Hypergeometric Functions and Hypergeometric Abelian Varieties

Fang-Ting Tu

Louisiana State University

September 29th, 2016 BIRS Workshop: Modular Forms in String Theory

Classical hypergeometric functions are well-understood. They are related to

- periods of algebraic varieties
- triangle groups, modular forms on arithmetic triangle groups
- Ramanujan type identities, combinatorial identities, physical applications...

Hypergeometric functions over finite fields are developed theoretically by Evans, Greene, Katz, McCarthy, Ono,... They are related to

- L-functions of algebraic varieties
- character sum identities
- supercongruences (Apéry or Ramanujan type)

Classical hypergeometric functions are well-understood. They are related to

- periods of algebraic varieties
- triangle groups, modular forms on arithmetic triangle groups
- Ramanujan type identities, combinatorial identities, physical applications...

Hypergeometric functions over finite fields are developed theoretically by Evans, Greene, Katz, McCarthy, Ono,... They are related to

- L-functions of algebraic varieties
- character sum identities
- supercongruences (Apéry or Ramanujan type)

Classical hypergeometric functions are well-understood. They are related to

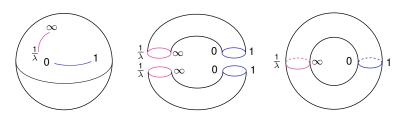
- periods of algebraic varieties
- triangle groups, modular forms on arithmetic triangle groups
- Ramanujan type identities, combinatorial identities, physical applications...

Hypergeometric functions over finite fields are developed theoretically by Evans, Greene, Katz, McCarthy, Ono,... They are related to

- L-functions of algebraic varieties
- character sum identities
- supercongruences (Apéry or Ramanujan type)

For $\lambda \neq 0$, 1, let E_{λ} : $y^2 = x(1-x)(1-\lambda x)$ be the elliptic curve in Legendre normal form.

•



A period of E_λ is

$$\Omega(E_{\lambda}) = \int_0^1 \frac{dx}{y} = \int_0^1 \frac{dx}{\sqrt{x(1-x)(1-\lambda x)}}.$$

and

$$\frac{\Omega(E_{\lambda})}{\pi} = {}_2F_1 \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ & 1 \end{bmatrix}; \lambda := \sum_{n=0}^{\infty} {\binom{\frac{1}{2} + n - 1}{n}}^2 \lambda^n.$$

3/33

For $\lambda \in \mathbb{Q}$ and $\lambda \neq 0$, 1 mod p,

$$\#\widetilde{E_{\lambda}}(\mathbb{F}_{p})=p+1-a_{p}(\lambda),$$

where

$$a_p(\lambda) = \sum_{x \in \mathbb{F}_p} \left(\frac{x(1-x)(1-\lambda x)}{p} \right).$$

The value $a_p(\lambda)$ is

- the trace of Frobenius map;
- the p-th Fourier coefficient of certain modular form.

 $a_p(\lambda)$ can be thought as a finite field analogue of the period

$$\Omega(E_{\lambda}) = \int_0^1 (x(1-x)(1-\lambda x))^{-1/2} dx.$$

For $\lambda \in \mathbb{Q}$ and $\lambda \neq 0$, 1 mod p,

$$\#\widetilde{E_{\lambda}}(\mathbb{F}_p) = p + 1 - a_p(\lambda),$$

where

$$a_p(\lambda) = \sum_{x \in \mathbb{F}_p} \left(\frac{x(1-x)(1-\lambda x)}{p} \right).$$

The value $a_p(\lambda)$ is

- the trace of Frobenius map;
- the p-th Fourier coefficient of certain modular form.

 $a_p(\lambda)$ can be thought as a finite field analogue of the period

$$\Omega(E_{\lambda}) = \int_0^1 (x(1-x)(1-\lambda x))^{-1/2} dx.$$

For $\lambda \in \mathbb{Q}$ and $\lambda \neq 0$, 1 mod p,

$$\#\widetilde{E_{\lambda}}(\mathbb{F}_p) = p + 1 - a_p(\lambda),$$

where

$$a_p(\lambda) = \sum_{x \in \mathbb{F}_p} \left(\frac{x(1-x)(1-\lambda x)}{p} \right).$$

The value $a_p(\lambda)$ is

- the trace of Frobenius map;
- the p-th Fourier coefficient of certain modular form.

 $a_{D}(\lambda)$ can be thought as a finite field analogue of the period

$$\Omega(E_{\lambda}) = \int_0^1 (x(1-x)(1-\lambda x))^{-1/2} dx.$$

₂F₁-hypergeometric Function

Let $a, b, c \in \mathbb{Q}$. The hypergeometric function ${}_2F_1\begin{bmatrix} a & b \\ & c \end{bmatrix}$ is defined by

$$_2F_1\begin{bmatrix} a & b \\ c & c \end{bmatrix} = \sum_{n=0}^{\infty} \frac{(a)_n(b)_n}{(c)_n n!} z^n,$$

where $(a)_n = a(a+1) \dots (a+n-1)$ is the Pochhammer symbol.

