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Extreme value distributions for S-Hermite, -Laguerre, -Jacobi

f-Hermite

@ General 8 > 0.
° )\mux
o Ramirez, Rider, Virag: asymptotic fluctuations given by stochastic

Airy operator (following Edelman, Sutton).
o Explicit, exact distributions, # fixed?...

@ Smallest (in absolute value) eigenvalues?...

o Perhaps not interesting; however, GUE absolute values (Edelman
and La Croix) are a union of two Laguerre ensembles. What about

B8?
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Extreme value distributions for S-Hermite, -Laguerre, -Jacobi

p-Laguerre

@ General g > 0.
® Apax
e Ramirez, Rider, Virag: asymptotic scaled fluctuations given by the
stochastic Airy operator; scale depends on matrix dimensions.
@ One size much larger than the other: Jiang and Li showed scaled
fluctuation converges to stochastic Airy operator limit. (Also LDP.)
o CDF, PDF for A,y in terms of hypergeometric functions of matrix
argument (see Koev et al survey-like paper)

® Amin

o Ramirez, Rider: asymptotic fluctuations given by stochastic Bessel
operator (following Edelman, Sutton); when dimensions differ by a
constant. Also tail analysis by Ramirez, Rider, Zeitouni.

e Asymptotics for some cases covered by Forrester through a
hypergeometric function limit.

o Finite n: CDF for A, in terms of a hypergeometric function, PDF
only in certain cases (when the hypergeometric terminates)
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Extreme value distributions for S-Hermite, -Laguerre, -Jacobi

(5-Jacobi

@ General 8 > 0.
o CDF, PDF for A,;;, and \;zx (Koev and D., D., Koev et al.)
° )\max
e RRV?
e Jiang: in special cases, stochastic Airy operator limits.
o Forrester: LD for asymptotic distribution for finite aspect ratio.
® Amin
o D.: special cases, Tricomi/Bessel/hypegeometric function

asymptotics.
°?
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Extreme value distributions for S-Hermite, -Laguerre, -Jacobi

B-Wishart, MANOVA (X # I,,)

@ (-Wishart
o CDFs derived in Koev et al.
e No asymptotics.

o In special cases (spiked model); Bloemendal and Virag, Ramirez
and Rider.

o 3-MANOVA

o CDF for A, derived in Dubbs and Edelman.
e No asymptotics.
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PDFs for special 8-Jacobi (X = I;)

A quick demonstration for A\,

Start off with the eigenvalue pdf (\; > ... > A\y):

g (a+1)— 1

FOu, .. - A)7CTAS AL L A

||::]§

then integrate out all but the first and get (with A = \,; and
X\ = d)\l ce d/\mfl)Z

f(A) o )\%(lx+l)fl(1 . A)%(b+l)fl

/ 1H>\2("+1) Y= ) FEDT O NP AP (A Al dA
)\1"[

i=1
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PDFs for special 8-Jacobi (X = I;)

A quick demonstration for A\,

Changing variables to x; = =M mappin A, 1] to [0, 1], we get
gmng (DY ppmg &
FO) oo AZOFDTIR ) 20T
m—1 B B
/[o oo 113 T )P (1@ - A F T A () d

i=1

Crucially, following Forrester,

m—1
8 _ 8
/ [T -2 (1= )T A (g, x) de =
[0,]]711—1 1

B

2B (1 - S+, b

B .
E(b+m— 1); E(b+m -1)+1;1- /\)Im_l> ,
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PDFs for special 8-Jacobi (X = I;)

A quick demonstration for A\,

Therefore, thanks to the hypergeometric function, the pdf of A;;;, is
f(A) o« )\g(ﬁ—l)—l(l _ )\)gm(m.m)_] y
A <l a0, 1 1) 150 - A)ImJ) .

As a corollary we can get the distribution of A, as well.
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Application: RURV

Why care?

