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Extreme value distributions for β-Hermite, -Laguerre, -Jacobi

β-Hermite

General β > 0.
λmax

Ramirez, Rider, Virag: asymptotic fluctuations given by stochastic
Airy operator (following Edelman, Sutton).
Explicit, exact distributions, n fixed?...

Smallest (in absolute value) eigenvalues?...
Perhaps not interesting; however, GUE absolute values (Edelman
and La Croix) are a union of two Laguerre ensembles. What about
β?
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Extreme value distributions for β-Hermite, -Laguerre, -Jacobi

β-Laguerre

General β > 0.
λmax

Ramirez, Rider, Virag: asymptotic scaled fluctuations given by the
stochastic Airy operator; scale depends on matrix dimensions.
One size much larger than the other: Jiang and Li showed scaled
fluctuation converges to stochastic Airy operator limit. (Also LDP.)
CDF, PDF for λmax in terms of hypergeometric functions of matrix
argument (see Koev et al survey-like paper)

λmin
Ramirez, Rider: asymptotic fluctuations given by stochastic Bessel
operator (following Edelman, Sutton); when dimensions differ by a
constant. Also tail analysis by Ramirez, Rider, Zeitouni.
Asymptotics for some cases covered by Forrester through a
hypergeometric function limit.
Finite n: CDF for λmin in terms of a hypergeometric function, PDF
only in certain cases (when the hypergeometric terminates)
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Extreme value distributions for β-Hermite, -Laguerre, -Jacobi

β-Jacobi

General β > 0.
CDF, PDF for λmin and λmax (Koev and D., D., Koev et al.)
λmax

RRV?
Jiang: in special cases, stochastic Airy operator limits.
Forrester: LD for asymptotic distribution for finite aspect ratio.

λmin
D.: special cases, Tricomi/Bessel/hypegeometric function
asymptotics.
?
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Extreme value distributions for β-Hermite, -Laguerre, -Jacobi

β-Wishart, MANOVA (Σ 6= In)

β-Wishart
CDFs derived in Koev et al.
No asymptotics.
In special cases (spiked model); Bloemendal and Virag, Ramirez
and Rider.

β-MANOVA
CDF for λmax derived in Dubbs and Edelman.
No asymptotics.
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PDFs for special β-Jacobi (Σ = Im)

A quick demonstration for λmin

Start off with the eigenvalue pdf (λ1 ≥ . . . ≥ λm):

f̃ (λ1, . . . , λn) ∝
m∏

i=1

λ
β
2 (a+1)−1
i (1− λi)

β
2 (b+1)−1∆β(λ1, . . . , λm) ,

then integrate out all but the first and get (with λ = λm and
dλ = dλ1 . . . dλm−1):

f (λ) ∝ λ
β
2 (a+1)−1(1− λ)

β
2 (b+1)−1 ×∫

[λ,1]m−1

m−1∏
i=1

λ
β
2 (a+1)−1

i (1− λi)
β
2 (b+1)−1 (λi − λ)β ∆β(λ1, . . . , λm−1) dλ .
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PDFs for special β-Jacobi (Σ = Im)

A quick demonstration for λmin

Changing variables to xi = 1−λi
1−λ , mapping [λ, 1] to [0, 1], we get

f (λ) ∝ λ
β
2 (a+1)−1(1− λ)

β
2 (b+1)−1 ×∫

[0,1]m−1

m−1∏
i=1

x
β
2 (b+1)−1

i (1− xi)
β (1− xi(1− λ))

β
2 (a+1)−1 ∆β(x1, . . . , xm−1) dx .

Crucially, following Forrester,∫
[0,1]m−1

m−1∏
i=1

x
β
2 (b+1)−1

i (1− xi)
β (1− xi(1− λ))

β
2 (a+1)−1 ∆β(x1, . . . , xm−1) dx =

2F1
2/β
(

1− β

2
(a + 1),

β

2
(b + m− 1);

β

2
(b + m− 1) + 1; (1− λ)Im−1

)
,
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PDFs for special β-Jacobi (Σ = Im)

A quick demonstration for λmin

Therefore, thanks to the hypergeometric function, the pdf of λmin is

f (λ) ∝ λ
β
2 (a+1)−1(1− λ)

β
2 m(b+m)−1 ×

2F1
2/β
(

1− β

2
(a + 1),

β

2
(b + m− 1);

β

2
(b + m− 1) + 1; (1− λ)Im−1

)
.

