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Let:
[

) be an open set in R", n > 2
u: Q- R"

Vu: Q — R™" its distributional gradient.
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Let:
e O beanopensetinR" n>2

e u:Q—>R"
e Vu:Q — R™" its distributional gradient.

The symmetric gradient Eu : Q — R™ ™ of u is defined as the symmetric
part of Vu.
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Let:
e O beanopensetinR" n>2

e u:Q—>R"
e Vu:Q — R™" its distributional gradient.

The symmetric gradient Eu : Q — R™ ™ of u is defined as the symmetric
part of Vu.
Namely,

Eu= %(Vu + (Vu)h),

where (Vu)7 is the transpose of Vu.

A. CiancHI (UN1v. FIRENZE) KORN INEQUALITIES IN ORLICZ SPACES BANFF, JuLy 2016



2

The mathematical models governing certain physical phenomena require
the use of Sobolev type spaces EP(Q2,R") built upon &, instead of Vu.
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The mathematical models governing certain physical phenomena require

the use of Sobolev type spaces EP(Q2,R") built upon &, instead of Vu.
Given p € [1, 0],

EP(Q,R") = {u € LP(Q,R™) : Eu € LP(Q,R™™)}.
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The mathematical models governing certain physical phenomena require

the use of Sobolev type spaces EP(Q2,R") built upon &, instead of Vu.
Given p € [1, 0],

EP(Q,R") = {u e LP(Q,R"): Eu e LP(Q,R™™)}.
Also,

EF(Q,R") ={ue EP(Q,R") : “u=0"0n 9Q}.
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The mathematical models governing certain physical phenomena require
the use of Sobolev type spaces EP(Q2,R") built upon &, instead of Vu.
Given p € [1, 0],

EP(Q,R") ={ue LP(Q,R"): Eue LP(Q,R"™")}.
Also,
EF(Q,R") ={ue EP(Q,R") : “u=0"0n 9Q}.
When p = 1, instead of E(Q, R"), the space
BD(,R") = {u: Eu is a Radon measure with finite total variation in{}

is also of use in applications.
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Trivially,
W, P(Q,R") — EP(Q,R")

for p € [1, o0].
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Trivially,
W, P(Q,R") — EP(Q,R")
for p € [1, o0].

If p € (1,00), the reverse embedding also holds, owing to the Korn
inequality
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Trivially,
W, P(Q,R") — EP(Q,R")

for p € [1, o0].

If p € (1,00), the reverse embedding also holds, owing to the Korn
inequality :

/ |VulP dx < C’/ |EulP dz Vu e Ef(Q,R").
Q Q
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Trivially,
W, P(Q,R") — EP(Q,R")
for p € [1, o0].
If p € (1,00), the reverse embedding also holds, owing to the Korn
inequality :

/ |VulP dx < C’/ |EulP dz Vu e Ef(Q,R").
Q Q

This inequality goes back to [Korn, 1909 for p = 2.
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Trivially,

W, P(Q,R") — EP(Q,R")
for p € [1, o0].

If p € (1,00), the reverse embedding also holds, owing to the Korn
inequality :

/ |VulP dx < C’/ |EulP dz Vu e Ef(Q,R").
Q Q

This inequality goes back to [Korn, 1909 for p = 2.

Modern proofs, for general p, are due to Gobert, Necas, Reshetnyak,
Mosolov-Mjasnikov, Temam, Fuchs.
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A version of the Korn inequality also holds in EY7(Q, R™), namely without

zero boundary conditions, if 2 is bounded, connected and regular enough
(e.g. with the cone property).

A. CiancHI (UN1v. FIRENZE)

KORN INEQUALITIES IN ORLICZ

BANFF, JuLy 2016



A version of the Korn inequality also holds in EY7(Q, R™), namely without
zero boundary conditions, if 2 is bounded, connected and regular enough
(e.g. with the cone property).

One has

inf /\Vu—Q]pd:CSC/]Eu\pdx Yu e EP(Q,R").
Q=-Q" Jao Q
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A version of the Korn inequality also holds in EY7(Q, R™), namely without
zero boundary conditions, if 2 is bounded, connected and regular enough
(e.g. with the cone property).

One has

inf /\Vu—Q]pd:CSC/]Eu\pdx Yu e EP(Q,R").
Q=-Q" Jao Q

This inequality roughly amounts to asserting that gradients whose
symmetric part is small are close to a constant skew-symmetric matrix.
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A version of the Korn inequality also holds in EY7(Q, R™), namely without
zero boundary conditions, if 2 is bounded, connected and regular enough
(e.g. with the cone property).

One has

inf /\Vu—Q]pd:CSC/]Eu\pdx Yu e EP(Q,R").
Q=-Q" Jao Q

This inequality roughly amounts to asserting that gradients whose
symmetric part is small are close to a constant skew-symmetric matrix.

The Korn inequality in E[(2,R") ensures that, in the case of functions
vanishing on the boundary, such a matrix vanishes.
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If Q is connected, the kernel of the operator £ is

R={v:R" 5 R":v(z) =b+Qu
for some b € R” and Q € R"™*" s.t. Q = —Q”}.
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If Q is connected, the kernel of the operator £ is

R={v:R" 5 R":v(z) =b+Qu
for some b € R” and Q € R"™*" s.t. Q = —Q”}.

Thus, the left-hand side of the Korn inequality is the (p-th power) of the
distance in LP of Vu from the space of gradients of functions in R.
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If Q is connected, the kernel of the operator £ is

R={v:R" 5 R":v(z) =b+Qu
for some b € R” and Q € R"™*" s.t. Q = —Q”}.

Thus, the left-hand side of the Korn inequality is the (p-th power) of the
distance in LP of Vu from the space of gradients of functions in R.

