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e Motivation



Suppose

® X: The true variable which cannot be observed;
® 7: The surrogate of X;
® Y: Response variable;

... Sometimes,

® V: Variables measured without errors;



Regression Calibration

® Estimate the regression of X on Z, mx(Z,~), depending on parameters =,
which are estimated by 4.

® Replace the unobserved X by its estimate mx(Z,4), and then run a
standard analysis to obtain parameter estimates.

® Adjust the resulting standard errors to account for the estimation of -, using
either the bootstrap or sandwich method.

For example, suppose that the mean of Y given X can be modeled by
E(Y|X) = my (X;0)

for some unknown parameter 6. Regression calibration is dealing with the
following approximate model:

E(Y‘Z) ~ mY(mX(Zr'V)ve)

An extensive discussion on the regression calibration technique can be found in
Raymond J. Carroll et al. (2006).



Question?
Note that
E(Y|Z) = BIE(Y|X, 2)|2] = E[E(Y|X)|Z) = Elmy (X;0)|2].

Instead of “moving the conditional expectation inside my”, why not calculate or
approximate E[my (X;0)|Z] directly?

If this cannot be done “nicely” in the general cases, for example, when
Z = X + U, and U has a known distribution, can we make it for some special
cases, such as U has a normal distribution or a Laplace distribution?



e Laplace Measurement Error



Multivariate Laplace Distribution:

Multivariate generalization of the Laplace distribution have been considered by
many authors. See McGraw and Wagner (1968), Johnson and Kotz (1972),
Johnson (1987), Anderson (1992), Osiewalski and Steel (1993), Marshall and
Olkin (1993), Kotz, Kozubowski and Podgorski (2001), among others.

However, the term Multivariate Laplace Distribution is still somewhat ambiguous.

A commonly used definition of Laplace distribution is given below.

Definition

A random vector X in RF is said to have a multivariate laplace distribution if its
characteristic function is given by
eip,t

o) =13 v5t/2’

where 1 € RF and ¥ is a k x k nonnegative definite matrix. Denote
X ~ ML, Z).




The Density Function of MLy(u,X)

Suppose X ~ MLy (u,X).

Denote Q(z; 41, %) = (z — p)’ S~z — p).

Density Function of MLy (u,X)

Ix(z) =

(Qw)k/zmuz [Q(x;:’ Z)} ey Kyj2—1 ( 2Q(z; p, E)) ,

where = € R¥, K, (z) is the modified Bessel function of the 2nd kind with order v.

Note:

® The modified Bessel function of the second kind.

L(v+1/2)(2z)* [ cos(t)
Kv(fl?) - \/E /(; (t2 T m2)1}+1/2 dt.

e Let V ~Exp(1), Z ~ N;(0,I). Then

U=VVSY2Z ~ ML,(0,%).



Parametric Inference with Laplace Measurement Error

Suppose that the parameter of interest 0 is determined by the following moment

condition
Em(X;0) =0,

where X is a k-dimensional vector, 6 is a p-dimensional unknown parameter, and
m is a m-dimensional real function.

Sometimes X cannot be observed directly, instead, one can observe
Z=X+1U,

where U is called the measurement error.



Hong-Tamer’s Estimator

Suppose that the components of U are independent, and each one follows a
Laplace distribution with mean 0.

Denote

k
) 1\ 0%'m(Z; )
W(Z;0,0) = m(Z:0) + Y (—5) > odad (azz...azz ’
=1 I Jl

J1<-<di

Hong and Tamer (2003) showed that, under some smooth conditions on m,

Em(Z;0,0) = Em(X;0).

Hong and Tamer (2003) proposed the following modified moment estimators,

n ! n

(é,&):argming’u Zﬁz(Zi;B,cr) Whn an(Zi;Q,U)

i=1 i=1

Asymptotic normality of the above estimators is derived.



