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Brill-Lindquist Data

Geometrostatic manifolds

> Addressed in great detail by Brill and Lindquist in their 1963
paper “Interaction energy in geometrostatics”.

» Solutions of vacuum Einstein-Maxwell constraint equations
Rlgl = 21E[2, div(E) =0
on R3~ {p1, ..., pn} of the form

g = (x1)?6, E =grad, (In(x/v))-

» “...static” refers to the existence of the electrostatic potential
and vanishing second fundamental form; not suggesting initial
data for static spacetime.
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Brill-Lindquist Data

Explicit Expressions

» The constraints reduce to Agxy =0, Agyy = 0.
» Solutions compatible with asymptotically Euclidean behavior
at infinity:
X =1, [ =1]=0(), |dxls = |dvls = O(r~?).
» Explicit solutions:
G <~ «q G i
14+ N = -1+ N2
i=1 i=1
> Impose «;, 5; > 0 for all i.
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Brill-Lindquist Data

Concrete example
G 2 G
= (14+5-2) (1+5- AN § with a, 8 > 0.
2¢2 2¢2 r
> Reissner-Nordstrom initial data; charged point particle.

r— o0

/ r—20

» m=(a+0)/2;

» If af = 0 we have an asymptotically cylindrical end instead.
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Brill-Lindquist Data

General picture: n charged point particles

> Assuming «;, B; > 0 for all i we have n+ 1 asymptotically
Euclidean ends.

|x| = o0

X =
X = p1 P2 X = p3

> |x| — oo asymptotic end has ADM mass of

m = 33 (ai + ).

> Rough idea: If m = 3>"(a; + ;) — 0 then x,7) — 1 and
(M, g) = (B®,5).
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Brill-Lindquist Data

Almost rigidity of PMT in the geometrostatic context

Theorem

(Sormani - 1.5, 2015/16) Let (My, gx) be a sequence of
geometrostatic (Brill-Lindquist) manifolds with point particles

P« = {p1, P2, .-, Pn, }, and let M, denote the exterior portions' of
M. Assume that O & P, for all k and that there is some Ry > 0
such that Py C Bs(0, Ro) for all k. Let

mi = mapm(My, g«), ok =min{|p—p|,|p| | p,p" € Px}.

If mi — 0 and my /o — 0 then for all R > Ry Bg, (0, R) C M,
converges to Bs(0, R) C R® in the intrinsic flat sense.

!Exterior portion refers to the portion of Mj located outside of the
outermost minimal surface(s).

lva Stavrov Allen Lewis & Clark College

A continuous matter distribution arising as an intrinsic flat limit of point particle configurations



Brill-Lindquist Data

Comments on the proof

» Smallness of mg and my /oy is used to prevent this scenario:

x| = o0

X=p1 X = p2

» We control the location of the outermost minimal surfaces by
contrasting the Penrose Inequality with quadratic area growth
along minimal surfaces.

» The rest of the proof is a consequence of the estimate of
Lakzian and Sormani. (Similar to what will be shown later in
the talk.)
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Simplification for the rest of today’s talk
» E=0, x=1, R(g)=0and

G )

ai
=14+ -— — 6 ; > 0.
o= (1452 ) o

» Distinguish “bare mass” m; from “effective mass” a;.

» x = p; asymptotic end has ADM mass of
mi=ait+ 53 Z !P,

> m# Z m;. Instead, we have interaction energy

1
M
|pi |pi — pjl

i<j
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Discretizing a continuous distribution of “stuff”

» Consider a function A(x) supported in a box V; model for a
continuous distribution of “stuff”.

» Subdivide the box V into little boxes of size %; place an
individual particle of appropriate “size” / “mass”

ai = A(pi) s
into the center p; of each subdivision.

» Consider the corresponding Brill-Lindquist (vacuum) metric:

G aj 4
<1+2c22\x—m> ’

> Investigate what happens in the limit as n — co. Dust?
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Dust?
» As n — oo:
G aj
— —_— dvol
+2c2z:\x—p,-| 2c2/ |x — p[ VO
O(X
> Naively:

> The metric ga(x) = 0(x)*§ satisfies

167rG
R(ga) =

A07> ... Dust?
N——
o
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Why naive?

G O\
gni=(1+ 52 Z |Xi7lp;| 0 looks something like so:

AY ’ AY ’ AY ’ AY ’ AY ’
7 v/ v/ A4 7
v v v v v
1 i i i i
1! 1! 1! 1! 1!
AY /ﬂ AY /ﬂ AY /ﬂ AY /ﬂ AY /ﬂ
vVt Al AVt vl VAN
'NAE Ao EERANE Ao EERANE
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Locating the “canonical” minimal surfaces

Theorem

(1.S, 2015/6) Let A(x) > 0 be a smooth function, compactly
supported in a box V. There exists a constant C and a natural
number ng such that for all n > ng and all center points q of a
(1/n)-box in the subdivision of V with A(q) # 0 the metric g, has
a minimal surface in the region

(2(;9(61)1 - C) : A,(g) <|x—gq| < ( G 0(q) " + C) Al9)

n 2¢2 n n3
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Regarding the proof

» Zoom in / blow things up at g; do so at the rate of A(q)/n3.

» If n>> 1 (uniformly in q) the blown up metric is
approximately equal to the Schwarzschild metric:

<0(q) + 2—(; : |1u|>45 = <1 4 e(q)_1>49(q)45,

2¢2 |4

» Have precise information about fall-off rates.