Namely, it can be rewritten as

inf / |IVu — Vv|Pdx < C/ |EulPdx Yue EP(Q,R").
vER J Q
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The Korn inequalities fail in the borderline case when p = 1 [Ornstein,
1964] (alternative proof via “laminates” in [Conti, Faraco & Maggi, 2005]).
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The Korn inequalities fail in the borderline case when p = 1 [Ornstein,
1964] (alternative proof via “laminates” in [Conti, Faraco & Maggi, 2005]).

They also fail at the opposite endpoint when p = co (with integrals
replaced with norms in L°°(€2)) [de Leeuw & Mirkil, 1964].
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The Korn inequalities fail in the borderline case when p = 1 [Ornstein,
1964] (alternative proof via “laminates” in [Conti, Faraco & Maggi, 2005]).

They also fail at the opposite endpoint when p = co (with integrals
replaced with norms in L°°(€2)) [de Leeuw & Mirkil, 1964].

A Korn type inequality cannot hold with ¥ replaced by an arbitrary convex
function

A :[0,00) = [0, 0]
such that A(0) = 0.
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The Korn inequalities fail in the borderline case when p = 1 [Ornstein,
1964] (alternative proof via “laminates” in [Conti, Faraco & Maggi, 2005]).

They also fail at the opposite endpoint when p = co (with integrals
replaced with norms in L°°(€2)) [de Leeuw & Mirkil, 1964].

A Korn type inequality cannot hold with ¥ replaced by an arbitrary convex
function
A :[0,00) = [0, 0]

such that A(0) = 0.
A function A enjoying these properties is called a Young function in the
literature.
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The Korn inequalities fail in the borderline case when p = 1 [Ornstein,
1964] (alternative proof via “laminates” in [Conti, Faraco & Maggi, 2005]).

They also fail at the opposite endpoint when p = co (with integrals
replaced with norms in L°°(€2)) [de Leeuw & Mirkil, 1964].

A Korn type inequality cannot hold with ¥ replaced by an arbitrary convex
function
A :[0,00) = [0, 0]

such that A(0) = 0.

A function A enjoying these properties is called a Young function in the
literature.

The spaces obtained by replacing the power ¥ in the definition of LP with
a Young function A(t) are called Orlicz spaces.
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In fact, the inequality

/QA(|Vu|)d:c§/QA(C|6u|)d:U

holds for every function u vanishing on 92
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In fact, the inequality

/A(|Vu|) dx < / A(C|Eul) dx

Q Q

holds for every function u vanishing on 99 if and only if
A e AyNVy

[Diening, M.Ruzicka & Schumacher, 2009] (if), [Breit & Diening, 2012]
(only if).
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In fact, the inequality

/A(|Vu|) dx < / A(C|Eul) dx

Q Q

holds for every function u vanishing on 99 if and only if
A e AyNVy

[Diening, M.Ruzicka & Schumacher, 2009] (if), [Breit & Diening, 2012]
(only if).

Special cases are considered in [E.Acerbi & G.Mingione, 2002], and
[M.Bulicek, M.Majdoub & J.Malek, 2010].
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In fact, the inequality

/A(|Vu|) dx < / A(C|Eul) dx

Q Q

holds for every function u vanishing on 99 if and only if
A e AyNVy

[Diening, M.Ruzicka & Schumacher, 2009] (if), [Breit & Diening, 2012]
(only if).

Special cases are considered in [E.Acerbi & G.Mingione, 2002], and
[M.Bulicek, M.Majdoub & J.Malek, 2010].

A parallel result holds for functions with arbitrary boundary values.
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Recall that:
e AcAyifdC >0, tyg > 0 such that

A2t) < CA(t)  fort > to.
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Recall that:
e AcAyifdC >0, tyg > 0 such that

A(2t) < CA(t) for t > 1.
o AecVyifdC > 2, tyg > 0 such that

A(2t) > CA(t)  fort>0.
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Recall that:
e AcAyifdC >0, tyg > 0 such that

A(2t) < CA(t) for t > 1.
o AecVyifdC > 2, tyg > 0 such that

A(2t) > CA(t)  fort>0.

A € Ay —> Agrows more slowly than some power.
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Recall that:
e AcAyifdC >0, tyg > 0 such that

A(2t) < CA(t) for t > 1.
o AecVyifdC > 2, tyg > 0 such that

A(2t) > CA(t)  fort>0.

A € Ay —> Agrows more slowly than some power.

Ex: At)=¢" —1¢ A, VB>0.
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Recall that:
e AcAyifdC >0, tyg > 0 such that

A(2t) < CA(t) for t > 1.
o AecVyifdC > 2, tyg > 0 such that

A(2t) > CA(t)  fort>0.

A € Ay —> Agrows more slowly than some power.
Ex: At)=¢" —1¢ A, VB>0.

A € Vo = Agrows faster than some power > 1.
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Recall that:
e AcAyifdC >0, tyg > 0 such that

A(2t) < CA(t) for t > 1.
o AecVyifdC > 2, tyg > 0 such that

A(2t) > CA(t)  fort>0.

A € Ay —> Agrows more slowly than some power.
Ex: At)=¢" —1¢ A, VB>0.
A € Vo = Agrows faster than some power > 1.

Ex. A(t) =tlog*(1+t)¢Vy Va>0.
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These assumptions rule out some mathematical models for physical
phenomena.
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These assumptions rule out some mathematical models for physical
phenomena.

For instance, the Prandt-Eyring fluids, and plastic materials with
logarithmic hardening.
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These assumptions rule out some mathematical models for physical
phenomena.

For instance, the Prandt-Eyring fluids, and plastic materials with
logarithmic hardening.

The nonlinearities in these models are governed by a Young function A(?)
that grows like ¢ log(1 + t) near infinity, and hence violates the
Vs-condition.
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These assumptions rule out some mathematical models for physical
phenomena.

For instance, the Prandt-Eyring fluids, and plastic materials with
logarithmic hardening.

The nonlinearities in these models are governed by a Young function A(?)
that grows like ¢ log(1 + t) near infinity, and hence violates the
Vs-condition.