Some limitations in Hong and Tamer (2003)’s estimation procedure

® This method only applies to the cases where the components of U are
independent;

o Em(X;0) = Em(Z;0,0) is an equality of unconditional expectation.

Example (Guo and Li, 2002): Consider the Possion regression model

exp(yX0)
!

P(Y = y|X) = exp(— exp(X0))

with measurement error Z = X + U. If Eexp(X0) is known or can be well
estimated, then one can estimate 6 using the maximizer of

Lon(0) = % Z[Yizia —log Yil] — Eexp(X0).
=1



Applying Hong and Tamer (2004)’s formula,

1
Eexp(X0) = [1 — 50202} Eexp(Z96).

If further assume that o2 is known. One can estimate 6 using the maximizer of

1o 1
Eln(e) = ; Z |:YL‘Z1'9 — log Yi! — <1 - 50'292) eXp(ZZ‘H)i| .

i=1

However, with very large probability, £1,(0) — +oco as |0] — oco.



First Improvement

A Relation between Densities of X and Z (Multivariate Case)

Let f, g be the density functions of X and Z, respectively. Assume that
U~ MLi(0,%).

Assume the characteristic function of Z is square integrable. Then

k
1 9?2
10 =o) =5 3 oG

ji=1

where oy is the (4, 1)-th element of ¥, and z; is the j-th element of z.




Based on the above lemma, we have

Theorem

Assume that m(z,0) and g(z) satisfy
(C1). For any 6 € ©, m(z,0) is twice differentiable w.r.t. z; and as ||z|| — oo,

m(z,0)g'(z) = 0, m (z,0)g(z) — 0.
(C2). For any 6 € ©,

3%m(Z,0)

E Z,0 E
Im(z,0)l < oo, B|| =20

< 00,

Then we have
1 k
Em(X, 9) = Em(Z, 0) — 5 E O'le

Jyl=1

8?m(Z,0)
0Z;07, '




Denote

k
~ 1 09?m(Z,0
(2:0,5) = m(2,0) - 5 > aﬂﬁzl).
v
Jyl=1

For any positive definite matrix, depending only on the data, define

n 4 n

(6,%) = argming x, Zﬁ(zi;a,z) W Zﬁz(zi;e,z) . (1)

i=1 =1

We further assume that
(C3). Em(Z;6,%) =0 if and only if § = 6, ¥ = Xg > 0, where 0y, o are
the true values.
(C4). Wy, — W in probability;
(C5). Denote o = (0j1,j > 1), o= (0/,0"). EOm(Z;0,%)/da exists, and has
the full rank; In a neighborhood of ap, 8;&(2; 0,%) /0« is Lipschitz
continuous. E|m(Z;680,%0)||? < oo.



Theorem

Assume that (C1)-(C5) hold. Then (6,6) — (60,00) in probability, also

Vn (0‘ "0) => N (0, (A" WA)~ (A’ WQWA)(A' WA) '),
g0

6—
where
k
om(Z;0 1 om3(Z;6 1 9°m(Z;0) .
A= M__ZWM, - _FmlZh) ;.
a0 2 82;02,00 250:0)  92;02

=1

Q= Em(Z;0,2)m'(Z;0,%); if j =1, §(,1) = 1, otherwise, (4, 1) = 0.

>l) ,




From the consistency of é, 2, we also have

Assume that (C1)-(C5) hold. Let W, = n(ZLl m(Zi; 0, $)ym! (%;0,3))~1, and

!
n n

(@:i):argming,a Z%(Zi;e,a) W, Zm(Zi;G,o)

i=1 =1

Then, W, — Q! in probability, (5, i) — (60, Xo) in probability. Furthermore,

7 (E— 90) — N (0,(4Q4)7Y),

o — 0o

where o = (gjl,j > 1), gjl is the (4, I)-th element of 3.




Second Improvement: Generalized Regression Calibration

Tweedie-type Formula for Laplace Distribution
For the time being, § will be suppressed from m(z,0).

