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Introduction

Theorem (Classical Isoperimetric Inequality)
Let C be a simple closed curve in the plane whose length is L and that
encloses an area A. Then

4πA 6 L2.

Equality holds if and only if C is a circle.



Two ways of a generalization

Ω2 ⊂ R2 → Ωn ⊂ Rn

nnωn |Ω|n−1 6 |∂Ω|n

and equality holds if and only if Ω is a ball. (ωn is the volume of
the unit ball in Rn)

For Mn ⊂ M̄n+m

Simplest case: M2 ⊂ R2 ⊂ R3. In this case we have 4πA 6 L2

with equality if and only if M is a disk.
A natural extension: a minimal surface M2 ⊂ R3
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Isoperimetric inequality for compact minimal surfaces

Question
For a minimal surface M2 ⊂ R3, does the isoperimetric inequality

4πA 6 L2.

hold? And does equality hold if and only if the minimal surface is a disk?

This problem has been partially proved but not completely.

Yes, for simply-connected case. (Carleman 1921)

Yes, for doubly-connected case. (Osserman-Schiffer 1975, Feinberg
1977)

Yes, for ](∂M) 6 2. (Li-Schoen-Yau 1984, Choe 1990)

Yes, for triply-connected case. (Choe-Schoen, recent)

This problem is still open.
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Higher-dimensional cases in Euclidean space

Question
For a compact minimal submanifold Σk ⊂ Rn, does the isoperimetric
inequality

kkωk |Σ|
k−1 6 |∂Σ|k

holds? And does equality hold if and only if Ω is a ball in Rk? (ωk is the
volume of the unit ball in Rk)

Two partial answers:

Yes, for Σ area-minimizing . (Almgren 1986)

Yes, for 0 ∈ Σ and ∂Σ ⊂ ∂B(r) (Simon 1980’)
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In hyperbolic space

Two important results about isoperimetric inequalities on minimal
submanifolds in hyperbolic space

2-dimensional case: (Choe-Gulliver 1992) For Σ with ](∂Σ) 6 2,

4πArea(Σ) 6 Length(∂Σ)2 −Area(Σ)2

with equality if and only if Σ is a geodesic ball in a totally geodesic
2-plane in Hn.

higher-dimensional case: (Yau 1975, Choe-Gulliver 1992)

(k − 1)Vol(Σ) 6 Vol(∂Σ).

This is called a linear isoperimetric inequality. However it is not
sharp.
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Setting and notations

Hn: the hyperbolic n-space of constant curvature −1

We choose the Poincaré ball model Bn among several models of Hn.

Then Bn can be regarded as both

the unit ball in Rn

and
the Poincaré ball model of Hn.

ds2H : the hyperbolic metric on Bn

ds2R: the Euclidean metric on Bn

r : the Euclidean distance from the origin
Then we have the following conformal equivalence of Hn with Rn:

ds2H =
4

(1 − r2)2
ds2R,
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Setting and notations

Σ: complete proper minimal submanifold in Hn

Note that Σ ⊂ Hn is called proper if, for any compact subset
C ⊂ Hn, the intersection C ∩ Σ is also compact in Hn.

The existence of complete minimal submanifolds in hyperbolic space
was proved by M. Anderson(1982, 1983) and F.H. Lin(1989). More
precisely, given γk−1 ⊂ ∂∞Hn, there exists a k-dimensional
area-minimizing Σ satisfying that ∂Σ.

VolR(Σ): the k-dimensional Euclidean volume of Σ
VolR(∂∞Σ): the (k − 1)-dimensional Euclidean volume of the ideal
boundary ∂∞Σ := Σ ∩ ∂∞Hn
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Linear isoperimetric inequality implies classical
isoperimetric inequality

Theorem
Let Σ be a k-dimensional complete proper minimal submanifold in the
Poincaré ball model Bn. Then

VolR(Σ) 6
1

k
VolR(∂∞Σ),

where equality holds if and only if Σ is a k-dimensional unit ball Bk in Bn.