Pb.: Orlicz version of the Korn inequality, without Ay and V9 conditions,
but possibly slightly different Young functions on the two sides.
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Namely, inequalities of the form:

AB(|Vu|)dw§/gA(C|5u|)d:z:

for u = 0 on 052, where A and B are Young functions satisfying suitable
“balance” conditions.
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Namely, inequalities of the form:

AB(|Vu|)dw§/gA(C|5u|)d:z:

for u = 0 on 052, where A and B are Young functions satisfying suitable
“balance” conditions.

Similarly,
inf/B(]Vu—Vv\)dxg/A(C’\Eu|)daz,
Q Q

vER

for arbitrary u, where R is the kernel of the operator &.
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A variant.

Trace-free Korn type inequalities.
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A variant.

Trace-free Korn type inequalities.

Given u: Q — R", set

5 — fu— tr(Su) I,

the trace-free, also called deviatoric, part of the symmetric gradient of u.
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A variant.

Trace-free Korn type inequalities.
Given u: Q — R", set
EPu=gu— TEU
the trace-free, also called deviatoric, part of the symmetric gradient of u.

This operator arises, for instance, in general relativity, and Cosserat
elasticity.
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A variant.

Trace-free Korn type inequalities.

Given u: Q — R", set
5 — fu— tr(Su)I
)
the trace-free, also called deviatoric, part of the symmetric gradient of u.

This operator arises, for instance, in general relativity, and Cosserat
elasticity.

LP inequalities between £”u and Vu are known for p € (1,00).
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If Q0 is bounded in R", and 1 < p < oo, then

/|Vupda;§0/ |EPulP dx
Q Q

Vu:Q—=R"st. u=0on 0.
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If Q0 is bounded in R", and 1 < p < oo, then

/|Vupda;§C/ |EPuP da
Q Q

Vu:Q—=R"st. u=0on 0.

The corresponding trace-free inequality for u with arbitrary values on 02
takes a different form depending on whether n =2 or n > 3.
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If Q0 is bounded in R", and 1 < p < oo, then

/|Vupda;§C/ |EPuP da
Q Q

Vu:Q—=R"st. u=0on 0.

The corresponding trace-free inequality for u with arbitrary values on 02
takes a different form depending on whether n =2 or n > 3.

The normalization condition on the left-hand side involves the distance
from the space of gradients of functions in the kernel of £7.
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If Q0 is bounded in R", and 1 < p < oo, then

/|Vupda;§C/ |EPuP da
Q Q

Vu:Q—=R"st. u=0on 0.

The corresponding trace-free inequality for u with arbitrary values on 02
takes a different form depending on whether n =2 or n > 3.

The normalization condition on the left-hand side involves the distance
from the space of gradients of functions in the kernel of £7.

This kernel differs substantially in the cases n = 2 and n > 3.
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If Q0 is bounded in R", and 1 < p < oo, then

/|Vupda;§C/ |EPuP da
Q Q

Vu:Q—=R"st. u=0on 0.

The corresponding trace-free inequality for u with arbitrary values on 02
takes a different form depending on whether n =2 or n > 3.

The normalization condition on the left-hand side involves the distance
from the space of gradients of functions in the kernel of £7.

This kernel differs substantially in the cases n = 2 and n > 3.
In particular, it agrees with the whole space of holomorphic functions when

n = 2. The inequalities in question require a distinct approach for n = 2
and for n > 3.
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We focus on the case n > 3.
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We focus on the case n > 3.

If Q is connected, the kernel of £ is
YX=D®R®S,

where

D={v:R" - R": v(x) = px for some p € R},

R={v:R"5R": v(z) =b+Qz, QR Q=-QT, bcR"},
S={v:R" = R": v(r) =2(a-z)z — |r|*a with a € R"}.
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We focus on the case n > 3.

If Q is connected, the kernel of £ is
YX=D®R®S,

where

D={v:R" - R": v(x) = px for some p € R},

R={v:R"5R": v(z) =b+Qz, QR Q=-QT, bcR"},
S={v:R" = R": v(r) =2(a-z)z — |r|*a with a € R"}.

If 2 has the cone property , then

inf/|Vu—Vw\pd$<C/\€Du|pdac.
weX Jo QO
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Similarly to the Korn inequalities, trace-free Korn inequalities in Orlicz
spaces, with ¥ replaced with a Young function A(%), hold if and only if
A e AyNVy [Bildhauer & Fuchs, 2011], [Breit & Schirra, 2012] (if),
[Breit & Diening, 2012] (only if).

A. CiancHI (UN1v. FIRENZE) KORN INEQUALITIES IN ORLICZ SPACES BANFF, JuLy 2016



Similarly to the Korn inequalities, trace-free Korn inequalities in Orlicz
spaces, with ¥ replaced with a Young function A(%), hold if and only if
A e AyNVy [Bildhauer & Fuchs, 2011], [Breit & Schirra, 2012] (if),
[Breit & Diening, 2012] (only if).

Pb.: condition on A and B for

/QB(|Vu])dx§/QA(C|5Du|)d:c

with v = 0 on 99,
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Similarly to the Korn inequalities, trace-free Korn inequalities in Orlicz
spaces, with ¥ replaced with a Young function A(%), hold if and only if

A e AyNVy [Bildhauer & Fuchs, 2011], [Breit & Schirra, 2012] (if),
[Breit & Diening, 2012] (only if).

Pb.: condition on A and B for

/QB(|Vu])d:c§/QA(C|SDu|)dx

with © = 0 on 012, or for

inf/B(\Vu—vvvndxg/A(0|5Duy)da:,
wey Q QO

for arbitrary w.
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Recall that the Orlicz space L (€, R") built on the Young function A is
endowed with the Luxemburg norm given by

- lu(z)|
ull Laorny = inf {)\ >0: /QA<)\) de <1y.
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Recall that the Orlicz space L (€, R") built on the Young function A is
endowed with the Luxemburg norm given by

- lu(z)|
ull Laorny = inf {)\ >0: /QA<)\) de <1y.

