
On the quantitative isoperimetric inequality
in the plane

Chiara Bianchini

Dipartimento di Matematica e Informatica U. Dini,
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From the classical isoperimetric inequality to the
quantitative isoperimetric inequality

Planar isoperimetric inequality: Let Ω ⊂ R2, B be a ball s.t. |B | = |Ω|
 P(Ω) ≥ P(B), and equality holds iff Ω is a ball.

We are interested in a quantitative version:
if P(Ω) ≈ P(B), can we say that Ω is “almost” a ball?

 Define: δ(Ω) =
P(Ω)

P(B)
− 1 the isoperimetric deficit of Ω.

 if δ(Ω) is small, can we say that Ω is “near to be” a ball?
Can we find C > 0, α s.t. λ(Ω) ≤ C Pα(Ω) where λ measures the
asymmetry of Ω?

Which kind of distance suitably measures how close Ω is to a ball?
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The Fraenkel Asymmetry

Notice: λ(·) = dH(· ; Bx), the Hausdorff distance:
with general non-convex sets we cannot expect δ to control dH(· ; Bx)

 we consider the Fraenkel asymmetry:

λ(Ω) = min
x∈R2

{
|Ω∆Bx |

|Bx |
: |Bx | = |Ω|

}
=
|Ω∆By |

|By |
.

Notice: λ(Ω) = 0 iff Ω = Bo ; λ(·) ≤ 2

 Problem: how to find an optimal ball By?

We will investigate this later...
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The quantitative isoperimetric inequality

Theorem:[N. Fusco, F. Maggi, A. Pratelli ’08] There exists a constant CN

s.t.
λ(Ω) ≤ C̃N

√
δ(Ω),

that is

infΩ⊂RN
δ(Ω)

λ2(Ω)
≥ CN .

Litterature: Bonnesen 1924 (planar case), Fuglede 1989
(nearly-spherical sets), Hall-Hayman-Weitsman 1991, Hall 1992
(α = 1/4 axisymmetric sets), Fusco-Maggi-Pratelli 2008
(symmetrization techniques), Figalli-Maggi-Pratelli 2010 (mass
transportation), Cicalese-Leonardi 2012 (selection principle),
Fusco-Gelli-Pisante 2012 (Hausdorff distance)...

Which is the value of the optimal constant C2 ?
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The best constant C2 (i)

Theorem:[S. Campi ’92],[A. Alvino, V. Ferone, C. Nitch ’11] [N = 2] A
particular stadium D minimizes δ/λ2 among convex sets, that is

inf
Ωconvex,B

δ(Ω)

λ2(Ω)
=

δ(D)

λ2(D)
≈ 0, 406.

Conjecture:[M. Cicalese, G. Leonardi ’12],[CB, G. Croce, A. Henrot ’16]

[N = 2] A particular peanut D0 minimizes δ/λ2, that is

inf
Ω,B

δ(Ω)

λ2(Ω)
=

δ(D0)

λ2(D0)
≈ 0, 393.
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The best constant C2 (ii)

Problem: minimize the shape functional F (·) among planar sets Ω , B:

F (Ω) =
δ(Ω)

λ2(Ω)
.

Theorem. There exists a set Ω0 , B s.t. min
Ω⊂R2

F (Ω) = F (Ω0).

I Ω0 is not convex;
I ∂Ω0 is C1,1;
I ∂Ω0 = ∪Ci , Ci arcs of balls;
I Ω0 has at least two optimal balls for the Fraenkel asymmetry;
I Ω0 has at most six connected components.

[M. Cicalese, G. Leonardi, ’13]
[CB, G. Croce, A. Henrot, ’16]
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Location of an optimal ball (for λ(Ω)) (i)

In general, it is not easy to
locate an optimal ball!
However, B must satisfy some
geometric conditions

A1

A2
A3A4

A5

A2p−1
A2p

Theorem.[BCH] Let Ω be a transversal set to an optimal ball B  
the intersection points Ai ≡ (xi , yi), i ∈ {1, ..., 2p} of ∂Ω ∩ ∂B satisfy

x1 + x3 + ... + x2p−1 − (x2 + x4 + ... + x2p) = 0,
y1 + y3 + ... + y2p−1 − (y2 + y4 + ... + y2p) = 0.
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Location of an optimal ball (ii): symmetric case

Proposition.[BCH] Let Ω ⊂ R2 be Π-axis symmetric, Ω is convex
in the direction Π⊥ ∃ an optimal ball centered on Π.

Corollary.[BCH] Assume Ω ⊂ R2 has two (perpendicular) axis of
symmetry crossing at O , Ω convex in both directions
 ∃ an optimal ball centered at O .

