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The classical Szego-Weinberger inequality

Let Q be any smooth and bounded domain of R and vq the outward normal
to 9Q and, finally, denote with qu(Q) the first nontrivial eigenvalue of

—Au=pu in Q

Jdu

% =0 on ON.

Then it holds

(SW) 1 2(Q) < it (Q),

where QF is any ball having the same Lebesgue measure as Q.

Remarks.
@ Equality sign holds in (SW) if and only if Q is a ball.

@ Generalizations of (SW) can be found, for example, in
Bandle 1980; Chavel 1980; Ashbaugh - Benguria 1995; Laugesen -
Siudeja 2009 and 2010.
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The classical Payne-Weinberger inequality

Let Q be any bounded and convex domain of R", then

(PW) P Q) > -~

where d(Q) is the diameter of Q .
@ The convexity assumption in (PW) cannot be removed.

@ (PW) is sharp, since d(Q)?u;2(2) goes to 72 for a parallelepiped all but
one of whose dimensions shrink to zero, but such a value is never achieved.

@ Lower bounds for 7 *(Q), valid also for non convex domains, are
contained, for instance, in

Brandolini - C. - Trombetti, 2015; Gol'dshtein - Ukhlov, 2016;
Brandolini - C. - Dryden - Langford, in preparation.

© Generalizations of (PW) can be found, for example, in
Ferone - Nitsch - Trombetti 2012; Valtorta 2012.
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The Neumann eigenvalue problem for the Hermite operator

x e RN, dyn(x) = (27) " P exp (—%) dx

Q c R" smooth and possibly unbounded domain, vq outward normal to 9Q
—div (exp (—@) Du) = pexp (—%) u in Q

du

o _ Q
ova 0 on o

(3
—Au+x-Vu=pu in Q

ou

o = on 00
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Notation and classical results

Spectral theory on compact self-adjoint operators ensures that

/\D¢|2dw
J11() = min L € HH(Q, dw) \ {0}, / by = 0
/¢ dyn @

where

HY(Q, dyw) = { € WENQ) : (u, |Dul) € L*(Q, dyw) x LZ(Q,dyN)}.

loc
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Notation and classical results

Spectral theory on compact self-adjoint operators ensures that

/\D¢|2dw
J11() = min L € HH(Q, dw) \ {0}, / by = 0
/¢ dyn @

where

HY(Q, dyw) = { € WENQ) : (u, |Dul) € L*(Q, dyw) x LZ(Q,dyN)}.

loc

@ The case Q = R":
5 (RN) =1 <:>/ uzd'yN < / |Du|2d'yN
RN RN

Yu € HYR", dyw) : /N udyy =0
R

Moreover, 1 is an N—degenerate eigenvalue with a corresponding set of
independent eigenfunctions given by ui(x) = x;, with i € {1, ..., N}.
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Some one-dimensional eigenvalue problems

Let a, b € R with a < b. We denote by u1(a, b) the first nontrivial eigenvalue of
—u" +xu' = pu in (a, b)
u'(a) = u'(b) =0,
and by Ai(a, b) the first eigenvalue of the problem
—v"+xv'=Xv  in(ab)
v(a) = v(b) = 0.

It is easy to verify that
/’Ll(a7 b) =1+ /\1(35 b)

and

Ai(a, b) 0 with Ai(a,b) =0 if and only if (a,b) =R

IV < IV

ui(a, b) 1 with pi(a, b) =1 if and only if (a,b) =R
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The Szego-Weinberger inequality in Gauss space

Theorem [C. - di Blasio, 2012]

Let Q be any smooth domain of R" symmetric about the origin. Let Bg,(0) be
the ball centered at the origin such that yn(Q2) = yn(Br,(0)). Then

11() < 11 (Bry (0))

and equality holds if and only of Q = Bg,(0).

We also show that, even removing the assumption on the symmetry, the
half-spaces (i.e. the isoperimetric sets) cannot be optimal in the “Gaussian
Szego-Weinberger” inequality. To this aim we study the behavior of u1(a, b)
when the interval (a, b) slides along the x-axis, keeping ~v1(a, b) fixed.

Szego-Weinberger type inequalities for log-convex weight are contained in
Brock - C. - di Blasio, 2016.
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The Payne-Weinberger inequality in Gauss space

Theorem [Bakry-Qian, 2000]

If @ c R" is a bounded, convex domain, then

1 (Q) > pa(=d(Q)/2,d(Q2)/2).