The Orlicz-Sobolev space W5 (Q, R") is defined in terms of the norm

[ullwra@rny = lallLa@rny + VUl pagrexn)-
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Recall that the Orlicz space L (€, R") built on the Young function A is
endowed with the Luxemburg norm given by

- lu(z)|
lull La@rn) = lnf{)\ >0: /QA< 3 )dm <153.

The Orlicz-Sobolev space W5 (Q, R") is defined in terms of the norm

[ullwra@rny = lallLa@rny + VUl pagrexn)-

Similarly, we define £*(Q,R") via the norm

[ullgarny = lullpa@rn) + 1€U] L4 rnxny,
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Recall that the Orlicz space L (€, R") built on the Young function A is
endowed with the Luxemburg norm given by

- lu(z)|
ull Laorny = inf {)\ >0: /QA<)\) de <1y.

The Orlicz-Sobolev space W5 (Q, R") is defined in terms of the norm

[ullwra@rny = lallLa@rny + VUl pagrexn)-

Similarly, we define £*(Q,R") via the norm

[ullgarny = lullpa@rn) + 1€U] L4 rnxny,

and EP4(Q,R™) by the norm

D
[ull gp.arny = lallLa@rny + IE7 U] La@rrxny.-
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The subspaces W&’A(Q,R"), ESN(Q,R"™) and E(?’A(Q,R”) are defined by
requiring that extending a function u by 0 outside ) yields a function in
WhHAR", R"), EAR",R") and EP4(R", R"), respectively.
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The subspaces W&’A(Q,R"), ESN(Q,R"™) and E(?’A(Q,R”) are defined by
requiring that extending a function u by 0 outside ) yields a function in
WhHAR", R"), EAR",R") and EP4(R", R"), respectively.

The following results provide sufficient [C., 2014] and necessary [Breit, C.
& Diening, preprint] conditions for Korn type inequalities in E{;‘(SZ,R"),
for a bounded open set Q C R", n > 2,
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The subspaces W&’A(Q,R"), ESN(Q,R"™) and E(?’A(Q,R”) are defined by
requiring that extending a function u by 0 outside ) yields a function in
WhHAR", R"), EAR",R") and EP4(R", R"), respectively.

The following results provide sufficient [C., 2014] and necessary [Breit, C.
& Diening, preprint] conditions for Korn type inequalities in E{;‘(SZ,R"),
for a bounded open set @ C R"”, n > 2, and in EA(Q,]R”) if, in addition,
Q) is regular, i.e. connected and with the cone property.
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The subspaces W&’A(Q,R"), ESN(Q,R"™) and E(?’A(Q,R”) are defined by
requiring that extending a function u by 0 outside ) yields a function in
WhHAR", R"), EAR",R") and EP4(R", R"), respectively.

The following results provide sufficient [C., 2014] and necessary [Breit, C.
& Diening, preprint] conditions for Korn type inequalities in E{;‘(SZ,R"),
for a bounded open set @ C R"”, n > 2, and in EA(Q,]R”) if, in addition,
Q) is regular, i.e. connected and with the cone property.

In statements, A denotes the Young conjugate of A, defined as

A(t) = sup{rt — A(r) : r >0} for t>0.
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Theorem 1: Korn inequality in (Q,R")

Let A and B be Young functions. The following conditions are equivalent:
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Theorem 1: Korn inequality in Fj'(Q,R")

Let A and B be Young functions. The following conditions are equivalent:
(i) 3C >0andty>0s.t.

t t 7 B
t/ B(j) ds < A(ct), and t/ A(QS) ds < Blet) Yt > to.
to S to S
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Theorem 1: Korn inequality in Fj'(Q,R")

Let A and B be Young functions. The following conditions are equivalent:
(i) 3C >0andty>0s.t.

t t 7 B
t/ B(j) ds < A(ct), and t/ A(QS) ds < Blet) Yt > to.
t

0 S to S

(i) 3C >0st.
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Theorem 1: Korn inequality in Fj'(Q,R")

Let A and B be Young functions. The following conditions are equivalent:
(i) 3C >0andty>0s.t.

t t 7 B
t/ B(j) ds < A(ct), and t/ A(QS) ds < Blet) Yt > to.
to S to S

()3 C>0st.
(i) 3 C,Cy > 0 sit.

/B(|Vu|)d:n <o +/ AC|Eul) dz Wu € BAQ,RM).
Q Q
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Theorem 2: Korn inequality in E“(Q,R")

Assume that Q is “regular”. The following conditions are equivalent:
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Theorem 2: Korn inequality in E“(Q,R")

Assume that Q is “regular”. The following conditions are equivalent:
(i)3C >0andty > 0s.t.

t t 7 _
t/ B(j) ds < A(ct), and t/ A(QS) ds < Blcet) Yt > to.
to S to S
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Theorem 2: Korn inequality in E“(Q,R")

Assume that Q is “regular”. The following conditions are equivalent:
(i)3C >0andty > 0s.t.

t t 7 B
t/ B(j) ds < A(ct), and t/ A(QS) ds < Blcet) Yt > to.
t

0 S to S

(i) 3C >0st.

QleiféT Hvu - QHLB(QJRRXTL) S CngHLA(QJRan) Vu E EA(Q7RTL)
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Theorem 2: Korn inequality in E“(Q,R")

Assume that Q is “regular”. The following conditions are equivalent:
(i)3C >0andty > 0s.t.

52 o 82

t t 7 B
t/ BS) s < A(ct),  and t/ A®) g < Blet) Vit
to

()3 C>0st.
QleiféT Hvu - QHLB(QJRRXTL) S CngHLA(QJRan) Vu E EA(Q7RTL)
(i) 3 C,CL > 0 sit.

in /B(|Vu—Q|)dx§ 01+/A(0|5u|)dx Yu € BAQ,RM).
Q=-QT Jo Q
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The balance conditions on A and B appearing in Theorems 1 and 2 ensure
that 3 C > 0 and tg > 0 s.t.