As a corollary we can get the distribution of λmax as well.
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Application: RURV

Why care?

Application: RURV, a randomized, efficient, communication-optimal,
and very-likely-to-work way to find the numerical rank of a product of
matrices and inverses. Part of a similarly bells-and-whistles
Divide-and-Conquer algorithm for computing non-symmetric
eigenvalues.
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Application: RURV

Efficiency: matrix multiplication exponent

How many ops involved in multiplying two n× n matrices?
undergraduate student answer: O(n3)
graduate student answer: O(nω), where ω < 2.3729
But are the results of the fast algorithm accurate?
Demmel, D., Holtz: if the algorithm exists, we can make it stable.
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Application: RURV Efficiency

Efficiency: rank-revealing algorithms

How many ops involved in rank-revealing?

All “serious” algorithms do at least one matrix multiplication, so at
least O(nω).

Demmel, D. Holtz: RURV runs stably in O(nω+ε) for any ε.
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Application: RURV Efficiency

Why care?
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Application: RURV Communication

Communication Cost Model

Algorithms have two costs:
1 arithmetic (flops)
2 communication: moving data between

levels of a memory hierarchy (sequential case)
processors over a network (parallel case)
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Application: RURV Communication

Communication Cost Model

Running time of an algorithm is sum of 3 terms:
# flops * time per flop
# words moved / bandwidth
# messages * latency
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Application: RURV Communication

Communication Cost Model

Exponentially growing gaps between
Sequentially:

time per flop� 1 / network BW� network latency
improving 59% per year vs. 26% per year vs. 15% per year

In parallel:
time per flop� 1 / memory BW�memory latency

improving 59% per year vs. 23% per year vs. 5.5% per year

Need to reorganize linear algebra to avoid communication (#
words and # messages moved)
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Application: RURV Communication

Limits and optimality

There is such a thing as minimal cost for algorithms (Ballard, Demmel,
Holtz, Schwartz), and RURV is nearly cost-optimal (and worth it for
large matrices).
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Application: RURV Communication

RURV

A rank-revealing decomposition (A = URV with U,V
orthogonal/unitary and R upper triangular) that works on products of
matrices and inverses, e.g. AB−1, without forming the inverse.
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Application: RURV Communication

RURV

Starting with a matrix A, generate a decomposition A = URV with R
upper triangular, U, V orthogonal/unitary.

Generate a random Gaussian B.
[V, R̂] = QR(B) (generate a Haar orthogonal/unitary V).
Â = A · VH

[U,R] =QR(Â).
Output U,R,V.
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Application: RURV Communication

Why not QR outright?

Because
if numerical rank is small, unless one does pivoting, not
guaranteed to work well
recall we want it to work on products of matrices and inverses;
how to do QR on that without doing the product?
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Application: RURV Communication

Generalized RURV (GRURV)

Want to find a rank-revealing factorization for A−1B, but only need the
left invariant spaces for our applications.

[U2,R2,V] =RURV(B);
R1U1 =RQ(UH

2 A) ,
Output U1.

Note that

A−1B = (U2R1U1)−1(U2R2V) = UH
1 (R−1

1 R2)V

and we only need U1 for our applications.
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Application: RURV Communication

Why it works

Theorem (Ballard, Demmel, D., Melgaard ’16+)

GRURV computes the RURV for A−1B and it is backward stable.

Theorem (BDDM’16+)
RURV computes a strong rank-revealing decomposition for A and it is
backward stable.
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Application: RURV Communication

RURV is strong

Let A be of numerical rank k (with a large gap between σk and σk+1).

Pick a Haar matrix V and then do QR on AVH to get U,R. Then

A = URV; R =

[
R11 R12

R22

]
and the following

σmin(R11) is a good approximation to σk

σmax(R22) is a good approximation to σk+1

||R−1
11 R12|| is small

All this happens with probability 1− δ; making δ smaller increases the
arithmetic costs.

