x) = 51— [T - xf? & Sl -wt ),
N,Q j<j

Theorem (Kriecherbauer-V.,15)
Let suppu, = [—b, b]. There exists ¢* > 0 such that for g < 0 < p and

t € [q, pN*/ 18]k

N1/2\ ¢ h,k t I
o ) Pna\Pt Ginare e b ez ) = detlRailh i)l ek + O(1):

If h is negative-definite (h < 0), then replace o(1) by O(N~"/3+), ¢ > 0.

Edge universality for 8-Ensembles: Ramirez,Rider,Virag'11; Krishnapur,Rider,Virag'15;

Bourgade,Erdds,Yau’'14; Bekerman,Figalli,Guionnet’15; cf. Figalli,Guionnet'14

M. Venker (Bielefeld) Repulsive Particle Systems April 13,2016 17



Asymptotics for the largest Particle: Fluctuations and Deviations
Theorem (kriecherbauer-V.15)
For any (fixed) s € R,

Pl o ((xmax —b)c*N23 < s) = Frw(s) + o(1).

where Fry is the distribution function of the (5 = 2) Tracy-Widom distribution.
If h is negative-definite (h < 0), then replace o(1) by O(N~"/3+<) for any
e>0.
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What about deviations Py , ((Xmax — b) ¢*N?/3 > s) for s = sy — o0? (Upper
tail deviations)
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Theorem (Kriecherbauer-V.,15)
For any (fixed) s € R,

Pl o ((xmax —b)c*N23 < s) = Frw(s) + o(1).

where Fry is the distribution function of the (5 = 2) Tracy-Widom distribution.
If his negative-definite (h < 0), then replace o(1) by O(N~1/3+<) for any
e>0.

What about deviations Py , ((Xmax — b) ¢*N?/3 > s) for s = sy — o0? (Upper
tail deviations)

@ Moderate deviations: s — oo, but t = b + 3z7z — b. Should still be in
realm of the Tracy-Widom law, hence universal!

@ Large deviations: s — oo and t = b+ 75 > b.
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Asymptotics for the largest Particle: Fluctuations and Deviations
Theorem (Kriecherbauer-V.,15)
For any (fixed) s € R,

Pl o ((xmax —b)c*N23 < s) = Frw(s) + o(1).

where Fry is the distribution function of the (5 = 2) Tracy-Widom distribution.
If his negative-definite (h < 0), then replace o(1) by O(N~1/3+<) for any
e>0.

What about deviations Py , ((Xmax — b) ¢*N?/3 > s) for s = sy — o0? (Upper
tail deviations)

@ Moderate deviations: s — oo, but t = b + 3z7z — b. Should still be in
realm of the Tracy-Widom law, hence universal!

@ Large deviations: s — co and t = b + 3z > b. Non-universal!
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Moderate Deviations: Logarithmic Form

Moderate deviations in logarithmic form:

Theorem (Kriecherbauer-V.,'15)

log Pfy o ((Xmax — b)c*N?/% > s)
Eoe

4
:—§+0(1)

with o(1) uniform in s € [1, o(N?/3)].

M. Venker (Bielefeld) Repulsive Particle Systems April 13,2016

19



Moderate Deviations: Logarithmic Form

Moderate deviations in logarithmic form:

Theorem (Kriecherbauer-V.,'15)

log Pl o ((Xmax — b)c*N?/3 > s) 4
5372 = —§ + 0(1)

with o(1) uniform in s € [1, o(N?/3)]. For h negative definite, replace o(1) by
s3/2
— T + 0 (5gr) + O ()

Uses known right-tail asymptotics for Tracy-Widom distribution:

1 e 87 1
1_FI-W(S):WW<1+O<W>>7 for s — .
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Moderate Deviations: Non-Logarithmic Form

Theorem (Kriecherbauer-V.,15)

Pfi o (Xmax — b)c* N2/ > s)

(1 — Fru(s)) =P (33/2/;0’1' (7em) ) (1+0(1))

uniformly for s = o(N?/3) with coefficients d; depending on Q and h.
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Moderate Deviations: Non-Logarithmic Form

Theorem (Kriecherbauer-V.,15)

Pl o (Xmax — b)c*N2/3 S '
N,Q (("(1 a anv‘zs)) 8 = exp (sa/zgd/ (,\[:/3)/) (1+0(1))

uniformly for s = o(N?/3) with coefficients d; depending on Q and h.