The assumption on the convexity cannot be removed.

By the results on the one-dimensional case we have
m(Q) > m(~d(9)/2,d(2)/2) = 1+ M(~d(Q)/2,d(2)/2).

Hence any convex domain Q C R" such that u1(Q) = 1 must be unbounded.
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The Payne-Weinberger inequality in Gauss space

Theorem [Brandolini - C. - Henrot -Trombetti, 2013]

Let © c RY be any convex domain then
pa(2) > 1.
Equality sign is achieved for if Q is any N—dimensional strip.
The proof is divided into the following steps.
(1) We provide an extension Theorem in H'(Q, dyn).

(2) We find a sequence of convex, bounded domains {Q}, . invading Q such
that kllm Nl(Qk) = /,Ll(Q)
—00

(2) We conclude by using the Bakry-Qian estimate

(@) = Jim () > lim i (~d(), d(Q)) > 1.
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Sharpness of the estimate 3 () > 1 and different proofs

Let S.p = {(x1, %2, ..., xn) € RY 1 a < xy < b}, with —c0 < a < b < +00.
Any eigenfunction corresponding to u1(S,,») must depend on one variable only.
Since, as we said before,

p(a, b) = Ai(a, b) + 1> 1= u(R),

we get p1(S.5) =1 for every a, b € R and a corresponding eigenfunction is, for
instance, Hi(x1) = xi.

One can prove the estimare u1 (2) > 1 by using some results contained in
Brascamp-Lieb 1976 or in Caffarelli 2000, concerning Poincaré - Wirtinger type
inequalities for measures obtained as log-concave perturbations of the Gaussian.
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An inverse spectral problem: the equality case in u1 () > 1

Theorem [Brandolini - C. - Krejeifik - Trombetti, to appear]

Let Q be a convex subset of Sy, ,, = {(x,y) € R*: y1 < y < y»} for some yi,
» €R.

If £11(Q2) =1 then Q is a strip.
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An inverse spectral problem: the equality case in u1 () > 1

Theorem [Brandolini - C. - Krejcifik - Trombetti, to appear]

Let Q be a convex subset of S,,,,, = {(x,y) €R*: y1 <y < y»} for some y1,
» €R.
If £11(Q2) =1 then Q is a strip.

As we noticed before, if p1(2) = 1, then © must be unbounded.

By employing a separation of variables, we also deduce that Q is not a
semi-strip.
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An inverse spectral problem: the equality case in u1 () > 1

Theorem [Brandolini - C. - Krejeifik - Trombetti, to appear]

Let Q be a convex subset of Sy, ,, = {(x,y) € R*: y1 < y < y»} for some yi,
¥ € R.

If ©1(22) =1 then Q is a strip.
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An inverse spectral problem: the equality case in u1 () > 1

Theorem [Brandolini - C. - Krejeifik - Trombetti, to appear]

Let Q be a convex subset of S,,,,, = {(x,y) €R*: y1 <y < y»} for some y1,
» €R.
If £11(Q2) =1 then Q is a strip.

The proof is divided in two steps.

(1) Slicing.
We find a sequence {€.} of thinner and thinner horizontal slices of Q such
that 41(Q:) =1 Ve > 0.

(2) Asymptotics.
We show that 3(xo, yo) € 9Q : Iirr}) p1(2e) = pa(xo, +00).
e—
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Slicing

Proposition

Let © be a convex subset of S, ,, such that ;1(22) =1 and let y € (y1,y2) be
such that the straight-line y = ¥ bisects the area 72(f2). Then

m@n{y <yh) =m@n{y>y}) =1

Proof Let u be an eigenfunction corresponding to u1(f2); then

Dul?d
M:I and /ud'yg:O.
Jo v?dr Q

For every a € [0, 27] there is a unique straight line r, orthogonal to

(cos a, sin @) dividing € into two convex sets Q,, Q. with equal Gaussian area.
Let Z(a) = [, udy2. Since Z(a) = —Z(a + ), by continuity there is & such
that :