B(t) < A(Ct) for t > t,
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The balance conditions on A and B appearing in Theorems 1 and 2 ensure
that 3 C > 0 and tg > 0 s.t.

B(t) < A(Ct) for t > t,

and hence
|- lls <C - [lpa

for some C > 0.

A. CiancHI (UN1v. FIRENZE) KORN INEQUALITIES IN ORLICZ SPACES BANFF, JuLy 2016



The balance conditions on A and B appearing in Theorems 1 and 2 ensure
that 3 C > 0 and tg > 0 s.t.

B(t) < A(Ct) for t > t,
and hence

|- lls <C - [lpa
for some C > 0.

The condition

t/tt B(s) ds < A(ct) (1)

2
o S

holds with B = A if and only if A € V5.
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The balance conditions on A and B appearing in Theorems 1 and 2 ensure
that 3 C > 0 and tg > 0 s.t.

B(t) < A(Ct) for t > t,

and hence
|- lls <C - [lpa

for some C > 0.

The condition

t/t: BS(;) ds < A(ct) (1)

holds with B = A if and only if A € V5. Thus, (1) yields sharp
replacements for A on the left-hand side of the Korn inequalities when
A ¢ Vs.
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The balance conditions on A and B appearing in Theorems 1 and 2 ensure
that 3 C > 0 and tg > 0 s.t.

B(t) < A(Ct) for t > t,

and hence
|- lls <C - [lpa

for some C > 0.

The condition

t
t/ B(;) ds < A(ct) (1)
to S

holds with B = A if and only if A € V5. Thus, (1) yields sharp
replacements for A on the left-hand side of the Korn inequalities when

A ¢ Vs.

In a sense, this is the case when A grows slowly, and hence the norm in
L% is “close” to that of L.
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The condition

t/tt ;1:9(28) ds < B(ct) (2)

0

holds with B = A if and only if A € As.
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The condition

t/t;5 A:s(;) ds < B(ct) (2)

holds with B = A if and only if A € Ay. Thus, (2) yields sharp

replacements for A on the left-hand side of the Korn inequalities when
A ¢ As.
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The condition

t/tt A:s(;) ds < B(ct) (2)

0

holds with B = A if and only if A € Ay. Thus, (2) yields sharp
replacements for A on the left-hand side of the Korn inequalities when
A ¢ As.

In a sense, this is the case when A grows rapidly, and hence the norm in
L% is “close” to that of L.
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The condition

t/tt A:s(;) ds < B(ct) (2)

0

holds with B = A if and only if A € Ay. Thus, (2) yields sharp
replacements for A on the left-hand side of the Korn inequalities when
A ¢ As.

In a sense, this is the case when A grows rapidly, and hence the norm in
L% is “close” to that of L.

In particular, we recover that the Korn inequalities hold with the same
Young function A on both sides if and only if A € Ay N V.
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The case when 2 = R", and trial functions u have compact support, can
also be considered.
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The case when 2 = R", and trial functions u have compact support, can
also be considered.

The decay of A(t) and B(t) as t — 0 is also relevant in this case , since
R"™ has infinite measure.
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The case when 2 = R", and trial functions u have compact support, can
also be considered.

The decay of A(t) and B(t) as t — 0 is also relevant in this case , since
R"™ has infinite measure.
The inequality

HVu||LB(Rn7Ran) S CngHLA(R”,R”X”)

V compactly supported function u € EA(R”,R”), and its integral version,
are equivalent to the same conditions on A and B with ¢y = 0,
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The case when 2 = R", and trial functions u have compact support, can
also be considered.

The decay of A(t) and B(t) as t — 0 is also relevant in this case , since
R"™ has infinite measure.
The inequality

HVu||LB(Rn7Ran) S CngHLA(R”,R”X”)

V compactly supported function u € EA(R”,R”), and its integral version,
are equivalent to the same conditions on A and B with ¢ty = 0, namely

t t A N
t/ B(;) ds < A(et), and t/ Als) ds < B(ct) Vit > 0.
0 0

S 52
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Examples.

Consider F;'(Q,R"™), the case of E4(Q,R") is analogous.
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Examples.
Consider F;'(Q,R"™), the case of E4(Q,R") is analogous.
1. Set LP(log L)*(Q)) = LA(Q) with A(t) ~ t? log®(1 + t) near infinity.
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Examples.
Consider F;'(Q,R"™), the case of E4(Q,R") is analogous.
1. Set LP(log L)*(Q)) = LA(Q) with A(t) ~ t? log®(1 + t) near infinity.

If p>1and a € R, then

VUl 2o (10g 1) (@, Rrxny < CllEU]| Lo (10g 1)e (2 R7*7)-
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Examples.

Consider F;'(Q,R"™), the case of E4(Q,R") is analogous.

1. Set LP(log L)*(Q) = L*(Q) with A(t) ~ t? log®(1 + t) near infinity.
If p>1and a € R, then

VUl 2o (10g 1) (@, Rrxny < CllEU]| Lo (10g 1)e (2 R7*7)-

If p=1and o > 0 (so that tlog®(1 +¢) ¢ V3), then

IVl g0 Lya(@,rn) < CllEU||Laog 1)1 (0,r7)-
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2. Set exp L7 () = LA(Q) with A(t) ~¢'” — 1, 8> 0.
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2. Set exp L7 () = LA(Q) with A(t) ~¢'” — 1, 8> 0.

Note that ¢/ — 1 ¢ As.
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2. Set exp L7 () = LA(Q) with A(t) ~¢'” — 1, 8> 0.
Note that ¢/ — 1 ¢ As.

Then

[Vul < Cll&ullexp s rnxn)-

_B_
exp LA+ (QRnxn)
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2. Set exp L7 () = LA(Q) with A(t) ~¢'” — 1, 8> 0.
Note that ¢/ — 1 ¢ As.