Corollary
Let Σ be a k-dimensional complete proper minimal submanifold in the
Poincaré ball model Bn. If VolR(∂∞Σ) > VolR(Sk−1) = kωk , then

kkωkVolR(Σ)
k−1 6 VolR(∂∞Σ)k ,

where ωk = VolR(Bk). Moreover, equality holds if and only if Σ is a
k-dimensional unit ball Bk in Bn.
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Poincaré ball model Bn. Then

VolR(Σ) 6
1

k
VolR(∂∞Σ),

where equality holds if and only if Σ is a k-dimensional unit ball Bk in Bn.

Corollary
Let Σ be a k-dimensional complete proper minimal submanifold in the
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Proof of corollary

From the linear isoperimetric inequality and the assumption that
VolR(∂∞Σ) > VolR(Sk−1) = kωk , it follows that

kkωkVolR(Σ)
k−1 6 kkωk

(
1

k
VolR(∂∞Σ)

)k−1

= kωkVolR(∂∞Σ)k−1

6 VolR(∂∞Σ)k . QED

.Remark
The conclusion of Corollary is sharp in the following sense: Assume that
Σ is totally geodesic in the Poincaré ball model Bn. Since the Euclidean
projection of Σ onto the flat hypersurface containing ∂Σ is
volume-decreasing, we have the reverse isoperimetric inequality

kkωkVolR(Σ)
k−1 > VolR(∂∞Σ)k .

Moreover equality holds if and only if Σ is a k-dimensional unit ball Bk in
Euclidean space.
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Proof of Theorem

Step1:
Let r(x) and ρ(x) be the Euclidean and hyperbolic distance from
the origin to x ∈ Bn, respectively. Recall that the distance functions
r and ρ satisfy that

ρ = ln
1 + r

1 − r
and r = tanh

ρ

2
=

sinh ρ

1 + cosh ρ
.

Denote by BR the Euclidean ball of radius R centered at the origin
for 0 < R < 1. Note that the Euclidean ball BR can be thought of
as the hyperbolic ball BR∗ of radius R∗ in the Poincaré ball model
Bn, where R∗ = ln 1+R

1−R .
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Bn, where R∗ = ln 1+R

1−R .



Proof of Theorem

Step1:
Let r(x) and ρ(x) be the Euclidean and hyperbolic distance from
the origin to x ∈ Bn, respectively. Recall that the distance functions
r and ρ satisfy that

ρ = ln
1 + r

1 − r
and r = tanh

ρ

2
=

sinh ρ

1 + cosh ρ
.

Denote by BR the Euclidean ball of radius R centered at the origin
for 0 < R < 1. Note that the Euclidean ball BR can be thought of
as the hyperbolic ball BR∗ of radius R∗ in the Poincaré ball model
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We now consider two kinds of the intersection of Σ with the
Euclidean ball BR and the hyperbolic ball BR∗ as following.
ΣR : the intersection Σ ∩ BR (possibly empty) which has the volume
form dVR induced from the Euclidean metric
Σ̃R∗ : the intersection Σ ∩ BR∗ which has the volume form dVH
induced from the hyperbolic metric.
Since

dVR =

(
1 − r2

2

)k

dVH,

the Euclidean volume VolR(ΣR) can be computed as

VolR(ΣR) =

∫
ΣR

dVR

=

∫
ΣR

(
1 − r2

2

)k

dVH

=

∫
Σ̃R∗

1

(1 + cosh ρ)k
dVH,
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Step2: Analyze a very special function of distance

Let Σ be a k-dimensional minimal submanifold in Hn. Then
the distance ρ satisfies that

4Σρ = coth ρ(k − |∇Σρ|2).

Let f be a smooth function in ρ on Σ.

4Σf = div(∇Σf )
= f ′′|∇Σρ|2 + f ′4Σρ
= f ′′|∇Σρ|2 + f ′ coth ρ(k − |∇Σρ|2)
= kf ′ coth ρ− |∇Σρ|2(f ′ coth ρ− f ′′).
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Choose a nice function of distance f on Σ ⊂ Bn by

f = −
1

k(k − 1)
· 1

(1 + cosh ρ)k−1
.