For fixed
$$a$$
, b , c and argument z , the function ${}_2F_1$
 $\begin{bmatrix} a & b \\ & c \end{bmatrix}$

- can be viewed as a quotient of periods on certain algebraic varieties.
- satisfies a hypergeometric differential equation, whose monodromy group is a triangle group.

₂F₁-hypergeometric Function

Let $a, b, c \in \mathbb{Q}$. The hypergeometric function ${}_2F_1\begin{bmatrix} a & b \\ & c \end{bmatrix}$ is defined by

$$_2F_1\begin{bmatrix} a & b \\ c & c \end{bmatrix} = \sum_{n=0}^{\infty} \frac{(a)_n(b)_n}{(c)_n n!} z^n,$$

where $(a)_n = a(a+1) \dots (a+n-1)$ is the Pochhammer symbol.

For fixed a, b, c and argument z, the function ${}_{2}F_{1}\begin{bmatrix} a & b \\ & c \\ \end{bmatrix}$

- can be viewed as a quotient of periods on certain algebraic varieties.
- satisfies a hypergeometric differential equation, whose monodromy group is a triangle group.

Hypergeometric Differential Equation

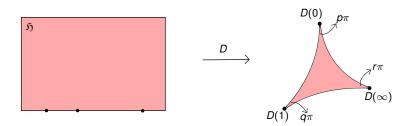
For fixed a, b, c and argument z, the function ${}_2F_1\begin{bmatrix} a & b \\ c & c \end{bmatrix}$ satisfies the hypergeometric differential equation

$$HDE(a, b, c; z) : F'' + \frac{(a+b+1)z-c}{z(1-z)}F' + \frac{ab}{z(1-z)}F = 0,$$

with 3 regular singularities at 0, 1, and ∞ .

Theorem (Schwarz)

Let f,g be two independent solutions to HDE $(a,b;c;\lambda)$ at a point $z \in \mathfrak{H}$, and let p = |1-c|, q = |c-a-b|, and r = |a-b|. Then the Schwarz map D = f/g gives a bijection from $\mathfrak{H} \cup \mathbb{R}$ onto a curvilinear triangle with vertices $D(0), D(1), D(\infty)$, and corresponding angles $p\pi, q\pi, r\pi$.



The universal cover of $\Delta(p, q, r)$ is one of the followings:

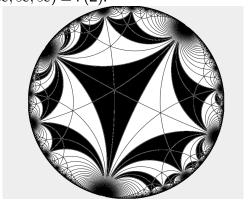
- the unit sphere (p+q+r>1);
- the Euclidean plane (p+q+r=1);
- the hyperbolic plane (p + q + r < 1).

When p, q, r are rational numbers in the lowest form with $0 = \frac{1}{\infty}$, let e_i be the denominators of p, q, r arranged in the non-decreasing order, the monodromy group is isomorphic to the triangle group (e_1, e_2, e_3) , where

$$(e_1, e_2, e_3) := \langle x, y \mid x^{e_1} = y^{e_2} = (xy)^{e_3} = id \rangle.$$

Example

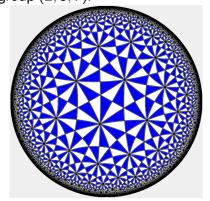
For ${}_2F_1\begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ 1 \end{bmatrix}$, the triangle $\Delta(p,q,r)=\Delta(0,0,0)$ is a hyperbolic triangle. The corresponding monodromy group is the arithmetic triangle group $(\infty,\infty,\infty)\simeq\Gamma(2)$.



Example

For ${}_2F_1\begin{bmatrix} \frac{1}{84} & \frac{13}{84} \\ & \frac{1}{2} \end{bmatrix}$; λ , the triangle $\Delta(p, q, r) = \Delta(1/2, 1/3, 1/7)$ is a

hyperbolic triangle. The corresponding monodromy group is the arithmetic triangle group (2, 3, 7).



• Euler's integral representation of the ${}_2F_1$ with c > b > 0

$${}_{2}P_{1}\begin{bmatrix} a & b \\ & c \end{bmatrix}; \lambda = \int_{0}^{1} x^{b-1} (1-x)^{c-b-1} (1-\lambda x)^{-a} dx$$
$$= {}_{2}F_{1}\begin{bmatrix} a & b \\ & c \end{bmatrix}; \lambda B(b, c-b),$$

where

$$B(a,b) = \int_0^1 x^{a-1} (1-x)^{b-1} dx = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$$

is the Beta function.