Then

IV ey < O 5

IV Ullexp L(@rrxn) < CllEU| poo (o mrxn)-
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2. Set exp L7 () = LA(Q) with A(t) ~¢'” — 1, 8> 0.
Note that ¢/ — 1 ¢ As.

Then

IV ey < O 5

IV Ullexp L(@rrxn) < CllEU| poo (o mrxn)-

4. Leta>0and 5> 1.
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2. Set exp L7 () = LA(Q) with A(t) ~¢'” — 1, 8> 0.
Note that ¢/ — 1 ¢ As.

Then

IV ey < O 5

IV Ullexp L(@rrxn) < CllEU| poo (o mrxn)-

4. Leta>0and § > 1. Then

”quexp(a(logL)ﬁ)(QvR ) = CngHexp (a(l g

W)ﬁ) (Q,Ran)'
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General trace-free Korn inequalities in Orlicz spaces [Breit, C., Diening].
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General trace-free Korn inequalities in Orlicz spaces [Breit, C., Diening].

Theorem 3: trace-free Korn inequalities

The following conditions are equivalent:
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24

General trace-free Korn inequalities in Orlicz spaces [Breit, C., Diening].

Theorem 3: trace-free Korn inequalities

The following conditions are equivalent:
()3 C >0andty)>0s.t.

t t 7 B
t/ BES) s < A(ct),  and t/ A®) g < Blet) Vi > 1o,
t

2 2
o S to S
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General trace-free Korn inequalities in Orlicz spaces [Breit, C., Diening].

Theorem 3: trace-free Korn inequalities

The following conditions are equivalent:
()3 C >0andty)>0s.t.

t t 7 B
t/ B(ZS) ds < A(ct), and t/ A®) g < Blet) Vi > 1o,
t

2
0 S to S

(i) 3C >0st.

D,A n
”quLB(Q,R”X”) S CHgDUHLA(Q’Ran) Yue EO ’ (Q,R )
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General trace-free Korn inequalities in Orlicz spaces [Breit, C., Diening].

Theorem 3: trace-free Korn inequalities

The following conditions are equivalent:
()3 C >0andty)>0s.t.

t t 7 B
t/ B(ZS) ds < A(ct), and t/ A®) g < Blet) Vi > 1o,
t

2
0 S to S

(i) 3C >0st.

D,A n
”quLB(Q,R”X”) S CHgDUHLA(Q’Ran) Yue EO ’ (Q,R )

(iii) If Q is regular, 3 C > 0 s.t.

lIele‘J ||Vu - VWHLB(Q’Ran) < CHSDUHLA(Q’Rnxn) YVu e ED’A(Q,Rn).
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Related questions.

Negative Sobolev norms.

LITIES IN ORLIC! BANFF, JuLy 2016



Related questions.
Negative Sobolev norms.

Let p € [1,00]. The negative Sobolev norm [|[Vu|ly—1,n(q rny of the
distributional gradient of a function u € L'(Q) is defined, according to
Necas, as

Joudivedz

[Vullpw-1pQrny = sup :
@F) 7 ez @rn) IVl L @ann)
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Related questions.
Negative Sobolev norms.

Let p € [1,00]. The negative Sobolev norm [|[Vu|ly—1,n(q rny of the
distributional gradient of a function u € L'(Q) is defined, according to
Necas, as

Joudivedz

[Vullpw-1pQrny = sup :
@F) 7 ez @rn) IVl L @ann)

He showed that, if 1 < p < oo, then the LP(€2) norm of any function with
zero mean-value over € is equivalent to the W~ '7(Q, R") norm of its
gradient.
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Related questions.
Negative Sobolev norms.

Let p € [1,00]. The negative Sobolev norm [|[Vu|ly—1,n(q rny of the
distributional gradient of a function u € L'(Q) is defined, according to
Necas, as

Joudivedz

[Vullpw-1pQrny = sup :
@F) 7 ez @rn) IVl L @ann)

He showed that, if 1 < p < oo, then the LP(€2) norm of any function with
zero mean-value over € is equivalent to the W~ '7(Q, R") norm of its
gradient.

Namely,

1
5““ —ualrr) < IVullw—1r@re) < Cllu —ual o)
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The negative Orlicz-Sobolev norm can be defined accordingly as

fQ udivp dx

HV'U/HWfl,A Q.R7) — sup .
(.R") eecs @) IVl L2 grxny
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The negative Orlicz-Sobolev norm can be defined accordingly as

fQ udivp dx

HV'U/HWfl,A Q.R7) — sup .
(.R") eecs @) IVl L2 grxny

The inequality
[Vully—1.4rn) < Cllu—uallpa)

holds for every Young function A.
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The negative Orlicz-Sobolev norm can be defined accordingly as

fQ udivp dx

HV'U/HWfl,A Q.R7) — sup .
(.R") eecs @) IVl L2 grxny
The inequality
[Vully—1.4rn) < Cllu—uallpa)
holds for every Young function A.

A reverse inequality fails for an arbitrary Young function A.
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The negative Orlicz-Sobolev norm can be defined accordingly as

fQ udivp dx

HVUHW*LA Q.R7) — sup .
(.R") eecs @) IVl L2 grxny

The inequality

[Vully—1.4rn) < Cllu—uallpa)
holds for every Young function A.
A reverse inequality fails for an arbitrary Young function A.