» Do an Implicit-Function-Theorem-type-argument to see that
the blown up metric has a minimal surface at about

lu| = @G(q)*l; then rescale back.
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Cutting at “canonical” minimal surfaces: (M,, g,)

|x| = oo

» The total Euclidean volume of “cut-outs” is on the order of
nd- (n—13)3 ~ J5; serves as a hint that some kind of limit of

(Mn, gn) as n — oo is possible.

» Warning: the above need not be outermost minimal from the
standpoint of |x| — co.
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Theorem and proof

Our theorem

Theorem
(C. Sormani - .S, 2016) If R is sufficiently large then
Mi.n = Bs(po, R) N M, equipped with the metric

converges in the intrinsic flat sense to My = Bs(po, R) equipped

with
Alp
— (142
& (+262 IX—p\>
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Theorem and proof

Intrinsic flat distance: brief reminder

(M1, g1) and (Ma, g2) with g1 &~ g» over a subset W C My N Ms.

Lakzian-Sormani estimate on dx (M, Ms):

Volg, (M1 \ W) + Volg, (M2 \ W)
+“small” (Volgl( W) + Volg, (W) + Volg, (W) + Volg, (8 W)) .
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Theorem and proof

About the proof; part 1

v

To apply Lakzian-Sormani we need W, on which g, =~ ga;

v

Wn = B(S(Oa R) N (UIB(S(PIHA(P/)%));

Recall that the “canonical” minimal surface is located
more-or-less on the order of A(p;)-;

v

v

llgn — gA||L°°(Wn) = O(%)-
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Theorem and proof

About the proof; part 2

> g, and ga are bounded by a uniform multiple of § on
Ml,n C Mp;

» By Lakzian-Sormani dr(Mjy ,, M>) is controlled by

Vols(Ma \ Wy) + (VARR + &) (Volg(W,,) + Volg(OW,,))
—_———

“small”

> Need:
» Smallness of Vols(M, \ W,);

» Smallness of \,;

» Boundedness of Vols(W,) + Vols(0W,).
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Theorem and proof

About the proof; part 3

>\, = sup |dMl,n(X,y)_dM2(X7.y)|
X,yGWn

» Estimates:
> Vols(My \ W,) = O(n*()*) = O(3%);
> X, = O(&) by a direct brute force computation;
» Vols(W,) = O(R®);

> Vols(OW,) = O(R?) + O(n*(%)?) = O(R?).
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Interpretation

Is “every” dust a limit of Brill-Lindquist data? (Pt 1)

> Is every compactly supported, conformally flat, asymptotically
Euclidean, time-symmetric, dust initial data a limit of
Brill-Lindquist data?

> Yes: Suppose g = 6*§ with compactly supported
R(g) = 16”69 > 0. Our construction for

A= p0°
recovers this particular g.

» The relationship A = pf° comes from combining
0=1+ / AW dvols and R(g) = —805A50 =

22 | Ix—y]
y

167G
c? e

lva Stavrov Allen Lewis & Clark College

A continuous matter distribution arising as an intrinsic flat limit of point particle configurations



Interpretation

Interaction

> In some sense both Advols and gpdvolg; communicate density.

» Expression 0§ =1+ 2—(22 C(‘Q’;‘ dvols suggests that A is

density with respect to the Euclidean metric. Naively one
might expect A = 06°, and not A = 08°. Discrepancy is due
to interaction energy:
» Here Advols = g~ 'dvol, corresponds to ‘“effective mass
density”.
» This is to be distinguished from g dvol, which corresponds to
“bare mass density” .
» The expression g@fldvolg — /gdvolg is the continuous
version of Brill-Lindquist formula for interaction energy.
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Interpretation

Is “every” dust a limit of Brill-Lindquist data? (Pt 2)

» What if somebody just prescribes a compactly supported
continuous distribution of “dust particles” on R3? Is it
realizable (as a limit of Brill-Lindquist data)?

» Not a well phrased question: everything depends on whether
you are prescribing dust using metric-dependent or
metric-independent quantities.

» Metric-dependent approach: Prescribe a scalar (density)

function g; the constraint equation states R(g) = 16;;%.

» Metric-independent approach: Prescribe a 3-form w. The

constraint equation states R(g) dvol, = 16C’ZGw.
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Interpretation

Is “every” dust a limit of Brill-Lindquist data? (Pt 3)

These questions reduce to the questions of solvability of ....

G
» Metric-dependent approach: Az = —477@995 with § — 1.

This problem does not have solutions when g is large enough.

G o(y)
E.g. when / dvols > 1.
( 2C2 y ‘X - Y| )

. G .
» Metric-independent approach: As6 = —47r2—2w0«9_1 with
@ — 1 and w = wopdvols. Here the exponent of —1 works in
our favor!
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Interpretation

Is “every” dust a limit of Brill-Lindquist data? (Pt 4)

Corollary

Let w be a compactly supported 3-form on R3. Then there is a
unique conformally flat, asymptotically Euclidean, time-symmetric
initial data g, with R(g.)dvolg, = 16;;%. Furthermore, g, arises

as a pointed intrinsic flat limit of Brill-Lindquist data.

So roughly speaking:
» One can prescribe as much “stuff’ on R as one might like.

However, the conformal factor will spread things apart,
increase volume and make the density of “stuff’ relatively low.

» Thanks to David Maxwell for pointing us in the direction of
using w instead of p.
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Interpretati

Thank you for your attention!
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