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Introduction

Theorem (Classical Isoperimetric Inequality)

Let C be a simple closed curve in the plane whose length is L and that
encloses an area A. Then

4mtA < L2,

Equality holds if and only if C is a circle.
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n"w,H Q" < [2Q"
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the unit ball in R")



Two ways of a generalization

@ Q2CcRZ5 Q"CR"
n"w,H Q" < [2Q"

and equality holds if and only if Q is a ball. (w, is the volume of
the unit ball in R")

e For M" c Mn+m

o Simplest case: M? c R? € R3. In this case we have 47A < [?
with equality if and only if M is a disk.
e A natural extension: a minimal surface M2 c R3
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Isoperimetric inequality for compact minimal surfaces

Question
For a minimal surface M? c R3, does the isoperimetric inequality

4mtA < L2,
hold? And does equality hold if and only if the minimal surface is a disk?
This problem has been partially proved but not completely.

@ Yes, for simply-connected case. (Carleman 1921)

@ Yes, for doubly-connected case. (Osserman-Schiffer 1975, Feinberg
1977)

@ VYes, for f(0M) < 2. (Li-Schoen-Yau 1984, Choe 1990)
@ Yes, for triply-connected case. (Choe-Schoen, recent)

This problem is still open.
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Question
For a compact minimal submanifold ¥ ¢ R", does the isoperimetric
inequality

kkwlz] L < oz

holds? And does equality hold if and only if Q is a ball in R? (wy is the
volume of the unit ball in R¥)



Higher-dimensional cases in Euclidean space

Question
For a compact minimal submanifold ¥ ¢ R", does the isoperimetric
inequality

kkwlz] L < oz

holds? And does equality hold if and only if Q is a ball in R? (wy is the
volume of the unit ball in R¥)

Two partial answers:
@ Yes, for £ area-minimizing . (Almgren 1986)
@ Yes, for 0 € £ and 0X C 3B(r) (Simon 1980’)
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@ 2-dimensional case: (Choe-Gulliver 1992) For £ with £(3Z) < 2,

4mtArea(Z) < Length(9X)2 — Area(X)?

with equality if and only if £ is a geodesic ball in a totally geodesic
2-plane in H".



In hyperbolic space

Two important results about isoperimetric inequalities on minimal
submanifolds in hyperbolic space

@ 2-dimensional case: (Choe-Gulliver 1992) For £ with £(3Z) < 2,

4mtArea(Z) < Length(9X)2 — Area(X)?

with equality if and only if £ is a geodesic ball in a totally geodesic
2-plane in H".

@ higher-dimensional case: (Yau 1975, Choe-Gulliver 1992)

(k —1)Vol(Z) < Vol(35).

This is called a linear isoperimetric inequality.



In hyperbolic space

Two important results about isoperimetric inequalities on minimal
submanifolds in hyperbolic space

@ 2-dimensional case: (Choe-Gulliver 1992) For £ with £(3Z) < 2,

4mtArea(Z) < Length(9X)2 — Area(X)?

with equality if and only if £ is a geodesic ball in a totally geodesic
2-plane in H".

@ higher-dimensional case: (Yau 1975, Choe-Gulliver 1992)

(k —1)Vol(Z) < Vol(35).

This is called a linear isoperimetric inequality. However it is not
sharp.
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Setting and notations

@ H": the hyperbolic n-space of constant curvature —1
@ We choose the Poincaré ball model B” among several models of H".
@ Then B" can be regarded as both

o the unit ball in R"
and
e the Poincaré ball model of H".

@ ds? : the hyperbolic metric on B”"
ds: the Euclidean metric on B"
r: the Euclidean distance from the origin
Then we have the following conformal equivalence of H"” with R":

4
dsg = 7(1_r2)2ds]§,
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@ X: complete proper minimal submanifold in H"

@ Note that X C H" is called proper if, for any compact subset
C C H", the intersection C N X is also compact in H".

@ The existence of complete minimal submanifolds in hyperbolic space
was proved by M. Anderson(1982, 1983) and F.H. Lin(1989). More
precisely, given Y~1 C 9, H", there exists a k-dimensional
area-minimizing X satisfying that 0X.



Setting and notations

Y: complete proper minimal submanifold in H"

Note that ¥ C H" is called proper if, for any compact subset
C C H", the intersection C N X is also compact in H".

The existence of complete minimal submanifolds in hyperbolic space
was proved by M. Anderson(1982, 1983) and F.H. Lin(1989). More
precisely, given Y~1 C 9, H", there exists a k-dimensional
area-minimizing X satisfying that 0X.

