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Some history

1893, result of A. Hurwitz, Math. Annalen 41, phrased in modern
terms:

I The automorphism group of an algebraic curve of genus g ≥ 2
over C is finite, of order at most 84(g − 1).

I If the automorphism group of an algebraic curve of genus
g ≥ 2 has size 84(g − 1), then this group is generated by two
elements a, b satisfying a2 = b3 = (ab)7 = 1.
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1879, F. Klein, Math. Annalen 14



Connection of this talk to Shimura curves:
1967, G. Shimura, Annals of Math. 85.

Brief sketch:

I Let ζ = e2πi/7 ∈ C, γ = ζ + ζ6 = 2 cos(2π/7) ∈ R, x ∈ R
with x2 = ζ + ζ6 − 1.

I Put I :=
( 0 1
−1 0

)
, J :=

(−x 0
0 x

)
, K := IJ = −JI .

Let A be the quaternion algebra over Q(γ) generated by
I , J,K .

I Put t := I , u = −1
2(
(1 0
0 1

)
+ (ζ3 + ζ4)I + J) ∈ A.

OA := Z[γ] ·
(

1 0

0 1

)
+ Z[γ]t + Z[γ]u + Z[γ]tu

is a maximal order in A. Moreover t, u, tu have order 2, 3,
and 7 respectively as elements of PSL2(R).
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I It turns out that t, u generate the group of elements of norm
1 in O×A . This group yields a discrete subgroup Γ in PSL2(R).

I In fact Γ is isomorphic to the Klein triangle group ∆(2, 3, 7),
and Γ\H ∼= P1(C) (here H = upper half plane).

I The subgroup Γ(2) ⊂ Γ consisting of matrices ≡
(1 0
0 1

)
mod 2

yields a quotient Γ(2)\H of genus 7. It has automorphisms
Γ/Γ(2) ∼= PSL2(F8).

I More generally (Shimura), for any maximal ideal p ⊂ Z[γ], the
corresponding Γ(p) of matrices ≡ ±

(1 0
0 1

)
mod p yields

Γ(p)\H of genus g with automorphism group PSL2(Z[γ]/p)
of order 84(g − 1).
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A curve of genus g ≥ 2 having 84(g − 1) automorphisms is called
Hurwitz curve.

A Hurwitz curve C with automorphism group G is a Galois cover
of P1 of degree #G , ramified over only 3 points. The ramification
index over these points is 2, 3, 7, respectively.

Smallest example: G = PSL2(F7). The unique Hurwitz curve of
genus 1 + (#G )/84 = 3 is the famous Klein quartic, studied both
as a Riemann surface and as an algebraic curve by F. Klein (1879,
Math. Annalen 14).
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Next smallest example: G = PSL2(F8), of order 504, so g = 7.

The unique Riemann surface of genus 7 with this automorphism
group was studied by R. Fricke, 1899, Math. Annalen 52; see also
Shimura’s 1967 paper discussed above.

The first to publish an algebraic model of this g = 7 example, was
the Scottish mathematician A.M. (Murray) Macbeath, 1965, Proc.
LMS 15. We call this the Fricke-Macbeath curve.

Alexander Murray Macbeath, 1923–2014.
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Idea of Macbeath: In PGL7(Q) ⊂ Aut(P6), the elements T =
−1 0 0 1 1 −1 0
0 0 −1 −1 1 0 −1
0 1 −1 1 0 1 0

−1 −1 −1 0 −1 0 0
−1 1 0 −1 0 0 1
1 0 −1 0 0 −1 1
0 1 0 0 −1 −1 −1

 , W =


0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
1 0 0 0 0 0 0


satisfy T 3 = W 7 = (TW )2 = id and they generate a group
∼= PSL2(F8).
So any curve in P6 fixed by T and W will have an automorphism
group containing PSL2(F8).

Macbeath constructs a canonically embedded genus 7 curve with
this property.