I my _ 2 (Q)
72 (Qa) =72 (Qa) =" and /Q

udy, = / udvy, = 0.
Q

’ 1
& @
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Observe that
fQ,& |Du|2d’yz
fQ,_ u2dy,

ng |Du|2d'yz

Se > () >1
Jon v?dy2 ~ (@) >

> u(Q5) > 1,
and
fQ:i ‘Du‘2d72 + ng |Du‘2d’Y2
Jor v?dy2 + [o, u?dy2

. f%|Du|2d72 ng|Du|2d'y2

> 7 >1
N { Jor u?dy Jon v?d } B
U

1 = M1

1= m(Q) = (%) = Q).
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By repeating the procedure described in the above Proposition, since at any
step we are bisecting the Gaussian area, we can obtain a sequence of
unbounded convex domains . such that

Q. = {(Xd’) ER?: x>x0, o<y < min{f(x),ds}}
lu’l(QE):l: €:de_yO—)O

(here f is a concave and nondecreasing function such that f'(x) < +00).
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By repeating the procedure described in the above Proposition, since at any
step we are bisecting the Gaussian area, we can obtain a sequence of
unbounded convex domains €. such that

Q. = {(X,y) € R?: x > X0, Yo <y < min{f(X),dE}}
iu’l(QE):L 5:ds_y0—>0

(here f is a concave and nondecreasing function such that f'(x) < +00).

It remains to prove that

1= lim p1(Qe) = p(x0, +00) = 1 + A1 (x0, +-00)

U

A(x0,+0) =0 = xp=—00.

This means that Q contains a straight-line and then it is a strip.
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f concave, nondecreasing, continuous, f(0) =0, f'(0) < 400

Q. ={x>0,0<y<fo=min{f(x),e}}

F. Chiacchio, Universita di Napoli Federico Il An inverse spectral problem for the Hermite operator



(Xo,yo) — (0,0) :

—div (exp (_w) Du) — pexp (_w) u inQ.

Jdu
Ovg,

=0 on 0Q
We consider the one-dimensional problem
- (exp (—%) v')/ =vexp (—%) v in (0, +00)
v/(0) =0
and we prove

Theorem

For every k € N
lim pu(Qe) = vic = p(x0, +00).
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Main strategy
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as+a. if s€[-1,0)
s+ ac if se[0,+00)

Let g-(s) = {

and
Le:(s,t) €S — (g=(s), (g:(s)) t) € Qe

= L.isa C% difffomorphism between S and Q., whose jacobian

Je(s,t) = g:(s)f=(g=(s))

is independent of t and singular at s = —1

F. Chiacchio, Universita di Napoli Federico Il An inverse spectral problem for the Hermite operator



With the notation

A(x,y) = exp (7 (x0 + x) er(yo +y) )
Ye(s,t) = (vyoL)(s,t) =exp (_ [x0 + g=(s)]” + [2y0 + - (g-(s))t] )

we get that, for any v € H'(Q, dv),

2 Osv  floge 2 (Bev)? 1 foge
_ R | veg. —= dsdt
/Qs |Dv|“d~y /5 |:( 2 f.og Ov | + (f.0g.)? Ve 8. c S

P
/ Vdy = /vz'yggs/ <28 Jsdt
. s €
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Passing to the limit

Denoted by . an eigenfunction corresponding to ux(£2:), the weak
formulation of the eigenvalue equation reads as

J

Dye Dpdy = uk(ﬂs)/ vepdy Vo€ H(Q:, dvy)
Q.

€

0

/Kasif)f - fa o8 tat'¢'5)< 85:17 — 7&: °& t8t¢>+ (8”!)6) (8t¢) Ye gé feo ge dsdt
s\ g  fog gl fog: (f:o0g:) (fog:) £

f. o

Egg dsdt V¢ € H" (S, 7.4 . 0 g-dsdt)

= uk(Qa)/sws b7- 8L

We want to pass to the limit as ¢ — 0.
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A uniform upper bound for pux(€2.)

Proposition.
For any k € N there exists C, > 0 such that, for all € < 1, uk(Q:) < Ci.

Proof. Recall that u«(€2:) can be characterized by the following Rayleigh-Ritz
variational formula

|Dv[*dy

=

we(Qe) = inf sup —————
dimV=k+1 ¢y / 2
vidy
Qe

/ 2 2
/ [(85‘/ — L °& tatv> + 7(8“/) } Ve gL fooe ds dt
s

g foog (f- 0 g:)? €
T ai i\;'fk ey fe o
imV=k+1,cy /VQ’Ysgé € gsdsdt
5 3
In Sy = (0, +00) x (0,1) it holds that
feoge

Y-(s) < 7e(s, t) <v4(s), g =1,
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A uniform upper bound for pux(€2.)