The analysis hinges on knowing the distribution of the smallest
singular value of the k× k principal minor for the Haar matrix V.
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Application: RURV Communication

The smallest singular value of a k× k minor of V

It is known (Collins ’03,’05, Sutton ’06) that a k× k principal minor of a
Haar matrix has eigenvalues λ1, . . . , λk distributed like the Jacobi
ensembles:

f (λ1, . . . , λk) ∝
k∏

i=1

λ
β/2−1
i (1− λi)

β(n−2k+1)/2−1
∏
i<j

|λi − λj|β ,

where β = 1, 2 for real/complex.
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Application: RURV Communication

The smallest singular value of a k× k minor of V

Theorem (D.)
The pdf of the smallest singular value for a Jacobi ensemble as above, β = 2, is

fk,n(x) ∝ x−1/2(1− x)
1
2 k(n−k)−1

2F1

(
1
2

(n− k− 1),
1
2

(k− 1);
1
2

(n− 1) + 1; (1− x)

)
.
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More β-Jacobi eigenvalue calculations

How do we get usable formulae/asymptotics?

Recall that the pdf of λmin is

f (λ) ∝ λ
β
2 (a+1)−1(1− λ)

β
2 m(b+m)−1 ×

2F1
2/β
(

1− β

2
(a + 1),

β

2
(b + m− 1);

β

2
(b + m− 1) + 1; (1− λ)Im−1

)
.

The issue here is the (1− λ).
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More β-Jacobi eigenvalue calculations

Making the hypergeometric a polynomial, or simple

2F1
2/β
(

1− β

2
(a + 1),

β

2
(b + m− 1);

β

2
(b + m− 1) + 1; (1− λ)Im−1

)

If β2 (a + 1)− 1 ∈ Z≥0, series terminates. Kummer relationships
(Forrester) allow you to use a slightly different formula for the
hypergeometric integral, which can be analyzed asymptotically
If 1− β

2 (a + 1) = β
2 , then the hypergeometric becomes a classical

one.
It stands to reason that there may be other cases that are
analyzable; the problem is open.
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More β-Jacobi eigenvalue calculations

Case 1: β
2 (a + 1)− 1 = k ∈ Z≥0

Can obtain the distribution of the smallest eigenvalue:

fm(λ) ∝ λk−1(1− λ)
β
2 m(b+m)−1

× 2F1
4/β(1−m,−m− b + 1; 2 +

2
β

(k− 1); {λ}k−1) ,

Asymptotics: m fixed, b→∞; scale y = (b + m)λ to get

fm(y) ∝ yk−1e−βmy/2
1F1

4/β(1−m, 2 +
2
β

(k− 1); {−y}k−1) .

If β = 2, k = 1 (Haar unitary matrix!), get exactly fm(y) = me−my/2.
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More β-Jacobi eigenvalue calculations

Case 1: β
2 (a + 1)− 1 = k ∈ Z≥0

Can obtain the distribution of the smallest eigenvalue:

fm(λ) ∝ λk−1(1− λ)
β
2 m(b+m)−1

× 2F1
4/β(1−m,−m− b + 1; 2 +

2
β

(k− 1); {λ}k−1) ,

Asymptotics: m, (b + m)→∞ ; scale y = m(b + m)λ to get

f (y) ∝ yk−1e−βy/2
0F1

4/β(2 +
2
β

(k− 1); yk−1) .

If β = 2, k = 1 (Haar unitary matrix!), get exactly f (y) = e−y.
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More β-Jacobi eigenvalue calculations

Case 2: a = 2
β − 2

After a bit of manipulation, can obtain that

fβ,b,m(λ) = C̃β,b,m λ−β/2 (1 − λ)βm(b+m)/2−1

×
(

1

Γ(−β
2 )Γ(βm

2 + 1)
2F1(

β(b + m − 1)

2
,
β(m − 1)

2
;−

β

2
;λ)

− λ1+β/2 1

Γ(β2 + 2)Γ(
β(m−1)

2 )

Γ(
β(b+m)

2 + 1)

Γ(
β(b+m−1)

2 )
2F1(

βm
2

+ 1,
β(b + m)

2
+ 1; 2 +

β

2
;λ)

)

Asymptotics: m fixed, b→∞; scale y = (b + m)λ to get

fm(y) ∝ y−β/2e−myU
(
β

2
(m− 1);−β

2
; y
)
,

with U the Tricomi function.
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More β-Jacobi eigenvalue calculations

Case 2: a = 2
β − 2

After a bit of manipulation, can obtain that

fβ,b,m(λ) = C̃β,b,m λ−β/2 (1 − λ)βm(b+m)/2−1

×
(

1

Γ(−β
2 )Γ(βm

2 + 1)
2F1(

β(b + m − 1)