Notice: this corollary guarantees that
once performed the rearrangement Ω∗,
the optimal ball is still the same.
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Existence of a minimizer: a new proof of the
quantitative isoperimetric inequality (i)

Let Ωn be a minimizing sequence for minF .
 Aim: Ωn → Ω0, Ω0 , B.
[by contradiction!] We perform a rearrangement on Ωn:

Ω

ΩOUT

ΩIN

Notice: Ω∗ is well defined if λ(Ω) is small!
 the rearrangement (asymptotically) decreases F : ∀α > 0, ∃β
s.t. λ(Ω) < β implies F (Ω∗) < F (Ω) + α.
 lim infF (Ω∗n) = π

8(4−π)
≈ 0, 457 > F (D) = 0, 406.
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A minimizing sequence does not converge to a ball

Aim: let Ωε be sequence s.t. Ωε = π and |Ωε∆B | = 4ε/π, then
lim infF (Ω∗ε) ≥

π

8(4 − π)
.

4 different cases: i = 1, 2
[Ai :] ηi → η̂i > 0;
[Bi :] ηi → 0 and ε

sin2(ηi)
→ li > 0;

[Ci :] ηi → 0 and ε
sin2(ηi)

→ 0;
[Di :] ηi → 0 and ε

sin2(ηi)
→ +∞.

F (Ωε) = 2
π

(
1
ε2 F(ηε1,

ε
sin2(ηε1)

) + 1
ε2 F(ηε2,

−ε
sin2(ηε2)

)
)

By Taylor expansion:  cases Bi ,Ci ,Di entails F (Ωε)→ ∞.
 cases A1A2 entails F (Ω∗ε) ≥

π
32 max cos(η)

sin(η)−η cos(η)
= π

8(4−π)
.
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By Taylor expansion:  cases Bi ,Ci ,Di entails F (Ωε)→ ∞.
 cases A1A2 entails F (Ω∗ε) ≥

π
32 max cos(η)

sin(η)−η cos(η)
= π

8(4−π)
.
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 a minimizing sequence cannot converge to a ball!
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Existence of a minimizer: a new proof of the
quantitative isoperimetric inequality (ii)

We have seen: a minimizing sequence cannot converge to a ball.
But: does a minimizing sequence converge? YES! indeed...

λ(Ωn) ≤ 2 , δ(Ωn)/λ2(Ωn)→ M ≤ F (D) = 0.41 P(Ωn) ≤ 16.6.
I [BCH] P(Ω) < 20 =⇒ ∃Ω̃ composed by at most 7 connected
component s.t. F (Ω̃) ≤ F (Ω).

Ω has at most 4 components 1 B1  we can replace all other by balls 

minimization problem involving the radii: the minimizer is achieved by 2 or 3 balls.

I hence the sequence is uniformly bounded: Ωn ⊂ R a box
 existence will classically follow from the compact embedding
BV(R) ↪→ L1(R) and lower-semi continuity of the perimeter. �
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Number of connected components of Ω0

I Ωn → Ω0, with Ω0 , B optimal domain for F .

Thm.[BCH] Ω0 has at most 6 connected components.

Indeed: look at the previous proof for the optimal domain Ω0:
D0 has at most 4 components 1 B1.
We can replace all other by balls. In the minimization problem
involving the radii the minimizer is achieved by 2 balls. 
I hence Ω0 has at most 6 connected components. �
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Number of optimal balls

Thm.[BCH] Ω0 has at least 2 optimal balls for λ(·)

Indeed: [by contradiction!] assume there is only one optimal ball.
 non-connected case: Ω0 = E ∪ Br .
 connected case: ∂Ω0 = ∪Ci : N copies of arcs of circle.

Considering all possible values
for the parameters α, θ,N we
show that we always get a
contradiction with one of the
following facts:
I F (Ω0) < 0.4055
I the first order optimality
condition: 1

R1
+ 1

R2
= 8δ

λ

I the second order optimality
condition. �
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Number of optimal balls
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αθO
Γ0

Γ1

π
N

[case N = 3]
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Open problems to determine Ω0 and hence
C2 = F (Ω0)

Conjecture:
I Ω0 is connected;
I Ω0 has two orthogonal axis of symmetry;
I Ω0 has exactly 2 optimal balls.

 ∂Ω0 can be parametrized by 8 arcs of circles:
 the candidates are peanut shaped! (or masks)
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Conjecture on the optimal domain Ω0

By solving the two-dimensional minimization problem, we get:
Conjecture: Ω0 is a “peanut” with α = 0.2686247, θ = 0.5285017,
x0 = 0.3940769. The value of F for the set Ω0 is

F (Ω0) = C2 = 0.39314,

so that C̃2 = 2.543625.

x0−x0

O1

O2

O3

BA

α

θ
γ3

γ2γ1
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Upcoming events:

I Workshop on Partial Differential Equations and related
topics, Alghero (Italy), Septembre 2016.
www.dma.unina.it/ferone/alghero2016/index.html

I CIME summer school on
Geometry of PDE’s and related problems
Courses by: X. Cabré, A. Henrot, D. Peralta-Salas, W. Reichel, H.
Shahgholian. Cetraro (Italy), June 2017.

Chiara Bianchini Quantitative planar isoperimetric inequality

www.dma.unina.it/ferone/alghero2016/index.html