Hence choosing a test function independent of t, v € C§°(0, +00), we get
2 Hoe ’ 2
|Dv[dy / v (s)74(s)ds
e 0

/QE vidy : /O+oo v(s)zfy,(s)ds.

4

+0o0o
/ V/(5)*v4(s)ds
we(Qe) < inf sup £2

. _ +o0
VG Y [T s (s)s
0

T

eigenvalues of the one-dimensional operator
-1
—YZ 057405,

subject to Dirichlet boundary conditions
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What happens in S_7

Take a normalized eigenfunction . corresponding to px(€:):
[ owtar = [etng BB asd =
Q. s €

2 85'(/15 fs/ O 8¢ 2 (atwa)z ’ f- o 8=
) _fog h.. g ds dt
/Qg ‘Dw | d/y /5 |:< gé f O 8¢ tatw + (f—: Oga)2 & € s

k()
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What happens in S_7

Take a normalized eigenfunction . corresponding to px(€:):

/wﬁdw = /T/ﬁ%géfwggdsdt:l
Q. S

€

as'(/}s flo 8e ? (atw€)2 , feo 8e

DyPdy = =T 08 9. Ve &L ds dt

/Qg‘ w| K /;|:< gl foog: i +(f€oga)2 e € °
= /Lk(QE)
S

@ (s, t) > c >0,

, S S,
® 8. = &,

_ e}

01> %8 51 '
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What happens in S_7

/5_(851/;5)2 (s+1)dsdt + (%)2/5_ (9etb) (s + 1) ds dt < Ca.

F(0) < 400 @ f(s)< F(0)s

I

/ 1 ER

e=f(a;) < f(0)ac and F1(0)2 < (?)
U

/ |Vee|* (s 4 1)dsdt < Cac — 0 as e — 0.
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What happens in S_7

Writing ¥<(s, t) = pe + n-(s, t) with ¢. constant, and

/ Ne(s, t)(s + 1)ds dt = 0,

we get

7r2/ n’;’(s+1)dsdtg/ |Dn.|*(s + 1)ds dt < Ca..
S

We then prove, with some more effort, that
p2<C onS_.

Hence

Y2ye g;%dsdt < Ca. (0e +n)*(s+1)dsdt -0 as e— 0.

S_ S_

This means that what happens in S_ becomes more and more negligible as ¢
goes to zero. In the limit only Sy does matter.
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What happens in 5.7

® 7e(s, t) = pe(s)yo(s) with

Eli_rpops =1
and
Yo(s) = exp (*70(0 i 52)2 a y02>’
I fgzge:L )
S_ S.
1 0
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What happens in 5.7

(3t1/1s)

peyodsdt < C

/ (851/JE)2 Pe Yo ds dt +
Sy

S+

Writing
1
Ve(s,t) = pu(s) £ ne(s,8)  with / ne(s, £)dt = 0
0

we get that (up to a subsequence)

Vpepe = o in H'((0,+00), do)
VPep = o in L2((0,+00), do)
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Conclusions

Now, in the weak formulation of the eigenvalue equation, we consider test
functions @(s, t) = p(s), where ¢ € C5°(R) and ¢’ =0 on [—1,0], and take
the limit as ¢ — 0.
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Conclusions

Now, in the weak formulation of the eigenvalue equation, we consider test
functions @(s, t) = p(s), where ¢ € C5°(R) and ¢’ =0 on [—1,0], and take
the limit as ¢ — 0.

After many computations..... ‘ as € — 0 only S; matters and ‘

+oo
Iim/ Dy Dip. d%z/ ©'pov0ds
e—0 Q. 0

+oo
Iim/ ©edve :/ ©wwoYods
Q. 0

e—0

[1elli2(ae ,av) = 11®olli2((0,4-00),d70)

o lim pi(Q2e) = vk = pk(x0, +00)

e—0

F. Chiacchio, Universita di Napoli Federico Il An inverse spectral problem for the Hermite operator



Coming back to the uniqueness of optimal sets

Y= G

Yy="% (o, yo)

1= lim p1(Q:) = (%0, +00) = 1 + A1 (0, +00)

4
Ai(x0,+0) =0 = xp=-00
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