@ To be compared with result in classical probability (Craméras) for sums of

i.i.d. r.v. X; with mean . and variance ¢2:

P (L(Vj\/)%’” > s)

= 255 (5) ) (1 + o
(o) O S,;a’(m) (et
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Moderate Deviations: Non-Logarithmic Form

Theorem (Kriecherbauer-V.,15)

Pl o (Xmax — b)c*N2/3 S ‘
N,Q (("(1 a Fni,c(s)) 8 = exp (sa/zgd/ (NZS)I) (1+0(1))

uniformly for s = o(N?/3) with coefficients d; depending on Q and h.

@ To be compared with result in classical probability (Craméras) for sums of

i.i.d. r.v. X; with mean . and variance ¢2:

S X—p oo /
- ((10_@(5; ). P (SZZ‘?’ (JSN)/) et

j=1

@ Describes the transition from universality to non-universality!
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Asymptotics for the largest Particle: Large Deviations

Theorem (kriecherbauer-V.,15)
Let M > band 0 < ¢ < 2/3. Then uniformly for t € [b+ N—¢, M] (large
deviations),

log Pfy. @ (Xmax > t) log (N(t — b)?/2 1
A — —na(t) - SO (N ) )+0(N),

where the O term is uniform in N and in t € (b+ N—2/3, T) and the rate
function is

nan(t) = -2 [ log|t -~ s|dub(s) + [ it~ $)du(s) + (t) - €
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Asymptotics for the largest Particle: Large Deviations

Theorem (Kriecherbauer-V.,15)
Let M > band 0 < ¢ < 2/3. Then uniformly for t € [b+ N—¢, M] (large
deviations),

log Pfy. @ (Xmax > t) log (N(t — b)?/2 1
A — —na(t) - SO (N ) )+0(N),

where the O term is uniform in N and in t € (b+ N—2/3, T) and the rate
function is

nan(t) = -2 [ log|t -~ s|dub(s) + [ it~ $)du(s) + (t) - €

@ Without rate in Borot,Guionnet,Kozlowski'15. Non-logarithmic form for
B = 2-Ensembles in Eichelsbacher,Kriecherbauer,Schiiler'16.
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Asymptotics for the largest Particle: Large Deviations

Theorem (Kriecherbauer-V.,15)
Let M > band 0 < ¢ < 2/3. Then uniformly for t € [b+ N—¢, M] (large
deviations),

log Pfy. @ (Xmax > t) log (N(t — b)?/2 1
A — —na(t) - SO (N ) )+0(N),

where the O term is uniform in N and in t € (b+ N—2/3, T) and the rate
function is

nan(t) = -2 [ log|t -~ s|dub(s) + [ it~ $)du(s) + (t) - €

@ Without rate in Borot,Guionnet,Kozlowski'15. Non-logarithmic form for
B = 2-Ensembles in Eichelsbacher,Kriecherbauer,Schiiler'16.

@ Conjecture new source of non-universality.
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Ideas of the Method: Determining the Equilibrium Measure 1

1 N~ :
Phas(0) = zz— 110~ x| 6™ Zis Pi=x)=N % A0y),
N.Q.B j<j

@ Idea: Compare Py, , , with 3-Ensemble Py v 5 that has the same

limiting measure.
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Ideas of the Method: Determining the Equilibrium Measure 1