Denote
® g: the density function of Z;
® fy: the density function of U.

If U~ MLg(0,%), we have

Tweedie-type Formula for Laplace Distribution

Under some regularity conditions,

E[m(X)|Z]

= ! —.’B 13 T — a 13 - g(z) dz
= /m(w)fU( ) Z ]z/ Wo(2 - 05

],l 1




In particular, for £ = 1, we have

Corollary

Suppose m and the density function g of Z are twice differentiable. For

w(z) = m(z)g(z), m'(z)g(z), m(z)g’(z), we further assume that

lim w(z)exp(—|z|) — 0.
z—Foo

Then,
E[m(X)|2] = m(2) + U2),

1= & /Oo [m'(m) - W] o(2)e= P da

where

9(2)
—z/b Z "
__eg(z) / [m'(z) + _bm2(:c)] g(z)e* b da,

and b= o /V/2.




For the sake of brevity, we only consider the case of k = 1.

Let Z1, Za, ..., Zn be a sample from Z, and let

an(2) = hz <Z77Z>.

be the kernel density function of Z. Denote
V2
(z;0,0) = |m/(z;0) + (-1 lim” x;@]ex -1 1Zve ,
wi(z;0,0) ()()2\/5()1)()0

then for any fixed 0,0, F(m(X,0)|Z) can be estimated by

Zf/o'
E(m(X,0)|2) = m(Z;0) + NN ul(ﬂf; 0,0)gn(x)dx
Z

e*Z\/i/U
- z;0,0)g(x)dx.
G /_oo p2( )an(z)



Let H(Z;6,0) = E(m(X,60)|Z). Thus for fixed 0,0, we can estimate H(Z;0,0)
using . R
H(Z;0,0) = E(m(X,0)|2).

For any positive definite matrix W, depending only on the data, we estimate 0
and o by

!
(é,ﬁ'):argmingﬂ ZI:I(Zi;H,U) Whn Zﬁ(Zi;G,a)
i=1

i=1

Work to do: Asymptotic theory.

N}



Comparison Study

Consider the Possion regression model

exp(yX0)

P(Y = yix) = 2

exp(— exp(X0))

with measurement error Z = X + U. If Fexp(X0) is known or can be well
estimated, Guo and Li (2002) suggests to estimate 6 using the maximizer of

Lon(0) = % Z[Yizie —log Yil] — Eexp(X0).
=1

Take § = 1, X ~ N(0,1), and U ~Laplace(0,02).



The density function of X is known

o? n Guo and Li Regression Calibration
0.1 | 100 | 0.0318(-0.0290) 0.0064(-0.0086)
200 | 0.0172(-0.0188) 0.0031(-0.0104)
300 | 0.0125(-0.0117) 0.0022(-0.0090)
500 | 0.0059(-0.0061) 0.0013(-0.0033)
0.5 | 100 | 0.0354(-0.0354) 0.0172(-0.0264)
200 | 0.0189(-0.0099) 0.0085(-0.0083)
300 | 0.0128(-0.0111) 0.0063(-0.0092)
500 | 0.0085(-0.0088) 0.0038(-0.0041)
0.9 | 100 | 0.0489(-0.0423) 0.0328(-0.0376)
200 | 0.0211(-0.0265) 0.0138(-0.0236)
300 | 0.0176(-0.0150) 0.0117(-0.0143)
500 | 0.0083(-0.0125) 0.0055(-0.0132)

Table: MSE(Bias) Comparison



The density function of X is unknown

Hong-Tamer Technique

o2 | n | MSE(Bias)
0.1 | 100 87.7185(5.6400)
200 88.1186(5.4400)
300 86.9986(5.9999)
500 85.6386(6.6799)
0.5 | 100 94.5986(2.2000)
200 95.0786(1.9600)
300 96.3586(1.3200)
500 97.0786(0.9600)
0.9 | 100 | 100.9985(-1.0000)
200 | 100.7585(-0.8800)
300 | 101.1585(-1.0800)
500 | 100.4385(-0.7200)