Application: RURV, a randomized, efficient, communication-optimal,
and very-likely-to-work way to find the numerical rank of a product of
matrices and inverses. Part of a similarly bells-and-whistles

Divide-and-Conquer algorithm for computing non-symmetric
eigenvalues.
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Application: RURV

Efficiency: matrix multiplication exponent

How many ops involved in multiplying two n x n matrices?
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Application: RURV  [SiSileteile

Efficiency: matrix multiplication exponent

How many ops involved in multiplying two n x n matrices?
undergraduate student answer: O(n?)
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Application: RURV  Silat e
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Application: RURV  Silat e

Efficiency: matrix multiplication exponent

How many ops involved in multiplying two n x n matrices?
undergraduate student answer: O(n?)

graduate student answer: O(n*), where w < 2.3729

But are the results of the fast algorithm accurate?
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Application: RURV  Silat e

Efficiency: matrix multiplication exponent

How many ops involved in multiplying two n x n matrices?
undergraduate student answer: O(n?)

graduate student answer: O(n*), where w < 2.3729

But are the results of the fast algorithm accurate?

Demmel, D., Holtz: if the algorithm exists, we can make it stable.
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Application: RURV  Silat e
Efficiency: rank-revealing algorithms

How many ops involved in rank-revealing?

All “serious” algorithms do at least one matrix multiplication, so at
least O(nv).

Demmel, D. Holtz: RURV runs stably in O(n**¢) for any e.
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Application: RURV  Silat e

Why care?

Application: RURV, a randomized, efficient, communication-optimal,
and very-likely-to-work way to find the numerical rank of a product of
matrices and inverses. Part of a similarly bells-and-whistles

Divide-and-Conquer algorithm for computing non-symmetric
eigenvalues.
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VLI HINGINAN Communication

Communication Cost Model

Algorithms have two costs:
Q arithmetic (flops)
@ communication: moving data between

o levels of a memory hierarchy (sequential case)
e processors over a network (parallel case)

i1
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Application: RURV Communication

Communication Cost Model

@ Running time of an algorithm is sum of 3 terms:
o #flops * time per flop
o # words moved / bandwidth
o # messages * latency
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Application: RURV Communication

Communication Cost Model

e Exponentially growing gaps between

e Sequentially:
time per flop < 1 / network BW < network latency

improving 59% per year vs. 26% per year vs. 15% per year

o In parallel:
time per flop < 1 / memory BW < memory latency

improving 59% per year vs. 23% per year vs. 5.5% per year

@ Need to reorganize linear algebra to avoid communication (#
words and # messages moved)
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Application: RURV Communication

Limits and optimality

There is such a thing as minimal cost for algorithms (Ballard, Demmel,

Holtz, Schwartz), and RURV is nearly cost-optimal (and worth it for
large matrices).
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Application: RURV Communication

RURV

A rank-revealing decomposition (A = URV with U, V

orthogonal/unitary and R upper triangular) that works on products of
matrices and inverses, e.g. AB~!, without forming the inverse.
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Application: RURV Communication

RURV

Starting with a matrix A, generate a decomposition A = URV with R
upper triangular, U, V orthogonal /unitary.

@ Generate a random Gaussian B.

e [V,R] = QR(B) (generate a Haar orthogonal /unitary V).

o A=A-VH

o [U,R] =QR(A).

@ Output U,R, V.
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Application: RURV Communication

Why not QR outright?

Because

e if numerical rank is small, unless one does pivoting, not
guaranteed to work well

@ recall we want it to work on products of matrices and inverses;
how to do QR on that without doing the product?
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Application: RURV Communication

Generalized RURV (GRURYV)

Want to find a rank-revealing factorization for A~1B, but only need the
left invariant spaces for our applications.

@ [Uy,R,, V] =RURV(B);
(] R1U1 :RQ(UEIA) ’
@ Output U.
Note that
AT'B = (IR U7) " (UaR,V) = U (R 'RV

and we only need U; for our applications.
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Application: RURV Communication

Why it works

Theorem (Ballard, Demmel, D., Melgaard "16+)
GRURYV computes the RURV for A=1B and it is backward stable.