• Following Wolfart, we can realize ${}_{2}P_{1}\begin{bmatrix} a & b \\ c & \lambda \end{bmatrix}$ as a *period* of

$$C_{\lambda}^{[N;i,j,k]}: y^N = x^i (1-x)^j (1-\lambda x)^k,$$

where N = Icd(a, b, c), i = N(1 - b), j = N(1 + b - c), k = Na.

• Euler's integral representation of the ${}_2F_1$ with c > b > 0

$${}_{2}P_{1}\begin{bmatrix} a & b \\ & c \end{bmatrix}; \lambda = \int_{0}^{1} x^{b-1} (1-x)^{c-b-1} (1-\lambda x)^{-a} dx$$
$$= {}_{2}F_{1}\begin{bmatrix} a & b \\ & c \end{bmatrix}; \lambda B(b,c-b),$$

where

$$B(a,b) = \int_0^1 x^{a-1} (1-x)^{b-1} dx = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$$

is the Beta function.

• Following Wolfart, we can realize ${}_{2}P_{1}\begin{bmatrix} a & b \\ c \end{bmatrix}$; λ as a *period* of

$$C_{\lambda}^{[N;i,j,k]}: y^N = x^i (1-x)^j (1-\lambda x)^k,$$

where N = lcd(a, b, c), i = N(1 - b), j = N(1 + b - c), k = Na.

Examples

The function
$$B\left(\frac{12}{84}, \frac{29}{84}\right) {}_{2}F_{1}\left[\begin{array}{cc} \frac{1}{84} & \frac{13}{84} \\ & \frac{1}{2} \end{array}; \lambda\right]$$
 is a period of the curve

$$C_{\lambda}^{[84;71,55,1]}: y^{84} = x^{71}(1-x)^{55}(1-\lambda x).$$

For the curve
$$C_{\lambda}^{[6;4,3,1]}: y^6 = x^4(1-x)^3(1-\lambda x),$$

- $B\left(\frac{1}{3},\frac{1}{2}\right) {}_{2}F_{1}\left[egin{matrix} \frac{1}{6} & \frac{1}{3} \\ & \frac{1}{6} \end{smallmatrix} ; \lambda \right]$ is a period
- the corresponding triangle group is $\Gamma \simeq (3, 6, 6)$

Examples

The function $B\left(\frac{12}{84},\frac{29}{84}\right) {}_{2}F_{1}\left[\begin{array}{cc} \frac{1}{84} & \frac{13}{84} \\ & \frac{1}{2} \end{array}; \lambda\right]$ is a period of the curve

$$C_{\lambda}^{[84;71,55,1]}: y^{84} = x^{71}(1-x)^{55}(1-\lambda x).$$

For the curve $C_{\lambda}^{[6;4,3,1]}$: $y^6 = x^4(1-x)^3(1-\lambda x)$,

- $B\left(\frac{1}{3},\frac{1}{2}\right) {}_{2}F_{1}\left[\begin{array}{cc} \frac{1}{6} & \frac{1}{3} \\ \frac{5}{6} & \end{array}; \lambda\right]$ is a period.
- the corresponding triangle group is $\Gamma \simeq (3,6,6)$

Motivation

Study the arithmetic of

generalized Legendre curves

$$y^N = x^i (1-x)^j (1-zx)^k$$

which are parameterized by Shimura curves;

general hypergeometric varieties

$$y^{N} = x_{1}^{i_{1}} \cdots x_{n}^{i_{n}} (1 - x_{1})^{j_{1}} \cdots (1 - x_{n})^{j_{n}} (1 - zx_{1}x_{2}x_{3} \cdots x_{n})^{k}.$$

Motivation

Study the arithmetic of

generalized Legendre curves

$$y^N = x^i (1-x)^j (1-zx)^k$$

which are parameterized by Shimura curves;

general hypergeometric varieties

$$y^{N} = x_{1}^{i_{1}} \cdots x_{n}^{i_{n}} (1 - x_{1})^{j_{1}} \cdots (1 - x_{n})^{j_{n}} (1 - zx_{1}x_{2}x_{3} \cdots x_{n})^{k}.$$

Period Functions over Finite Fields

Let p be a prime, and $q = p^s$.

- Let $\widehat{\mathbb{F}_q^{\times}}$ denote the group of multiplicative characters on \mathbb{F}_q^{\times} .
- Extend $\chi \in \widehat{\mathbb{F}_q^{\times}}$ to \mathbb{F}_q by setting $\chi(0) = 0$.