1 - :
P/f\'/,o,ﬁ(x) = Zh H X — x|” e~ Zi<i hi—) =N Q)
N,Q.B i<j

@ |dea: Compare PI’\]I,O,B with 3-Ensemble Py v g that has the same

limiting measure.
@ Let i probability measure on R. Hoeffding type decomposition

5" b ) = o+ NS B, 05) — 24,00,

i<j Jj=1
where cy is a constant, h,(t) := [ h(t — s)du(s) and U, is the quadratic

statistic

N
Up(x) = _% Z h(xi = x;) = hu(Xi) = hu(x;) + hﬂ#) '

ij=1
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Ideas of the Method: Determining the Equilibrium Measure 2
Now, with V() := Q(t) + h,(t)

Pl 0.4(x) = Z% TT1% — 1P~ Srashs—5)-NELL; s)

N,Q.B i<j

—en
_ &Ny, 1 HIX;—)QI/BG_NE’AL‘V“()(’)+u“(x)

h
ZNap  NVip i<j
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Ideas of the Method: Determining the Equilibrium Measure 2
Now, with V() := Q(t) + h,(t)

Pl 0.4(x) = Z+ TT1% — 1P~ Srashs—5)-NELL; s)

N,Q.B i<j

—CN
_e AR HIX;—)QI/BG_NE’AL‘V“()(’)+u“(x)

h
ZNap  NVip i<j

@ Choose p such that U/, is small under Py,y, 5. But U4, is centered under
w! Thus
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Ideas of the Method: Determining the Equilibrium Measure 2
Now, with V() := Q(t) + h,(t)

Pl 0.4(x) = Z+ TT1% — 1P~ Srashs—5)-NELL; s)

N,Q.B i<j

—en
_ &Ny, 1 HIX;—)QI/BG_NE’AL‘V“(X’)W“(X)

h
ZNap  NVip i<j

@ Choose p such that U/, is small under Py,y, 5. But U4, is centered under
w! Thus o must be chosen as the equilibrium measure to V,,!

@ Solve this implicit problem by applying a fixed point theorem: get Mc’w.
Vi=Q+hy
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Ideas of the Method: Determining the Equilibrium Measure 2
Now, with V() := Q(t) + h,(t)

1 X ,
Phias(x) = z5— [ [1x = xl7e™ om0 Nk )

N,Q.B i<j

—en
_ €Ny, 1 H‘Xl__xﬂge_wzj’g V()4 (%)

h
ZNap  NVip i<j

@ Choose p such that U/, is small under Py,y, 5. But U4, is centered under
w! Thus o must be chosen as the equilibrium measure to V,,!

@ Solve this implicit problem by applying a fixed point theorem: get u’(’w.
Vi=Q+hy

@ Show that i/ = L{#g . is indeed just a perturbation. Here convexity used

(concentration inequalities).
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Ideas of the Method: Linearization

o~

@ Linearization trick: Recall that for —h positive definite (—h > 0)

exp(— Zh —x,)_]Eexp(fo,

j=1

Moreover
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Ideas of the Method: Linearization

o~

@ Linearization trick: Recall that for —h positive definite (—h > 0)

exp(— Zh —x,)_]Eexp(fo,

Moreover
N
exp(U(x)) = Eexp(>_ f(x) N/fdp'c'w).
j=1

@ Now add f to the potential: ensembles with densities proportional to

H|XI_X]|ﬁ Z/ 1NV(XI +f(Xl)
i<j

Perturbation f does not change global or local asymptotics.
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Summary

Ph.as(X) = h1 H|Xi—Xj\ﬁe_z"ﬁh(x’_x’)_NZfi‘O(Xf)

N,QB i<j
Summary:

@ Extension of classical random matrix models to more general particle
systems with repulsion.
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Summary

Pr.as(X) = h1 H|Xi—XJ\BG_Z’M(X’_X’)_NZ’LQ()(’)

N,QB i<j
Summary:

@ Extension of classical random matrix models to more general particle
systems with repulsion.

@ New class exhibits the same universal local laws in the bulk and at the
edge.
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1 X ,
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N,QB i<j
Summary:

@ Extension of classical random matrix models to more general particle

systems with repulsion.

@ New class exhibits the same universal local laws in the bulk and at the
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@ Additional interaction can be linearized: Average of 5-Ensembles.
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Thank you for your attention!
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