However, it can be restored if and only if A is replaced on the right-hand
side by another Young function B related to A as in the Korn inequality
[Breit & C., 2015] (if) and [Breit, C. & Diening, preprint] (only if).
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Theorem 4: negative Orlicz-Sobolev norms

Let A and B be Young functions. Let € be a connected bounded open set
with the cone property in R", n > 2.
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Theorem 4: negative Orlicz-Sobolev norms

Let A and B be Young functions. Let € be a connected bounded open set
with the cone property in R™, n > 2. There exists a constant C' such that

lu — uallp5@) < ClVully-1a0rsy YV ue L' ()
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Theorem 4: negative Orlicz-Sobolev norms

Let A and B be Young functions. Let € be a connected bounded open set
with the cone property in R™, n > 2. There exists a constant C' such that

lu— UQHLB(Q) < CHVUHW*LA(Q,R") VueL'(Q)

if and only if 3 C' > 0 and ty > 0 s.t.

t B t A ~
t/ (28) ds < A(ct), and t/ (j) ds < B(ct) Yt > to.
to S to S
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The Korn inequality is linked to the negative norm inequality.
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The Korn inequality is linked to the negative norm inequality.

Assume that the negative norm inequality with L4 and L? norms holds.
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The Korn inequality is linked to the negative norm inequality.

Assume that the negative norm inequality with L4 and L? norms holds.
Since
821)1‘ _ a&jv i 851'kV _ 85jkv
c’h:kaa:j 8xk 8wj 81‘1‘ ’

forv:Q — R",
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The Korn inequality is linked to the negative norm inequality.

Assume that the negative norm inequality with L4 and L? norms holds.
Since
821)1‘ _ a&jv i 851'kV _ 85jkv
c’h:kaa:j 8xk 8wj 81‘1‘ ’

for v : Q@ — R", by the negative norm inequality applied to Vu we have
HVu — (VU)QHLB(Q,R"X") < CHquHW*LA(Q,R”X”)

< CIV(EW) ly-1.4(0 mnxny

< C//HSU - (gu)QHLA(Q,Ran) .
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In particular, if u =0 on 0€, then (Vu)g = (fu)q =0,
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In particular, if u =0 on 0%, then (Vu)q = (£u)q = 0, and the above
inequality yields

IVul| L5 rnxny < CllEu|paqpnxn) ,

namely the Korn inequality in EZ'(€, R™).
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An application to nonlinear systems in fluid mechanics.
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An application to nonlinear systems in fluid mechanics.

A simplified mathematical model for the stationary flow a homogeneous
incompressible fluid in a bounded domain Q2 C R" has the form

—divS(€v) + Vr = odivF in Q,

divv =0 in 2,
v=0 on 0f).
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An application to nonlinear systems in fluid mechanics.
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A simplified mathematical model for the stationary flow a homogeneous
incompressible fluid in a bounded domain Q2 C R" has the form

—divS(€v) + Vr = odivF in Q,
divv =0 in 2,
v=0 on 0f).

e v:Q — R"is the velocity field;
e S :R™"™ 5 R™™ is the stress deviator of the fluid:
o 7:Q — 0,00 is the pressure;
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An application to nonlinear systems in fluid mechanics.

A simplified mathematical model for the stationary flow a homogeneous
incompressible fluid in a bounded domain Q2 C R" has the form

—divS(€v) + Vr = odivF in Q,

divv =0 in 2,
v=0 on 0N).
Here,
v : Q0 — R" is the velocity field;
e S :R™"™ 5 R™™ is the stress deviator of the fluid:
o 7:Q — 0,00 is the pressure;
e F:Q — R™" accounts for the volume forces.
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A standard approach to this problem consists of two steps.
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A standard approach to this problem consists of two steps.
First, a velocity field v is exhibited s.t.

/ H:Vpdr=0 V¢ e Ciy, (2, R"),
Q

where
H=S(v)+pF.
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First, a velocity field v is exhibited s.t.

/ H:Vpdr=0 V¢ e Ciy, (2, R"),
Q
where

H=S(v)+pF.
Second, the pressure 7 is reconstructed.
Let us focus on the latter problem.
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where

H=S(v)+pF.

Second, the pressure 7 is reconstructed.
Let us focus on the latter problem.

In case of fluids governed by a general constitutive low of the form

(€)= T

& for &£ e R™™,

where @ is a Young function,
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First, a velocity field v is exhibited s.t.

/ H:Vpdr=0 V¢ e Ciy, (2, R"),
Q
where
H=S(v)+pF.
Second, the pressure 7 is reconstructed.

Let us focus on the latter problem.
In case of fluids governed by a general constitutive low of the form

(€)= T

where @ is a Young function, the function H belongs to some Orlicz
space L™ (Q, R™™).

& for &£ e R™™,
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A standard approach to this problem consists of two steps.
First, a velocity field v is exhibited s.t.

/ H:Vpdr=0 V¢ e Ciy, (2, R"),
Q

where
H=S(v)+pF.
Second, the pressure 7 is reconstructed.
Let us focus on the latter problem.
In case of fluids governed by a general constitutive low of the form

(€)= T

where @ is a Young function, the function H belongs to some Orlicz
space L™ (Q, R™™).
If A Ay Vg, then m € LA(Q) as well.

& for &£ e R™™,
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A standard approach to this problem consists of two steps.
First, a velocity field v is exhibited s.t.

/ H:Vpdr=0 V¢ e Ciy, (2, R"),
Q

where
H=S(v)+pF.
Second, the pressure 7 is reconstructed.
Let us focus on the latter problem.
In case of fluids governed by a general constitutive low of the form

(€)= T

where @ is a Young function, the function H belongs to some Orlicz
space L(Q, R™™).

If A Ay Vg, then m € LA(Q) as well.

In general, 7 belongs to some larger Orlicz space L7 (1.

& for &£ e R™™,
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The balance between the Young functions A and B is the same as in the
Korn inequality [Breit & C., 2015].
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Korn inequality [Breit & C., 2015].
Theorem 5: O0Orlicz estimates for «

Let 2 be a bounded domain with the cone property in R", n > 2.
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The balance between the Young functions A and B is the same as in the
Korn inequality [Breit & C., 2015].