Volr(Z): the k-dimensional Euclidean volume of &
Volg (05,X): the (k — 1)-dimensional Euclidean volume of the ideal
boundary 9,,Z := Z N 0, H"
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isoperimetric inequality



Linear isoperimetric inequality implies classical
isoperimetric inequality

Theorem
Let ¥ be a k-dimensional complete proper minimal submanifold in the
Poincaré ball model B". Then

Vola (£) < £ Vola (0..5),

where equality holds if and only if Z is a k-dimensional unit ball B¥ in B".



Linear isoperimetric inequality implies classical
isoperimetric inequality

Theorem

Let ¥ be a k-dimensional complete proper minimal submanifold in the
Poincaré ball model B". Then

VOIR(Z) < %VOI]R(aooz)v

where equality holds if and only if Z is a k-dimensional unit ball B¥ in B".

Corollary

Let X be a k-dimensional complete proper minimal submanifold in the
Poincaré ball model B". If Volg(d.X) > Volr(SK1) = kwy, then

k*w i Volg ()51 < Volg(0,2)K,

where w; = Volg(B¥). Moreover, equality holds if and only if £ is a
k-dimensional unit ball B¥ in B".
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Proof of corollary
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Proof of corollary

From the linear isoperimetric inequality and the assumption that
Volr(0Z) > Volp(SK1) = kwy, it follows that

k—1
k*w Vol (2)k 1 < kkwy (%VOIR(OOOZ))

= kw, Volg (05Z) <1
< Volg (30Z)¥. QED

.Remark

The conclusion of Corollary is sharp in the following sense: Assume that
¥ is totally geodesic in the Poincaré ball model B". Since the Euclidean
projection of X onto the flat hypersurface containing 0L is
volume-decreasing, we have the reverse isoperimetric inequality

k*w Volg (Z)¥ 1 > Volg (02).

Moreover equality holds if and only if £ is a k-dimensional unit ball B¥ in
Euclidean space.
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Proof of Theorem

@ Stepl:
Let r(x) and p(x) be the Euclidean and hyperbolic distance from
the origin to x € B", respectively. Recall that the distance functions
r and p satisfy that

_ sinhp
~ 1+coshp’

7|n1+r
P=n7

P
=tanh =
and r=tan 5



Proof of Theorem

@ Stepl:
Let r(x) and p(x) be the Euclidean and hyperbolic distance from
the origin to x € B", respectively. Recall that the distance functions
r and p satisfy that

1+r p __ sinhp
= | = h —
p=In— and r=tan = T+ coshp’

Denote by Bgr the Euclidean ball of radius R centered at the origin
for 0 < R < 1. Note that the Euclidean ball Bg can be thought of

as the hyperbolic ball Bg- of radius R* in the Poincaré ball model

B", where R* = In K.



@ We now consider two kinds of the intersection of £ with the
Euclidean ball Bg and the hyperbolic ball Bg- as following.
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@ We now consider two kinds of the intersection of £ with the
Euclidean ball Bg and the hyperbolic ball Bg- as following.
Y g: the intersection £ N Bg (possibly empty) which has the volume
form dV& induced from the Euclidean metric
Tr-: the intersection £ N Bg- which has the volume form dVi
induced from the hyperbolic metric.

Since .
2
dVie = (1 ! ) dVig,

2
the Euclidean volume Volg(Zr) can be computed as

VOI]R(ZR) :J dVR

Ig

1-r2\*
= dV;
JZR( 2 ) 8

1
‘LR* [+ cosh p)F 2V
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the distance p satisfies that
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@ Step2: Analyze a very special function of distance

o Let X be a k-dimensional minimal submanifold in H". Then
the distance p satisfies that

Asp = cothp(k — |[Vspl?).

e Let f be a smooth function in p on X.

Azf = le(Vy_f)
= f"|Vgpl* + f'Axp
= f"|Vzpl* + f' coth p(k — |Vzpl*)
= kf'cothp — |Vzpl?(f' cothp — f").



Choose a nice function of distance f on Z C B" by

1 1
" k(k—1) (1+coshp)k—1"




Choose a nice function of distance f on Z C B" by

1 1
" k(k—1) (1+coshp)k—1"

Then
1

Asf> —F— .
* (1 + cosh p)k



Combining the above relations and using divergence theorem, we get

[ 1

g(fp) = | —
Volz (Zr) J5,.. (1+ cosh p)F

Vie

< ; kf' coth p — (' coth p — £")dVig

+ji (1—IVpP)(F' cothp — F")dVis
.

| ArfdVy

JE s

d
- £2P do,
JoZ g« ov

where doy denotes the volume form of the boundary 9% p- induced from
the volume form dV of L+ and v denotes the outward unit conormal
vector.