Then

4Σf >
1

(1 + cosh ρ)k
.
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Combining the above relations and using divergence theorem, we get

VolR(ΣR) =

∫
Σ̃R∗

1

(1 + cosh ρ)k
dVH

6
∫
Σ̃R∗

kf ′ coth ρ− (f ′ coth ρ− f ′′)dVH

+

∫
Σ̃R∗

(1 − |∇Σρ|2)(f ′ coth ρ− f ′′)dVH

=

∫
Σ̃R∗

4ΣfdVH

=

∫
∂Σ̃R∗

f ′
∂ρ

∂ν
dσH,

where dσH denotes the volume form of the boundary ∂Σ̃R∗ induced from
the volume form dVH of Σ̃R∗ and ν denotes the outward unit conormal
vector.



Use

f ′ =
1

k

sinh ρ

(1 + cosh ρ)k
,

∂ρ

∂ν
6 1,

and

dσH =

(
sinh ρ

r

)k−1

dσR,

where dσR denotes the volume form of the boundary ∂ΣR in Euclidean
space.



VolR(ΣR) 6
∫
∂Σ̃R∗

f ′
∂ρ

∂ν
dσH

6
∫
∂Σ̃R∗

1

k

sinh ρ

(1 + cosh ρ)k
dσH

=

∫
∂ΣR

1

k

(
sinh ρ

1 + cosh ρ

)k dσR
rk−1

=

∫
∂ΣR

r

k
dσR

=
R

k
VolR(∂ΣR).

Therefore, letting R tend to 1, we obtain

VolR(Σ) 6
1

k
VolR(∂∞Σ).
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Step3: Equality case
It follows from the above inequality that for 0 < R < 1

R

k
VolR(∂ΣR) −VolR(ΣR) >

∫
Σ̃R∗

(1 − |∇Σρ|2)
sinh2 ρ

(1 + cosh ρ)k+1
dVH.

Thus equality holds in the above inequality if and only if Σ is a cone
in Bn, which is equivalent to that Σ is totally geodesic in Bn and
contains the origin. Therefore equality holds if and only if Σ is a
k-dimensional unit ball Bk centered at the origin in Bn.
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A sharp lower bound for VolR(Σ)

(Fraser and Schoen, 2011)
If Σ is a minimal surface in the unit ball Bn ⊂ Rn with (nonempty)
boundary ∂Σ ⊂ ∂Bn, and meeting ∂Bn orthogonally along ∂Σ, then

Area(Σ) > π.

(Brendle, 2012)
If Σ is a k-dimensional minimal submanifold in the unit ball Bn and
if Σ meets the boundary ∂Bn orthogonally, then

Vol(Σ) > Vol(Bk) = ωk .
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Question
Do we have an analogue of the above theorems for complete proper
minimal submanifolds in Bn?

Theorem
Let Σ be a k-dimensional complete proper minimal submanifold in the
Poincaré ball model Bn. If Σ contains the origin in Bn, then

VolR(Σ) > ωk = VolR(B
k),

where equality holds if and only if Σ is a k-dimensional unit ball Bk in Bn.
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Containing the origin implies the isoperimetric inequality

Corollary
Let Σ be a k-dimensional complete proper minimal submanifold
containing the origin in the Poincaré ball model Bn. Then

kkωkVolR(Σ)
k−1 6 VolR(∂∞Σ)k ,

where equality holds if and only if Σ is a k-dimensional unit ball Bk in Bn.

Proof:

VolR(∂∞Σ) > kVolR(Σ)

> kVolR(B
k)

= VolR(Sk−1)

Since VolR(∂∞Σ) > VolR(Sk−1) = kωk , we get the conclusion. QED
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Monotonicity implies the sharp lower bound for VolR(Σ)

Theorem
Let Σ be a k-dimensional complete minimal submanifold in Bn. Then the

function
VolR(Σ ∩ Br )

rk
is nondecreasing in r for 0 < r < 1. In other

words,
d

dr

(
VolR(Σ ∩ Br )

rk

)
> 0,

which is equivalent to

d

dρ

(
VolR(Σ ∩ Br )

rk

)
> 0.