2
,
β(m − 1)

2
;−

β

2
;λ)

− λ1+β/2 1

Γ(β2 + 2)Γ(
β(m−1)

2 )

Γ(
β(b+m)

2 + 1)

Γ(
β(b+m−1)

2 )
2F1(

βm
2

+ 1,
β(b + m)

2
+ 1; 2 +

β

2
;λ)

)

Asymptotics: m fixed, b + m→∞; scale y = βm(b + m)λ/2 to get

f (y) ∝ y
1
2−β/4e−yK1+β

2
(
√

2βy) ,

with K the modified Bessel function. This corresponds to complex
Haar and (if wanted) quaternion Haar matrices.
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Numerics

Pretty pictures

The following tests were made possible by the cool multivariate
hypergeometric package mgh, by Plamen Koev; and also by the
β-Jacobi tridiagonal model due to Brian Sutton and Alan Edelman.

0 0.1 0.2 0.3 0.4
0

1

2

3

4

5

6

7
Smallest eigenvalue distribution at m=4, β =1.75, a = 2.3, b = 2

Figure: The solid red line represents the theoretical distribution; the normalized
histogram represents the results of a Monte Carlo experiment with 10, 000 trials.
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Numerics

Pretty pictures

The following tests were made possible by the cool multivariate
hypergeometric package mgh, by Plamen Koev; and also by the
β-Jacobi tridiagonal model due to Brian Sutton and Alan Edelman.

0 0.2 0.4 0.6 0.8 1
0

2

4

6

Monte Carlo vs asymptotical distributions for β(b+m)/2 λ
min

with m = 4, b = 10 (resp., ∞), β = 1/3, and a = 2/β −2

Figure: The solid red line represents the asymptotical (b =∞) distribution, while the
normalized histogram represents the results of a Monte Carlo experiment for b = 10,
with 10, 000 trials.

Ioana Dumitriu (UW) β-Jacobi eigenvalues April 13, 2016 38 / 42



Numerics

Pretty pictures

The following tests were made possible by the cool multivariate
hypergeometric package mgh, by Plamen Koev; and also by the
β-Jacobi tridiagonal model due to Brian Sutton and Alan Edelman.

0 0.2 0.4 0.6 0.8 1 1.2
0

2

4

6

8

Monte Carlo vs asymptotical distributions for β m (b+m)/2 λ
min

with  m = 5 (resp., ∞), b = 5 (resp., ∞), β = 1, and a = 2/β − 2  

Figure: The solid red line represents the asymptotical (m, b =∞) distribution, while
the normalized histogram represents the results of a Monte Carlo experiment for
m = 5, b = 5, with 5, 000 trials.
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Numerics

Pretty pictures

The following tests were made possible by the cool multivariate
hypergeometric package mgh, by Plamen Koev; and also by the
β-Jacobi tridiagonal model due to Brian Sutton and Alan Edelman.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

Monte Carlo vs asymptotical distributions for (b+m) λ
min

with m=6,  b = 50 (resp., ∞), β = 1.5, k = 2, and a = 2k/ β −1

Figure: The solid red line represents the asymptotical (b =∞) distribution, while the
normalized histogram represents the results of a Monte Carlo experiment for b = 50,
with 10, 000 trials.
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Numerics

Pretty pictures

The following tests were made possible by the cool multivariate
hypergeometric package mgh, by Plamen Koev; and also by the
β-Jacobi tridiagonal model due to Brian Sutton and Alan Edelman.

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

Monte Carlo vs asymptotical distributions for m(b+m) λ
min

with m = 15 (resp., ∞), b = 5 (resp., ∞), k = 2, a = 2k/β−1

Figure: The solid red line represents the asymptotical (m, b =∞) distribution, while
the normalized histogram represents the results of a Monte Carlo experiment for
m = 15, b = 50, with 10, 000 trials.
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Conclusions

What to take home

Still plenty of problems in computing extremal eigenvalue
distributions, either for n fixed or asymptotically
Hypergeometric functions are cool, but slightly unsatisfying;
computable (but not for very large matrix sizes); work well in
only some cases; more to uncover
RMT has unexpected and interesting applications in scientific
computing
There’s a world full of potential out-there.
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