Use .
1 sinh p dp

:;(1+cosh p)k ' v

sinh p k=1
dO'H = ( P ) dG]Ry

where dog denotes the volume form of the boundary 0Xg in Euclidean
space.

f/

and




1 sinh p -
05 Kk (1+coshp)k
J‘ 1 sinh p dO'R
osg k \1+coshp/ rk-1
r
—do
LZR koo
R
?VOIR(E)ZR)



Volg(ZRr) <J ~ f/@dGH
9% g

1 sinh p
< *7d
LZR* k (1 cosh p)k 71

(
sinh p dO'R
1+coshp/ rk-1

Therefore, letting R tend to 1, we obtain

Volg (X) < —VOI]R(E) ).

=



@ Step3: Equality case
It follows from the above inequality that for 0 < R < 1

.h2
A Vola(0Zp) — Vola(Zg) > | (1= 1Vspf) o LoV

T e (1 4 cosh p)k+1



@ Step3: Equality case
It follows from the above inequality that for 0 < R < 1

-
A Vola(0Zp) — Vola(Zg) > | (1= 1Vspf) o LoV

T e (1 4 cosh p)k+1

Thus equality holds in the above inequality if and only if £ is a cone
in B", which is equivalent to that X is totally geodesic in B"” and
contains the origin. Therefore equality holds if and only if X is a
k-dimensional unit ball BX centered at the origin in B".
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@ (Fraser and Schoen, 2011)
If £ is a minimal surface in the unit ball B" C R" with (nonempty)
boundary 90X C 9B", and meeting 0B" orthogonally along 9Z, then

Area(X) > m.



A sharp lower bound for Volr(X)

@ (Fraser and Schoen, 2011)
If £ is a minimal surface in the unit ball B" C R" with (nonempty)
boundary 90X C 9B", and meeting 0B" orthogonally along 9Z, then

Area(X) > m.

@ (Brendle, 2012)
If £ is a k-dimensional minimal submanifold in the unit ball B" and
if  meets the boundary 0B" orthogonally, then

Vol(Z£) > Vol(B¥) = wy.



Question
Do we have an analogue of the above theorems for complete proper
minimal submanifolds in B"?



Question

Do we have an analogue of the above theorems for complete proper
minimal submanifolds in B"?

Theorem
Let X be a k-dimensional complete proper minimal submanifold in the
Poincaré ball model B". If ¥ contains the origin in B", then

Volg(£) > wy = Volg(B¥),

where equality holds if and only if £ is a k-dimensional unit ball B¥ in B".



Containing the origin implies the isoperimetric inequality



Containing the origin implies the isoperimetric inequality

Corollary

Let £ be a k-dimensional complete proper minimal submanifold
containing the origin in the Poincaré ball model B". Then

k*w i Volg ()51 < Volg(0,2)K,

where equality holds if and only if £ is a k-dimensional unit ball B in B".



Containing the origin implies the isoperimetric inequality

Corollary

Let £ be a k-dimensional complete proper minimal submanifold
containing the origin in the Poincaré ball model B". Then

k*w i Volg ()51 < Volg(0,2)K,

where equality holds if and only if £ is a k-dimensional unit ball B in B".
Proof:

Volg (30L) = kVolg(Z)
> kVolg(B¥)
Volg(Sk1)

Since Volg(05X) > Volg(SK1) = kwy, we get the conclusion. QED



Monotonicity implies the sharp lower bound for Volg(X)

Theorem
Let X be a k-dimensional complete minimal submanifold in B". Then the
function w is nondecreasing in r for 0 < r < 1. In other
words,
d (Volg(XNB,)
—_— | >
dr ( rk >0,
which is equivalent to
d (Volg(XNB,)
— | = 0.
dp ( rk >0



Recall that the density ©(Z, p) of a k-dimensional submanifold X in a
Riemannian manifold M at a point p € M is defined to be

. Vol(£N B.(p))
OF.p) = lim — %

where B (p) is the geodesic ball of M with radius ¢ and center p. As a
consequence of monotonicity theorem, we have
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Recall that the density ©(Z, p) of a k-dimensional submanifold X in a
Riemannian manifold M at a point p € M is defined to be

o(z, p) = lim YUENBe(pP)),
e—0 WgE

where B (p) is the geodesic ball of M with radius ¢ and center p. As a
consequence of monotonicity theorem, we have

Corollary

Let X be a k-dimensional complete proper minimal submanifold
containing the origin in the Poincaré ball model B". Then

Volg (Z) > wy = Volg(B¥).

