UCLA imm

Compressed Modes for Material
Interface Problems

Russel Caflisch
IPAM
Mathematics Department, UCLA

math changes everything.

BIRS 2016



UCLA i2m
Collaborators

Edward Chou (UCLA)

Stan Osher (UCLA)

Vidvuds Ozolins (UCLA Materials Sci)
Omer Tekin (UCLA—Google)

BIRS 2016



UCLA

Outline

e Compressed Sensing
e Phase Transitions
* Deposition

BIRS 2016



W Compressed Sensing imm

e Problem statement
— Donoho 2006, Candes, Romber & Tao 2006
— Find x that Is m-sparse and solves Ax = f
— Assuming that an m-sparse solution exists

» Standard methods
min |x|, subject to constraint Ax = f
— note ||x||, =#{i: x =0}

e Compressed sensing
min |x|, suiject to constraint Ax = f

- ote [« = 3|
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UCLA How many measurements im
are required?

» For m << N, find m-sparse solution x € R" of
Ax=f eR" AisnxN

o Standard methods require: n = N

— #(equations)=#(unknowns), NP hard = intractable
e Compressed sensing: n=m (log N)

— n << N. Many fewer equations than unknowns!

— Solution is exact with high probability!
» Reduced isometry property (RIP)

— convex programming, tractable and fast
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Why Does L! Promote Sparsity?

o Compressed sensing
min [|X|, subject to constraint Ax = f

o Simplified problems: Find x solving
-min (x—y)®+¢|x| forgivenyinR

— Solution (y—¢ ify>e¢
Xx=S5y=1:0 if ly|<e
yt+e Ify<-—¢

— Operator S_ Is “soft-thresholding”
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Soft Thresholding

X—Sgy/
/ y
(y—¢ ify>¢

S.y=40 ifM<g

yt+e If y<-—¢
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Subgradient

» Euler-Lagrange eqtn for min (x - y)? +g\x\

2(x—Yy)+ep(x)=0
e Subgradient

1 if x>0
p(x)=0,|x|=4[-11] if x=0
-1 If x<0

o Write sgn(x)=p(X)
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Phase Transitions

e Cahn-Hilliard equations
0,c=—02(0.J[c])
J,[c]= j%ycf +%(Cz ~1)%dx
— Pure phase regions c=-1 and c=1
— Steady eqtn 6_J[c]=0 has solution

c(x) = tanh(x//2y)
« (oals of compression

— c=-1and c=1 reached at finite distance
— Similar to classification problem in machine learning
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Compression for Cahn-Hilliard

 Variational quantity for Cahn-Hilliard
Jo[c]:j%ycf +%(C2 —1)*dx
 Variational quantity with compression
J[c] =j%ycf +%(c2 ~1)* +£|c® ~1/dx
— Euler-Lagrange for steady minimizer
—yc,, +c(c® —1)+2ecsgn(c® —1) =0

— Look for solution that i1s odd in x and reaches +1 at x= +L
c(x)=-1 x<-L
c(x)|<1 |x<L
c(x)=1 x=>L

— ODE and BCs

—yC, +C(c°—1)—2ec=0 |x|<L
c(tL)=41, c,(£L)=0
BIRS 2016
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Compressed Cahn-Hilliard
« Numerical Method: Split Bregman
#(c) = £(c* 1)
¢ =min, J, [c]+%.[d"‘) —¢(c) —b™dx

d®® =min, [d|, +§ [ —g(c*)—b*dx

b(k+1) _ b(k) +¢(C(k+l))—d(k+l)
— Use gradient descent to update c, soft-thresholding to update d
— A is a fixed parameter, influences convergence but not solution
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Compressed Cahn-Hilliard

Cahn-Hilliard Phase Transition, y = 1

1.5 )
Cahn Hilliard (g = 0)
Compressed (e = 1)
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Simplified Deposition Model m
* Deposition model
— u(x) = height of deposited material

— Diffusion with source s(x) and removal rate A
OU=0U—-AU+S —7m<X<7

o Steady state problem
U=Gs G=(-0:+A1)"
— Desired height profile f(x)=cos(x)
— Choose s(x) so that j’; (u— f(x))%dx < &2
e (oals of compression
— Choose s which is smooth and has small support
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o Variational quantity
—_ J[s]::_”ﬂi(u— f(X)? +e&ls

_ :””%(Gs _f(X) +e

— Euler-Lagrange egtn

Compression for Deposition

1 )
+§)/28de with y=Gs

1 ,.,
S|+—y°s, dx
|27/X

G*s—Gf +&sgn(s)—y°s, =0
— Solution s doesn’t have compact support (?)
 Modified variational quantity

J[s] :j”ﬁ%(@s— f (X)) +£G?

— Euler-Lagrange egtn

G*s—Gf +&G*sgn(s)—y
) 5S-G f +&5gn(S) —

|s|+%7/2(Gsx)2dx

°G®s,, =0

7/ZSXX =0

BIRS 2016

ifmm

16



UCLA Modified Variational Quantity 'P m

e Variational quantity
— Original J[s] = j —(Gs—f(x)) +g|s|+ yszdx

. 7 1 1
— Modified J,[s] =j_”§(c;s— f(x))? +gGZ|s|+§y2(Gsx)2dx
minJ_[s]= s—g+e&sgn(s)-y°s, =0 g=G'f

— Equivalent  J, [s]= j —(s g)° +g|s|+ ySZdX

e Thresholding

— Fory=0, minJ_ [s]=s=S,9 soft-thresholding

— Fory>0, minJ, [s]=s=S, g “smooth-thresholding”
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Deposition Equations

e Equation for s

— s—G'f +esgn(s)-y®s, =0 periodic on [x|<m, f=cos(X)

— Look for solution s to be nonnegative and even for |x|<m/2

with s(x)>0 |x/<L
s(x)=0 L<|x<z/2

— Antisymmetric around /2

* Equation for s on [x|<L (using s>0)
s—G'f+e—y%s,, =0 s(L)=s,(L)=0

— Solution  s(x)=a+bcos(x)+ccos(x/y)

a=-—¢ ; a+bcos(L)—cy”cos(L/y)=0 2 eqtns f L
) an equns 10r C,
b 1+ A4 —bsin(L)+cysin(L/y)=0 }
1+7/2

18
BIRS 2016



UCLA : : ik
Numerical Solution for 'r m
Compressed Deposition
« The analytic solution, for ¢ large enough, takes the form

S(X) = ¢, +C, cos(x) + ¢, cosh(kx)

Deposition Model Height, 4 = 3, £ =1, v= 0.01 Deposition Model Height, . = 3, ¢ = 1, v = 0.01
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Thresholding

Comparison of Soft and Smooth Thresholding for Deposition Model Source Comparison of First Derivative
4 T T T 4 T T T T T
Exact (c = 0) Exact (c = 0)
3t — Smooth(y = 0.01) || 3l — Smooth (y = 0.01) |
Soft (y = 0) Soft (y = 0)
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Ongoing and Future Work Imm

e Compression of Schrodinger equation
— Wannier modes
— Application to DFT, including symmetries

 Signal fragmentation

— Decompose a desired signal into a sum of fragments
— Fragments have compact support

e Multiscale method
— Use compression to mediate interaction between micro and macro scales
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