It is the zero locus of

x20 + x21 + x22 + x23 + x24 + x25 + x26 ,
x20 + ζx21 + ζ2x22 + ζ3x23 + ζ4x24 + ζ5x25 + ζ6x26 ,
x20 + ζ6x21 + ζ5x22 + ζ4x23 + ζ3x24 + ζ2x25 + ζx26 ,(
ζ5 − ζ2

)
x1x4 +

(
ζ6 − ζ

)
x3x5 +

(
−ζ4 + ζ3

)
x0x6,(

−ζ4 + ζ3
)
x0x1 +

(
ζ5 − ζ2

)
x2x5 +

(
ζ6 − ζ

)
x4x6,(

−ζ4 + ζ3
)
x1x2 +

(
ζ6 − ζ

)
x0x5 +

(
ζ5 − ζ2

)
x3x6,(

−ζ4 + ζ3
)
x2x3 +

(
ζ5 − ζ2

)
x0x4 +

(
ζ6 − ζ

)
x1x6,(

ζ6 − ζ
)
x0x2 +

(
−ζ4 + ζ3

)
x3x4 +

(
ζ5 − ζ2

)
x1x5,(

ζ6 − ζ
)
x1x3 +

(
−ζ4 + ζ3

)
x4x5 +

(
ζ5 − ζ2

)
x2x6,(

ζ5 − ζ2
)
x0x3 +

(
ζ6 − ζ

)
x2x4 +

(
−ζ4 + ζ3

)
x5x6.

Here as earlier ζ = e2πi/7.



This model is defined over Q(ζ).

More accurately: denoting the defining ideal by I , then
I ∩Q[x0, x1, . . . , x6] defines (over Q(ζ)) the union of three (Galois
conjugate, isomorphic) algebraic curves.

Since only one (up to isomorphism!) Hurwitz curve of genus 7
exists, an obvious problem is to look for a model defined over Q. It
exists, and to find one is an exercise in explicit Galois descent
(from Q(ζ) to Q):
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Theorem
(Maxim Hendriks, PhD thesis, Eindhoven Univ., 2013)

A model of the Fricke-Macbeath /Q is defined by the polynomials

−x1x2 + x1x0 + x2x6 + x3x4 − x3x5 − x3x0 − x4x6 − x5x6,
x1x3 + x1x6 − x22 + 2x2x5 + x2x0 − x23 + x4x5 − x4x0 − x25 ,
x21 − x1x3 + x22 − x2x4 − x2x5 − x2x0 − x23 + x3x6 + 2x5x0 − x20 ,
x1x4 − 2x1x5 + 2x1x0 − x2x6 − x3x4 − x3x5 + x5x6 + x6x0,
x21 − 2x1x3 − x22 − x2x4 − x2x5 + 2x2x0 + x23 + x3x6 + x4x5 + x25 − x5x0 − x26 ,
x1x2 − x1x5 − 2x1x0 + 2x2x3 − x3x0 − x5x6 + 2x6x0,
−2x1x2 − x1x4 − x1x5 + 2x1x0 + 2x2x3 − 2x3x0 + 2x5x6 − x6x0,
2x21 + x1x3 − x1x6 + 3x2x0 + x4x5 − x4x0 − x25 + x26 − x20 ,
2x21 − x1x3 + x1x6 + x22 + x2x0 + x23 − 2x3x6 + x4x5 − x4x0 + x25 − 2x5x0 + x26 + x20 ,
x21 + x1x3 − x1x6 + 2x2x5 − 3x2x0 + 2x3x6 + x24 + x4x5 − x4x0 + x26 + 3x20 .



A beautiful alternative way to construct a model of the
Fricke-Macbeath curve, was proposed by J-P. Serre in a July 1990
letter to S.S. Abhyankar:

I PSL2(F8) permutes the set P1(F8) transitively.

I Hence the stabilizer of any point in this set is a subgroup H of
index 9.