Recall that the density Θ(Σ, p) of a k-dimensional submanifold Σ in a
Riemannian manifold M at a point p ∈ M is defined to be

Θ(Σ, p) = lim
ε→0

Vol(Σ ∩ Bε(p))
ωkεk

,

where Bε(p) is the geodesic ball of M with radius ε and center p. As a
consequence of monotonicity theorem, we have

Corollary
Let Σ be a k-dimensional complete proper minimal submanifold
containing the origin in the Poincaré ball model Bn. Then

VolR(Σ) > ωk = VolR(B
k).

Proof.
Since the function VolR(Σr )

rk is nondecreasing in r by monotonicity,

VolR(Σ) = lim
r→1−

VolR(Σr )

rk
> lim

r→0+

VolR(Σr )

rk
= ωkΘ(Σ,O) > ωk .
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Möbius volume

Definition
Let Γ be a compact submanifold of Sn−1. Let Möb(Sn−1) be the group of
all Möbius transformations of Sn−1. The Möbius volume VolM(Γ) of Γ is
defined to be

VolM(Γ) = sup{VolR(g(Γ)) g ∈Möb(Sn−1)}.

(Min 2010)
Let Γ be a k-dimensional compact submanifold of Sn−1. Then

VolM(Γ) > VolR(Sk),

where equality holds if Γ is a k-dimensional unit sphere Sk .
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(Min 2010)
Let Γ be a k-dimensional compact submanifold of Sn−1. Then

VolM(Γ) > VolR(Sk),

where equality holds if Γ is a k-dimensional unit sphere Sk .



Better lower bound for the VolM(∂∞Σ)

Theorem
Let Σ be a k-dimensional complete proper minimal submanifold in Bn.
Then

VolM(∂∞Σ) > VolR(Sk−1) ·max
p∈Σ

Θ(Σ, p).



Proof.
Since Σ is proper in Bn, max

p∈Σ
Θ(Σ, p) is finite.Moreover the maximum is

attained in Σ because the density Θ(Σ, p) is integer-valued there. Now we
may assume that max

p∈Σ
Θ(Σ, p) is attained at q ∈ Σ. Take an isometry ϕ

of hyperbolic space Hn such that ϕ(q) = O. Since the group of all
isometries of Hn is isomorphic to Möb(Sn−1), we may consider ϕ as an
element of Möb(Sn−1). Then

VolM(∂∞Σ) > VolR(∂∞ϕ(Σ))
> kVolR(ϕ(Σ))

> kωkΘ(ϕ(Σ),O)

= VolR(Sk−1)Θ(Σ, q),

where we used the invariance of the density under an isometry of
hyperbolic space in the last equality. This completes the proof.

Remark
Since max

p∈Σ
Θ(Σ, p) > 1, this theorem gives another proof of theorem by

Min for Γ = ∂∞Σ.
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Definition
Let Σ be a submanifold in the Poincaré ball model Bn. Let Möb(Bn) be
the group of all Möbius transformations of Bn. The Möbius volume
VolM(Σ) of Σ is defined to be

VolM(Σ) = sup{VolR(g(Σ)) g ∈Möb(Bn)}.

Using this concept, we obtain an isoperimetric inequality for any
complete proper minimal submanifold in hyperbolic space with no
assumption on Σ unlike the previous results.

Theorem
Let Σ be a k-dimensional complete proper minimal submanifold in Bn.
Then

kkωkVolM(Σ)k−1 6 VolM(∂∞Σ)k .
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the group of all Möbius transformations of Bn. The Möbius volume
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Proof

From the linear isoperimetric inequality, it follows that for any isometry ϕ
of Hn,

VolR(ϕ(Σ)) 6
1

k
VolR(∂∞ϕ(Σ)).

Therefore by the definition of the Möbius volume

VolM(Σ) 6
1

k
VolM(∂∞Σ).

It follows from the previous theorem that

VolM(∂∞Σ) > VolR(Sk−1).



Proof

Therefore

kkωkVolM(Σ)k−1 6 kkωk

(
1

k
VolM(∂∞Σ)

)k−1

= kωkVolM(∂∞Σ)k−1

= VolR(Sk−1)VolM(∂∞Σ)k−1

6 VolM(∂∞Σ)k ,

which completes the proof.

Remark
We see that if Σ is a k-dimensional complete totally geodesic
submanifold in Bn, then equality holds in the inequality. However we do
not know whether the converse is true.
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Thank you.


