

Compressed Modes for Material Interface Problems

Russel Caflisch IPAM Mathematics Department, UCLA

math changes everything.

UCLA

Collaborators

- Edward Chou (UCLA)
- Stan Osher (UCLA)
- Vidvuds Ozolins (UCLA Materials Sci)
- Omer Tekin (UCLA→Google)

Outline

- Compressed Sensing
- Phase Transitions
- Deposition

Compressed Sensing

- Problem statement
 - Donoho 2006, Candes, Romber & Tao 2006
 - Find x that is m-sparse and solves Ax = f
 - Assuming that an m-sparse solution exists
- Standard methods

min $||x||_0$ subject to constraint Ax = f- note $||x||_0 = \#\{i: x_i \neq 0\}$

• Compressed sensing min $||x||_1$ subject to constraint Ax = f- note $||x||_1 = \sum_{i=1}^N |x_i|$

ICLA How many measurements are required?

- For m << N, find m-sparse solution $x \in \mathbb{R}^N$ of $Ax = f \in \mathbb{R}^n$ A is $n \times N$
- Standard methods require: n = N
 #(equations)=#(unknowns), NP hard = intractable
- Compressed sensing: $n = m (\log N)$
 - n << N. Many fewer equations than unknowns!</p>
 - Solution is exact with high probability!
 - Reduced isometry property (RIP)
 - convex programming, tractable and fast

Why Does L¹ Promote Sparsity?

- Compressed sensing min $||x||_1$ subject to constraint Ax = f
- - Operator S_{ϵ} is "soft-thresholding"

Subgradient

- Euler-Lagrange eqtn for min $(x y)^2 + \varepsilon |x|$ $2(x - y) + \varepsilon p(x) = 0$
- Subgradient

$$p(x) = \partial_x |x| = \begin{cases} 1 & \text{if } x > 0\\ [-1,1] & \text{if } x = 0\\ -1 & \text{if } x < 0 \end{cases}$$

• Write sgn(x)=p(x)

COMPRESSION FOR PHASE TRANSITIONS

UCLA

Phase Transitions

• Cahn-Hilliard equations

$$\partial_t c = -\partial_x^2 (\partial_c J[c])$$
$$J_0[c] = \int \frac{1}{2} \gamma c_x^2 + \frac{1}{4} (c^2 - 1)^2 dx$$

- Pure phase regions c=-1 and c=1
- Steady eqtn $\partial_c J[c] = 0$ has solution

 $c(x) = \tanh(x / \sqrt{2\gamma})$

- Goals of compression
 - c=-1 and c=1 reached at finite distance
 - Similar to classification problem in machine learning

Compression for Cahn-Hilliard

- Variational quantity for Cahn-Hilliard $J_0[c] = \int \frac{1}{2} \gamma c_x^2 + \frac{1}{4} (c^2 - 1)^2 dx$
- Variational quantity with compression $J[c] = \int \frac{1}{2} \gamma c_x^2 + \frac{1}{4} (c^2 - 1)^2 + \varepsilon |c^2 - 1| dx$
 - Euler-Lagrange for steady minimizer

$$-\gamma c_{xx} + c(c^2 - 1) + 2\varepsilon c \operatorname{sgn}(c^2 - 1) = 0$$

– Look for solution that is odd in x and reaches ± 1 at $x = \pm L$

$$c(x) = -1 \quad x \le -L$$
$$|c(x)| < 1 \quad |x| < L$$
$$c(x) = 1 \quad x \ge L$$

– ODE and BCs

$$-\gamma c_{xx} + c(c^2 - 1) - 2\varepsilon c = 0 \quad |x| < L$$
$$c(\pm L) = \pm 1, \quad c_x(\pm L) = 0$$

Numerical Method for Compressed Cahn-Hilliard

• Numerical Method: Split Bregman

UCLA

$$\phi(c) = \varepsilon(c^{2} - 1)$$

$$c^{(k+1)} = \min_{u} J_{0}[c] + \frac{\lambda}{2} \int d^{(k)} - \phi(c) - b^{(k)} dx$$

$$d^{(k+1)} = \min_{d} \|d\|_{1} + \frac{\lambda}{2} \int d^{(k)} - \phi(c^{(k+1)}) - b^{(k)} dx$$

$$b^{(k+1)} = b^{(k)} + \phi(c^{(k+1)}) - d^{(k+1)}$$

- Use gradient descent to update c, soft-thresholding to update d
- $-\lambda$ is a fixed parameter, influences convergence but not solution

