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Outline

• Compressed Sensing
• Phase Transitions
• Deposition
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Compressed Sensing

• Problem statement
– Donoho 2006, Candes, Romber & Tao 2006
– Find x that is m-sparse and solves Ax = f
– Assuming that an m-sparse solution exists

• Standard methods 
min         subject to constraint Ax = f
– note

• Compressed sensing 
min         subject to constraint Ax = f
– note
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How many measurements 
are required?

• For m << N, find m-sparse solution            of 

• Standard methods require:  n  =  N
– #(equations)=#(unknowns), NP hard = intractable

• Compressed sensing:          n = m (log N)  
– n << N. Many fewer equations than unknowns!
– Solution is exact with high probability! 

• Reduced isometry property (RIP)
– convex programming, tractable and fast
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Why Does L1 Promote Sparsity?
• Compressed sensing 

min subject to constraint Ax = f

• Simplified problems: Find x solving
– min                               for given y in R
– Solution

– Operator Sε is “soft-thresholding”
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Soft Thresholding
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Subgradient
• Euler-Lagrange eqtn for min

• Subgradient

• Write sgn(x)=p(x)
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COMPRESSION FOR PHASE 
TRANSITIONS
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Phase Transitions

• Cahn-Hilliard equations

– Pure phase regions c=-1 and c=1 
– Steady eqtn has solution

• Goals of compression
– c=-1 and c=1 reached at finite distance
– Similar to classification problem in machine learning
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Compression for Cahn-Hilliard
• Variational quantity for Cahn-Hilliard

• Variational quantity with compression

– Euler-Lagrange for steady minimizer

– Look for solution that is odd in x and reaches ±1 at x= ±L

– ODE and BCs
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Numerical Method for 
Compressed Cahn-Hilliard

• Numerical Method: Split Bregman

– Use gradient descent to update c, soft-thresholding to update d
– λ is a fixed parameter, influences convergence but not solution
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Numerical Solution for 
Compressed Cahn-Hilliard
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COMPRESSION FOR 
DEPOSITION
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Simplified Deposition Model
• Deposition model

– u(x) = height of deposited material
– Diffusion with source s(x) and removal rate λ

• Steady state problem

– Desired height profile f(x)=cos(x) 
– Choose s(x) so that  

• Goals of compression
– Choose s which is smooth and has small support
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Compression for Deposition
• Variational quantity

– with 

– Euler-Lagrange eqtn

– Solution s doesn’t have compact support (?)
• Modified variational quantity

– Euler-Lagrange eqtn
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Modified Variational Quantity
• Variational quantity

– Original

– Modified

– Equivalent

• Thresholding
– For γ=0,                                         soft-thresholding 

– For γ>0,                                         “smooth-thresholding” 
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Solution of Modified Compressed 
Deposition Equations

• Equation for s
– periodic on |x|<π, f=cos(x) 
– Look for solution s to be nonnegative and even for |x|<π/2 

with

– Antisymmetric around π/2
• Equation for s on |x|<L (using s>0)

– Solution

– and                                                               2 eqtns for c, L
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Numerical Solution for 
Compressed Deposition

• The analytic solution, for σ large enough, takes the form
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Comparison of Soft and Smooth 
Thresholding
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Ongoing and Future Work

• Compression of Schrodinger equation
– Wannier modes
– Application to DFT, including symmetries

• Signal fragmentation
– Decompose a desired signal into a sum of fragments
– Fragments have compact support

• Multiscale method
– Use compression to mediate interaction between micro and macro scales
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