I The quotient of the curve by H has genus 0, hence one
obtains a Belyi map β : P1 → P1 of degree 9.

I The Fricke-Macbeath curve is the normal closure
(geometrically) of this covering.

I The ramification of the degree 9 map is as follows: one point
with e = 7 over ∞, three points with e = 3 over 0, and four
points with e = 2 over 1.

I This determines the map β as

x 7→ β(x) := (x3 + 4x2 + 10x + 6)3/(27x2 +
351

4
x + 216).
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Note (as remarked by Serre) that Q is not algebraically closed in
the normal closure of Q(x)/Q(β(x)).

So Serre’s construction does not define a model over Q of the
Fricke-Macbeath.

An alternative simple model which is over Q, was discovered by
Bradley Brock (≈ 2013): the normalization of the plane curve
given by

1 + 7xy + 21x2y2 + 35x3y3 + 28x4y4 + 2x7 + 2y7 = 0

is a model of the Fricke-Macbeath curve.
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To see that this is correct:

I The plane curve has degree 8;

I The singular locus consists of 14 ODP’s; one orbit under the
action of (x , y) 7→ (y , x) and (x , y) 7→ (ζnx , ζ−ny).

I (In fact: this holds in every characteristic 6= 2, 7.)

I Hence genus (8− 1)(8− 2)/2− 14 = 7.

I To verify the curve is indeed isomorphic to the
Fricke-Macbeath, compute its canonical embedding:
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Defining ideal of Brock’s model, canonically embedded:

x0x2 + 12x23 − x4x6,
−x21 + x0x3 − 2x5x6,
x0x4 + 16x3x5 + 8x26 ,
−x1x3 + x0x5 + 1

2x2x6,
−x2x3 + 2x25 + x0x6,
x1x2 + 12x3x5 + 4x26 ,
−2x2x3 + x1x4 − 8x25 ,
−x23 + x1x5 + 1

4x4x6,
−1

2x3x4 −
1
2x2x5 + x1x6,

x22 + 2x4x5 + 8x3x6.

Using that a linear isomorphism between the two given canonical
models over Q conjugates the known automorphisms, it is not hard
to find one explicitly. There exists one over Q(

√
−7), not over Q.
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Corollary

The canonical curves over Q described by Hendriks and by Brock
both have good reduction at every prime p 6= 2, 7.

Proof: we observed this for Brock’s model; since the models are
isomorphic over Q(

√
−7) and this field only ramifies at 7, it is true

for the other model as well.
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One more algebraic model, over Q(ζ), described by
A.M. Macbeath and by Everett Howe:

the Fricke-Macbeath curve is the (Z/2Z)3-cover of P1 defined by
u2 = (x − 1)(x − ζ)(x − ζ2)(x − ζ4),
v2 = (x − ζ)(x − ζ2)(x − ζ3)(x − ζ5),
w2 = (x − ζ2)(x − ζ3)(x − ζ4)(x − ζ6).



Using the Macbeath/Howe model, visibly the function field of the
Fricke-Macbeath curve contains 7 elliptic subfields (namely, the
ones generated over C(x) by respectively u, v ,w , uv , uw , vw , and
uvw ; they correspond to the 7 subgroups of (Z/2Z)3 of index 2).

More precisely, in this way one verifies that over Q(ζ) the Jacobian
of this curve is isogenous to a product of 7 elliptic curves.

Moreover, the elliptic curves can be taken to be isomorphic over
Q(ζ).
(At least over C, this result is attributed to Kevin Berry and
Marvin Tretkoff, 1990.)
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To describe the Jacobian of a Fricke-Macbeath model over Q, we
start from the description given by Hendriks. Denote this curve by
H.

Consider the curve X of genus 3 defined as X = π(H), the image
of H under π : (x0 : x1 : x2 : x3 : x4 : x5 : x6) 7→ (x0 : x2 : x5).