Numerical Solution for Compressed Cahn-Hilliard

BIRS 2016

COMPRESSION FOR DEPOSITION

Simplified Deposition Model

- Deposition model
 - u(x) = height of deposited material
 - Diffusion with source s(x) and removal rate λ $\partial_t u = \partial_x^2 u - \lambda u + s - \pi < x < \pi$
- Steady state problem

u = Gs $G = (-\partial_x^2 + \lambda)^{-1}$

- Desired height profile f(x)=cos(x)
- Choose s(x) so that $\int_{-\pi}^{\pi} (u f(x))^2 dx \le \sigma^2$
- Goals of compression
 - Choose s which is smooth and has small support

Compression for Deposition

• Variational quantity $- J[s] = \int_{-\pi}^{\pi} \frac{1}{2} (u - f(x))^2 + \varepsilon |s| + \frac{1}{2} \gamma^2 s_x^2 dx \quad \text{with} \quad u = Gs$ $= \int_{-\pi}^{\pi} \frac{1}{2} (Gs - f(x))^2 + \varepsilon |s| + \frac{1}{2} \gamma^2 s_x^2 dx$

- Euler-Lagrange eqtn

$$G^2 s - Gf + \varepsilon \operatorname{sgn}(s) - \gamma^2 s_{xx} = 0$$

- Solution s doesn't have compact support (?)
- Modified variational quantity $J[s] = \int_{-\pi}^{\pi} \frac{1}{2} (Gs - f(x))^2 + \varepsilon G^2 |s| + \frac{1}{2} \gamma^2 (Gs_x)^2 dx$
 - Euler-Lagrange eqtn

$$G^{2}s - Gf + \varepsilon G^{2}\operatorname{sgn}(s) - \gamma^{2}G^{2}s_{xx} = 0$$

$$\implies s - G^{-1}f + \varepsilon \operatorname{sgn}(s) - \gamma^2 s_{xx} = 0$$

Modified Variational Quantity

• Variational quantity

UCLA

- Original $J[s] = \int_{-\pi}^{\pi} \frac{1}{2} (Gs - f(x))^2 + \varepsilon |s| + \frac{1}{2} \gamma^2 s_x^2 dx$

- Modified
$$J_m[s] = \int_{-\pi}^{\pi} \frac{1}{2} (Gs - f(x))^2 + \varepsilon G^2 |s| + \frac{1}{2} \gamma^2 (Gs_x)^2 dx$$

 $\min J_m[s] \Rightarrow s - g + \varepsilon \operatorname{sgn}(s) - \gamma^2 s_{xx} = 0$ $g = G^{-1} f$

- Equivalent
$$J_{\varepsilon,\gamma}[s] = \int_{-\pi}^{\pi} \frac{1}{2} (s-g)^2 + \varepsilon \left|s\right| + \frac{1}{2} \gamma^2 s_x^2 dx$$

- Thresholding
 - For $\gamma=0$, min $J_{\varepsilon,0}[s] \Rightarrow s = S_{\varepsilon}g$ soft-thresholding

- For $\gamma > 0$, min $J_{\varepsilon,\gamma}[s] \Rightarrow s = S_{\varepsilon,\gamma}g$ "smooth-thresholding"

UCLA Solution of Modified Compressed **ipan** Deposition Equations

• Equation for s

- $s - G^{-1}f + \varepsilon \operatorname{sgn}(s) - \gamma^2 s_{xx} = 0$ periodic on $|\mathbf{x}| < \pi$, f=cos(x)

- Look for solution s to be nonnegative and even for $|x| < \pi/2$ with s(x) > 0 |x| < Ls(x) = 0 $L < |x| < \pi/2$
- Antisymmetric around $\pi/2$
- Equation for s on $|\mathbf{x}| < L$ (using s>0) $s - G^{-1}f + \varepsilon - \gamma^2 s_{xx} = 0$ $s(L) = s_x(L) = 0$
 - Solution $s(x) = a + b\cos(x) + c\cos(x/\gamma)$

$$- b = \frac{1+\lambda}{1+\gamma^2}$$
 and

$$a + b\cos(L) - c\gamma^{2}\cos(L/\gamma) = 0$$
$$-b\sin(L) + c\gamma\sin(L/\gamma) = 0$$

2 eqtns for c, L

Numerical Solution for Compressed Deposition

• The analytic solution, for σ large enough, takes the form

UCLA

 $s(x) = c_1 + c_2 \cos(x) + c_3 \cosh(kx)$

19

Comparison of Soft and Smooth Thresholding

UCLA

Ongoing and Future Work

- Compression of Schrodinger equation
 - Wannier modes
 - Application to DFT, including symmetries
- Signal fragmentation
 - Decompose a desired signal into a sum of fragments
 - Fragments have compact support
- Multiscale method
 - Use compression to mediate interaction between micro and macro scales