Proof.
Since the function % is nondecreasing in r by monotonicity,
Volg(£) = lim YR Sy VIR _ ) 6ix 0) > w

r—1— rk r—0+ r
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Mobius volume

Definition
Let I be a compact submanifold of S"~1. Let Mob(S"~!) be the group of
all Mébius transformations of S"~1. The Mébius volume Voly(T') of T is

defined to be

VOIM(F) = SUP{VOIR(g(r)) ge Mob(Snfl)}

e (Min 2010)
Let T be a k-dimensional compact submanifold of S"~1. Then

Volp(T) = Volg(SH),

where equality holds if T is a k-dimensional unit sphere Sk.



Better lower bound for the Voly(04X)

Theorem
Let X be a k-dimensional complete proper minimal submanifold in B".
Then

Volp (05Z) = Volg(SF1) - meazxca(z, p).
p
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Since X is proper in B", mag@(z,p) is finite.
pe
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attained in X because the density ©(Z, p) is integer-valued there. Now we
may assume that ma)%(@():, p) is attained at g € L. Take an isometry ¢
pe

of hyperbolic space H" such that ¢(q) = O.
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Proof.

Since X is proper in B", mag@(z,p) is finite.Moreover the maximum is
pe

attained in X because the density ©(Z, p) is integer-valued there. Now we
may assume that ma)%(@():, p) is attained at g € L. Take an isometry ¢
pe

of hyperbolic space H" such that ¢(gq) = O. Since the group of all
isometries of H" is isomorphic to Mob(S"~1), we may consider ¢ as an

element of M&b(S"~1). Then

Volyi (3.0%)

2 Volg(0s (L))
> kVolg(¢(L))
> kwiO(e(1), 0)

= Vol (S*1)0(Z, q),

where we used the invariance of the density under an isometry of

hyperbolic space in the last equality. This completes the proof.



Proof.

Since X is proper in B", mag@(z,p) is finite.Moreover the maximum is
pe

attained in X because the density ©(Z, p) is integer-valued there. Now we
may assume that ma)%(@():, p) is attained at g € L. Take an isometry ¢
pe

of hyperbolic space H" such that ¢(gq) = O. Since the group of all
isometries of H" is isomorphic to Mob(S"~1), we may consider ¢ as an
element of M&b(S"~1). Then

Voly(05Z) = Volg (059 (X2))
Volg(@(Z))
wkB(e(Z), O)

= Volg(s* MO(Z, q),

AR\

k
k

where we used the invariance of the density under an isometry of
hyperbolic space in the last equality. This completes the proof. |

Remark
Since ma)%(@():, p) > 1, this theorem gives another proof of theorem by
pe

Min for T = 0, X.
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Using this concept, we obtain an isoperimetric inequality for any
complete proper minimal submanifold in hyperbolic space with no
assumption on L unlike the previous results.



Definition

Let £ be a submanifold in the Poincaré ball model B". Let M&b(B™) be
the group of all Mobius transformations of B". The Mobius volume
Voly(Z) of Z is defined to be

Voly(£) = sup{Vole(g(Z)) g € Mob(B")}.

Using this concept, we obtain an isoperimetric inequality for any
complete proper minimal submanifold in hyperbolic space with no
assumption on L unlike the previous results.

Theorem
Let ¥ be a k-dimensional complete proper minimal submanifold in B".
Then

k*w i Vol (Z)51 < Vol (9sZ).



Proof

From the linear isoperimetric inequality, it follows that for any isometry ¢
of H",

Voli(0(£)) < 7 Volz (0xp(Z).

Therefore by the definition of the Mobius volume
Volym(Z) < %VOIM(E)OOZ).

It follows from the previous theorem that

Volp (05Z) = Volg(SK1).



Proof

Therefore

k—1
k*w i Voly (2)K 1 < kkwy (%VOIM(&X,Z))

= kw, Vol (36 Z)<
= Volg (S* ) Vol (06, Z)<
< VOIM(aooZ)k.

which completes the proof.



Proof

Therefore

k—1
k*w i Voly (£)F 1 < kkwy (%VOIM(E)OOZ))

= kw, Vol (36 Z)<
= Volg (S* ) Vol (06, Z)<
< VOIM(aooZ)k.

which completes the proof.

Remark

We see that if L is a k-dimensional complete totally geodesic
submanifold in B”, then equality holds in the inequality. However we do
not know whether the converse is true.



Thank you.