Theorem (BDDM'16+)

RURV computes a strong rank-revealing decomposition for A and it is
backward stable.
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Application: RURV Communication

RURV is strong

Let A be of numerical rank k (with a large gap between oy and oy 1).
Pick a Haar matrix V and then do QR on AV to get U, R. Then

A=URV;R = [ Ru Ruz
Ry

® 0yin(R11) is a good approximation to oy

] and the following

® 0yax(Ro2) is a good approximation to oy
o [|[R;'Ryz|| is small

All this happens with probability 1 — §; making § smaller increases the
arithmetic costs.

The analysis hinges on knowing the distribution of the smallest
singular value of the k x k principal minor for the Haar matrix V.
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Application: RURV Communication

The smallest singular value of a k x k minor of V

It is known (Collins "03,’05, Sutton '06) that a k x k principal minor of a

Haar matrix has eigenvalues Ay, . .., A\ distributed like the Jacobi
ensembles:

k
FO o ) & [T = AP0 24D2 Ty = o)
i=1 i<j

where 3 = 1,2 for real /complex.
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Application: RURV Communication

The smallest singular value of a k x k minor of V

Theorem (D.)
The pdf of the smallest singular value for a Jacobi ensemble as above, 3 = 2, is
Fon(x) o0 x~V2(1 = x) BT ) (%(n —k—1), %(k —1): %(n ) 411 x)) .
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More (3-Jacobi eigenvalue calculations

How do we get usable formulae /asymptotics?

Recall that the pdf of A, is

) o )\g(a-s-l)—l(l _ )\)gm(wm)—l %

B B

2F12/5 (1_5({1_1_1)7E /B

(b+m—1);§(b+m—l)+1;(1—>\)Im71> .

The issue here is the (1 — \).
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More (3-Jacobi eigenvalue calculations

Making the hypergeometric a polynomial, or simple

LF,2/8 (1 - g(ajt 1), g(bjtm -1); g(bjtm -1+1;(1- )\)Im—1>

o If g(a +1) — 1 € Z>y, series terminates. Kummer relationships
(Forrester) allow you to use a slightly different formula for the
hypergeometric integral, which can be analyzed asymptotically

o If1— g(a +1) = g, then the hypergeometric becomes a classical
one.

@ It stands to reason that there may be other cases that are
analyzable; the problem is open.
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More (3-Jacobi eigenvalue calculations

Caselzg(a+1)—1:k€ZZO

Can obtain the distribution of the smallest eigenvalue:

Ffu(N) oo XM= A)%m(b+m)—1
xRS (1 —m, —m —b+1;2+ %(kf D; (Y,

Asymptotics: m fixed, b — oo; scale y = (b + m)\ to get

1 .—pm 2 _
fun(y) ccyte™” y/21F14/6(1*m,2+5(k*1);{*y}k h.

If 3 = 2,k = 1 (Haar unitary matrix!), get exactly f,,(y) = me~"/2.
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More (3-Jacobi eigenvalue calculations

Caselzg(a+1)—1:k€ZZO

Can obtain the distribution of the smallest eigenvalue:

_fm(A) o Ak71(1 . A)%ﬂl(b%»m)fl

xR P (1 —m, —m —b+1;2+ %(kf D; (¥,

Asymptotics: m, (b + m) — oo ; scale y = m(b + m)\ to get
2
fy) acy e R (2 4 5lk- Dy ).

If 8 =2,k = 1 (Haar unitary matrix!), get exactly f(y) = e77.
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More (3-Jacobi eigenvalue calculations

Case2:a:%—2

After a bit of manipulation, can obtain that

fﬁ,b,m()‘) = Cﬁ,b,m /\7B/2 (l - )‘)EM(bJFM)/Zil
y 1 EyBlrm=1) fm-1 B
r(-r +1) 2 2 Y
1 P8 1) Bm o Bb+m) 3
— AI+B/2 2 oFi(—5 +1, +1;2+ 252
F(% + 2)F(ﬁ("12*1)) F(/H(bJer*l) ) 2 2 2

Asymptotics: m fixed, b — oo; scale y = (b + m)A to get

o 320 mg (B o — 1) 8.
fm(y) y e yu<2(m 1)7 2,y>,

with U the Tricomi function.
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More (3-Jacobi eigenvalue calculations