Theorem 5: O0Orlicz estimates for =

Let 2 be a bounded domain with the cone property in R™, n > 2. Let A
and B be Young functions s.t.

t t 7 _
t/ B(;) ds < A(ct), and t/ A(QS) ds < Blct) Yt > to.
t

0 S to S
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32

The balance between the Young functions A and B is the same as in the
Korn inequality [Breit & C., 2015].

Theorem 5: O0Orlicz estimates for =

Let 2 be a bounded domain with the cone property in R™, n > 2. Let A
and B be Young functions s.t.

t t 7 _
t/ B(;) ds < A(ct), and t/ A(QS) ds < Blct) Yt > to.
t

0 S to S

Assume that H € LA(Q, R"*") and satisfies

/ H:Vpdr=0 V¢ e Ciy,(2,R").
Q
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Then 3! 7 € LE(Q) s.t.

/H:VLpdx:/Trdivcpdx Ve e CO(,RM).
Q Q
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Then 3! 7 € LE(Q) s.t.

/ H:Vpdr = / ndivpdr Ve e CP(Q,R").
Q Q
Moreover, 3 C s.t.

7|80 < CIH — Hallpa@rnxn),
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Then 3! 7 € LE(Q) s.t.

/ H:Vpdr = / ndivpdr Ve e CP(Q,R").
Q Q
Moreover, 3 C s.t.

7|80 < CIH — Hallpa@rnxn),

and

/B(|7r|)dx§/A(C|H—HQ|)dx.
Q Q
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34

The proof of the negative norm inequality relies upon boundedness
properties of the gradient of the Bogovskii operator.
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If Q2 is starshaped with respect to a ball, and w is a smooth, nonnegative
function, compactly supported in such ball and with integral equal to 1,
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The proof of the negative norm inequality relies upon boundedness
properties of the gradient of the Bogovskii operator.

If Q2 is starshaped with respect to a ball, and w is a smooth, nonnegative
function, compactly supported in such ball and with integral equal to 1,
the Bogovskii operator B is defined as

Bf(x)Z/ﬂf(y)(H/oo w(y+rx_y>cnldr) dy forz €,

‘x_y‘n x—y| ’l‘—y|

for f € C5o (2).
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The proof of the negative norm inequality relies upon boundedness
properties of the gradient of the Bogovskii operator.

If Q2 is starshaped with respect to a ball, and w is a smooth, nonnegative
function, compactly supported in such ball and with integral equal to 1,
the Bogovskii operator B is defined as

Bf(x)Z/ﬂf(y)(H/oo w(y+rx_y>cnldr) dy forz €,

‘x_y‘n x—y| ’l‘—y|

for f € C5o (2).
This operator is often used to construct a solution to the divergence
equation, coupled with zero boundary conditions, since

divBf = f.
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The necessary and sufficient conditions on A and B for
VB : LAQ) — LB (Q)

are again the same as for the Korn inequality [Breit & C., 2015], [Breit,
C. & Diening].
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The necessary and sufficient conditions on A and B for
VB : LAQ) — LB (Q)

are again the same as for the Korn inequality [Breit & C., 2015], [Breit,
C. & Diening].

Theorem 6: Boundedness of VB in Orlicz spaces

Let 2 be a a bounded open set in R", n > 2, starshaped with respect to a
ball.
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The necessary and sufficient conditions on A and B for
VB : LAQ) — LB (Q)

are again the same as for the Korn inequality [Breit & C., 2015], [Breit,
C. & Diening].

Theorem 6: Boundedness of VB in Orlicz spaces

Let 2 be a a bounded open set in R", n > 2, starshaped with respect to a
ball. Let A and B be Young functions. Then 3 C s.t.

IVBfllLe@rry < Cllfllipa) YfeCii(R)
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35

The necessary and sufficient conditions on A and B for
VB : LAQ) — LB (Q)

are again the same as for the Korn inequality [Breit & C., 2015], [Breit,
C. & Diening].

Theorem 6: Boundedness of VB in Orlicz spaces

Let 2 be a a bounded open set in R", n > 2, starshaped with respect to a
ball. Let A and B be Young functions. Then 3 C s.t.

IVBfllLe@rry < Cllfllipa) YfeCii(R)

if and only if

t t ~
t/ BS) s < Act),  and t/ AB) g < Bty Vit
to

52 o S
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Outline of the approach to the Orlicz-Korn inequality.
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e  Representation formulas for Vu in terms of singular integral operators

applied to &u.

A. CiaNcHI (

NEQUALITIES IN ORLI

BANFF, JuLy 2016



36

Outline of the approach to the Orlicz-Korn inequality.
Sufficiency:

e  Representation formulas for Vu in terms of singular integral operators

applied to &u.

e Estimates in rearrangement form for the relevant operators.
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Outline of the approach to the Orlicz-Korn inequality.

Sufficiency:

e  Representation formulas for Vu in terms of singular integral operators
applied to &u.

e Estimates in rearrangement form for the relevant operators.

e Hardy type inequalities in Orlicz spaces (via interpolation).
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Sufficiency:

e  Representation formulas for Vu in terms of singular integral operators
applied to &u.

e Estimates in rearrangement form for the relevant operators.
e Hardy type inequalities in Orlicz spaces (via interpolation).

Necessity:
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Outline of the approach to the Orlicz-Korn inequality.
Sufficiency:

e  Representation formulas for Vu in terms of singular integral operators
applied to &u.

e Estimates in rearrangement form for the relevant operators.
e Hardy type inequalities in Orlicz spaces (via interpolation).

Necessity:

e  Trial functions of “radial” type for the condition tf A(s s < B(ct).
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Outline of the approach to the Orlicz-Korn inequality.
Sufficiency:

e  Representation formulas for Vu in terms of singular integral operators
applied to &u.

e Estimates in rearrangement form for the relevant operators.
e Hardy type inequalities in Orlicz spaces (via interpolation).
Necessity:

A(s

e  Trial functions of “radial” type for the condition tf ds < B(ct).

e  Sequences of trial functions converging to laminates for the condition
f BG) gs < A(ct).
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