Regression Calibration

b= cr/\/i, h = an—1/5,

n | b | a | MSE(Bias) n | b | a | MSE(Bias)
100 | 0.2 | 0.2 | 0.0062(-0.0358) 300 | 0.2 | 0.2 | 0.0024(-0.0232)
0.5 | 0.0078(-0.0240) 0.5 | 0.0027(-0.0229)

0.8 | 0.0076(-0.0235) 0.8 | 0.0026(-0.0222)

0.5 | 0.2 | 0.0529(-0.1829) 0.5 | 0.2 | 0.0341(-0.1525)

0.5 | 0.0536(-0.1104) 0.5 | 0.0226(-0.1103)

0.8 | 0.0497(-0.1399) 0.8 | 0.0220(-0.1003)

0.8 | 0.2 | 0.1881(-0.3549) 0.8 | 0.2 | 0.1351(-0.3350)

0.5 | 0.2351(-0.2281) 0.5 | 0.2106(-0.1728)

0.8 | 0.3000(-0.0787) 0.8 | 0.2640(-0.0523)

200 | 0.2 | 0.2 | 0.0033(-0.0210) 500 | 0.2 | 0.2 | 0.0018(-0.0213)
0.5 | 0.0038(-0.0173) 0.5 | 0.0015(-0.0169)

0.8 | 0.0034(-0.0245) 0.8 | 0.0018(-0.0210)

0.5 | 0.2 | 0.0405(-0.1724) 0.5 | 0.2 | 0.0337(-0.1633)

0.5 | 0.0354(-0.1341) 0.5 | 0.0208(-0.1059)

0.8 | 0.0309(-0.1265) 0.8 | 0.0172(-0.0876)

0.8 | 0.2 | 0.1566(-0.3573) 0.8 | 0.2 | 0.1385(-0.3410)

0.5 | 0.2486(-0.1476) 0.5 | 0.1624(-0.1977)

0.8 | 0.2368(-0.1268) 0.8 | 0.2250(-0.0674)




e Parametric Inference with Normal Measurement Errors



Tweedie’s Formula

As disclosed in Efron (2011), the Tweedie’s formula is named after Maurice
Kenneth Tweedie and it was first discussed in Herbert Robbins (1956). Due to its
strong Bayesian flavor, Efron (2011) accolade the Tweedie’s formula as an
“extraordinary Bayesian estimation formula”, and a selection bias application of
this formula to genomics data is also discussed.

Suppose Z = X + U, and U ~ N(0,02), then

_ o2 QI(Z)
E(X|2)=Z+ _g(Z) .




Generalized Tweedie’s Formulae

"(Z) | 49"(2)

_ g .
E(X%|2) = Z?+4+20%7272 o2 +o o(2) +o?;

_ 9'(2) 9"(Z N 69" (2) 9'(2).
E(X32) = Z3+30%72 oz )+3 0?Z +30Z ) + 05 02) + 30* "2
EX*z) = 7 k>4

(Z+Bo%)

E(exp(B8X)|2) =

g 2 B202
—g(Z) exp <Zﬁ+ 7 )




The above results can be readily applied to some nonlinear regression models.

For example Y = m(X) + €, when m(z) =polynomial, exponential.

Can we apply the above results to parametric/nonparametric setup?

For example,
® Logistic regression. Instead of replacing exp(Xf3) with exp(E(X|Z)3), try
E(exp(XB)|Z);

e if X is observable, the local linear/polynomial regression estimator of m(zp)
can be obtained by minimizing

D [¥i— a0 = a1(Xi = 20) — a2(Xi — 20)? =+ = ap(Xs — 20)"]* Kn(X; — a0).
=1

How about replacing (X; — xp)/ with E[(X; — 20)7|Z;], and replacing
Kp(X; — z9) with Kh(E(lezz) — .7:0)?



Thank You!
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