Case2:a:%—2

After a bit of manipulation, can obtain that

foom(N) = Capm A7H/2 (1 — x)pmbrm/2-1
o 1 zFl(ﬁ(b—i-m—l) ﬂ(m—l),_ﬁ,k)
r(-2)rEe 4 1) 2 o2 2
1 r(fetm | q b+m
X — ( - E—— ) 2F1(67m 41, A ; ) L1024 g;,\)
(s +2r(=5—) I'(—5—)

Asymptotics: m fixed, b + m — oo; scale y = fm(b + m)\/2 to get

fly) « y%’ﬁ/‘*E’yKHg(\/Z?y) :

with K the modified Bessel function. This corresponds to complex
Haar and (if wanted) quaternion Haar matrices.
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Numerics

Pretty pictures

The following tests were made possible by the cool multivariate
hypergeometric package mgh, by Plamen Koev; and also by the
B-Jacobi tridiagonal model due to Brian Sutton and Alan Edelman

Smallest eigenvalue distribution at m=4,  =1.75,a=2.3,b=2
7,

0.1 0.2 0.3 0.4

Figure: The solid red line represents the theoretical distribution; the normalized
histogram represents the results of a Monte Carlo experiment with 10, 000 trials.
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Numerics

Pretty pictures

The following tests were made possible by the cool multivariate
hypergeometric package mgh, by Plamen Koev; and also by the
B-Jacobi tridiagonal model due to Brian Sutton and Alan Edelman

Monte Carlo vs asymptotical distributions for f(b+m)/2 xmi"
with m =4, b =10 (resp.,~), 3 =1/3,and a = 2/ -2

Figure: The solid red line represents the asymptotical (b = co) distribution, while the

normalized histogram represents the results of a Monte Carlo experiment for b = 10,
with 10, 000 trials.
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Pretty pictures

The following tests were made possible by the cool multivariate
hypergeometric package mgh, by Plamen Koev; and also by the
B-Jacobi tridiagonal model due to Brian Sutton and Alan Edelman.

Monte Carlo vs asymptotical distributions for § m (b+m)/2 xmin

with m =5 (resp., «), b =5 (resp.,<),=1,anda=2/§ - 2
8

Figure: The solid red line represents the asymptotical (1, b = oo) distribution, while

the normalized histogram represents the results of a Monte Carlo experiment for
m =5,b =15, with 5,000 trials.
B-Jacobi eigenvalues April 13,2016
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Pretty pictures
The following tests were made possible by the cool multivariate

hypergeometric package mgh, by Plamen Koev; and also by the
B-Jacobi tridiagonal model due to Brian Sutton and Alan Edelman

Monte Carlo vs asymptotical distributions for (b+m) Amin
with m=6, b = 50 (resp.,~), 3 =1.5, k=2, and a = 2k/ § -1
1.5

Figure: The solid red line represents the asymptotical (b = co) distribution, while the

normalized histogram represents the results of a Monte Carlo experiment for b = 50,
with 10, 000 trials.

April 13,2016 40/ 42



Pretty pictures

The following tests were made possible by the cool multivariate
hypergeometric package mgh, by Plamen Koev; and also by the
B-Jacobi tridiagonal model due to Brian Sutton and Alan Edelman.

Monte Carlo vs asymptotical distributions for m(b+m) xmin

with m = 15 (resp., ), b = 5 (resp., «), k = 2, a = 2k/3-1

0.6

0.5r

0.4r

0.3r

0.2

Figure: The solid red line represents the asymptotical (1, b = oo) distribution, while
the normalized histogram represents the results of a Monte Carlo experiment for
m = 15, b = 50, with 10, 000 trials.
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What to take home

o Still plenty of problems in computing extremal eigenvalue
distributions, either for n fixed or asymptotically

e Hypergeometric functions are cool, but slightly unsatisfying;
computable (but not for very large matrix sizes); work well in
only some cases; more to uncover

@ RMT has unexpected and interesting applications in scientific
computing
@ There’s a world full of potential out-there.
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