Equation for X :

5x4 + 12x3y + 6x2y2 − 4xy3 + 4y4 − 28x3z + 16x2yz
−24xy2z + 16y3z + 24x2z2 − 10y2z2 − 12xz3 + 8yz3 + 3z4 = 0
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The genus 3 curve X inherits from H a group of automorphisms
Z/2Z× Z/2Z.

The involutions in this group are defined over Q(ζ + ζ−1). The
quotient by such an involution is a genus one curve over this field,
with Jacobian an elliptic curve E ′.

Corollary: Jac(X ) is isogenous over Q to ResQ(ζ+ζ−1)/QE
′.

Using an appropriate ι ∈ Aut(H) and

(π, π ◦ ι) : H → X × X

one shows:

Lemma: There is an elliptic curve E/Q such that Jac(H) is
isogenous over Q to E × ResQ(ζ+ζ−1)/QE

′ × ResQ(ζ+ζ−1)/QE
′.
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Two ways to determine such E/Q:

(1). It turns out that Aut(H) contains an element of order 3
defined over Q. The quotient has genus 1, and the Jacobian
of this curve is the desired E .

(2). Since H has good reduction away from 2, 7, so has E .
Moreover, over any finite field Fq of characteristic 6= 2, 7, we
have

#E (Fq) = 2q + 2 + #H(Fq)− 2#X (Fq).

Using this it is easy to find an E as desired.

Result: E given by y2 = x3 + x2 − 114x − 127 works.
(Conductor 142, j-invariant 1792 = 28 · 7, no CM!)
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A small computation shows (no great surprise, given the
Macbeath/Howe model): the elliptic curves E ′ and E are
isogenous over Q(ζ + ζ−1). Hence:

Main Theorem: For any finite field Fq of characteristic 6= 2, 7 one
has

#H(Fq) =

{
#E (Fq) if q 6≡ ±1 mod 7;
7#E (Fq)− 6q − 6 if q ≡ ±1 mod 7.



Example: #H(F27) = 84. This improves a previous record found in
2000 by Stéphan Sémirat, see the website manypoints.org

maintained by Gerard van der Geer, Everett W. Howe, Kristin E.
Lauter, and Christophe Ritzenthaler.

We have several such examples, often involving twists by elements
of H1(GalFq ,Aut(H ⊗ Fq)).

Easy: p supersingular, then H is maximal over Fp2 . This occurs for
71, 251, 503, 2591, 3527, 5867, 7307, 20663, . . ..
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Motivated by the Fricke-Macbeath example:

I Everett Howe this summer searched over finite fields for tuples
(a0, . . . , a6) ∈ F7

q defining a genus 7 curve
u2 = (x − a0)(x − a1)(x − a2)(x − a4),
v2 = (x − a1)(x − a2)(x − a3)(x − a5),
w2 = (x − a2)(x − a3)(x − a4)(x − a6)

with many rational points.
For example, u2 = 2x3 + 11x , v2 = x3 + 11x2 + 3,w2 = x3 + x
defines the current record over F13, having 52 rational points.



I Observing that the Fricke-Macbeath curve is a double cover of
a smooth plane quartic, Carlo Verschoor and I searched for
more such double covers:

Starting from a smooth plane quartic X and points P,Q ∈ X ,
consider the tangent lines L = 0 resp. M = 0 at these points,
and the function f := L/M on X .

The double cover of X defined by
√
f is the curve we consider.

Example: c , u ∈ F172 with c2 + 3c + 1 = 0, u2 − u + 3 = 0.
Plane quartic defined by x4 + y4 + z4 + c(x2y2 + x2z2 + y2z2).
(Bi)tangent x + u188y − z = 0 and −x − y + u44z = 0.
This results in a genus 5 curve C reaching the
Hasse-Weil-Serre upper bound:
#C (F289) = 460 = 172 + 1 + 10 · 17.
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Congratulations to Noriko,
for being today

back into prime age . . .