Definition

Let $\lambda \in \mathbb{F}_q$, and A, B, $C \in \overline{\mathbb{F}_q^{ imes}}$. Define

$${}_{2}\mathcal{P}_{1}\begin{pmatrix}A&B\\C\end{pmatrix}\lambda = \sum_{x\in\mathbb{F}_{q}}B(x)\overline{B}C(1-x)\overline{A}(1-\lambda x).$$

This is a finite field analogue of

$$_{2}P_{1}\begin{bmatrix} a & b \\ c & c \end{bmatrix}$$
; $\lambda = \int_{0}^{1} x^{b-1} (1-x)^{c-b-1} (1-\lambda x)^{-a} dx$

Period Functions over Finite Fields

Let p be a prime, and $q = p^s$.

- Let $\widehat{\mathbb{F}_q^{ imes}}$ denote the group of multiplicative characters on $\mathbb{F}_q^{ imes}$.
- Extend $\chi \in \widehat{\mathbb{F}_q^{\times}}$ to \mathbb{F}_q by setting $\chi(0) = 0$.

Definition

Let $\lambda \in \mathbb{F}_q$, and A, B, $C \in \widehat{\mathbb{F}_q^{\times}}$. Define

$${}_{2}\mathcal{P}_{1}\left(egin{array}{c|c}A&B\\C\end{array}\right|\lambda\right)=\sum_{x\in\mathbb{F}_{q}}B(x)\overline{B}C(1-x)\overline{A}(1-\lambda x).$$

This is a finite field analogue of

$$_{2}P_{1}\begin{bmatrix} a & b \\ c & c \end{bmatrix} = \int_{0}^{1} x^{b-1} (1-x)^{c-b-1} (1-\lambda x)^{-a} dx$$

$$C_{\lambda}^{[N;i,j,k]}: y^N = x^i (1-x)^j (1-\lambda x)^k.$$

Let q be an odd prime power, and let i, j, k be natural numbers with $1 \le i, j, k < N$. Further, let $\eta_N \in \widehat{\mathbb{F}_q^{\times}}$ be a character of order N. Then for $\lambda \in \mathbb{F}_q \setminus \{0,1\}$,

$$\#\widetilde{X}_{\lambda}^{[N;i,j,k]_{n}} = "1 + q + \sum_{m=1}^{N-1} \sum_{x \in \mathbb{F}_{q}} \eta_{N}^{m} (x^{i} (1-x)^{j} (1-\lambda x)^{k}).$$

$$\#\widetilde{X}_{\lambda}^{[N;i,j,k],\cdot} = "1+q+\sum_{m=1}^{N-1} {}_2\mathcal{P}_1\left(\begin{matrix} \eta_N^{-km} & \eta_N^{im} \\ & \eta_N^{(i+j)m} \end{matrix} \middle| \lambda\right).$$

$$C_{\lambda}^{[N;i,j,k]}: y^N = x^i (1-x)^j (1-\lambda x)^k.$$

Let q be an odd prime power, and let i, j, k be natural numbers with $1 \le i, j, k < N$. Further, let $\eta_N \in \widehat{\mathbb{F}_q^{\times}}$ be a character of order N. Then for $\lambda \in \mathbb{F}_q \setminus \{0,1\}$,

$$\#\widetilde{X}_{\lambda}^{[N;i,j,k],*} = "1 + q + \sum_{m=1}^{N-1} \sum_{x \in \mathbb{F}_q} \eta_N^m (x^i (1-x)^j (1-\lambda x)^k).$$

$$\#\widetilde{X}_{\lambda}^{[N;i,j,k],,} = "1+q+\sum_{m=1}^{N-1} {}_2\mathcal{P}_1\left(\begin{matrix} \eta_N^{-km} & \eta_N^{im} \\ & \eta_N^{(i+j)m} \end{matrix} \middle| \lambda\right).$$

$$C_{\lambda}^{[N;i,j,k]}: y^N = x^i (1-x)^j (1-\lambda x)^k.$$

- For each $d \mid N$, there is a natural covering from $C_{\lambda}^{[N;i,j,k]}$ to $C_{\lambda}^{[d;i,j,k]}$.
- For a given curve $C_{\lambda}^{[N;i,j,k]}$, we let J_{λ}^{new} be the subvariety of $\operatorname{Jac}(X_{\lambda}^{[N;i,j,k]})$ which is not induced from $C_{\lambda}^{[d;i,j,k]}$ for all $d \mid N$, d < N.
- dim $J_{\lambda}^{new} = \varphi(N)$.
- Let K be the Galois closure of $\mathbb{Q}(\lambda)$. For any fixed prime ℓ , one can construct a compatible family of degree- $2\varphi(N)$ representations

$$ho_{\ell}^{\mathsf{new}}(\lambda): G_{\mathsf{K}} := \mathsf{Gal}(\overline{\mathsf{K}}/\mathsf{K}) o \mathsf{GL}_{2\varphi(\mathsf{N})}(\overline{\mathbb{Z}}_{\ell})$$

via the Tate module of J_{λ}^{new}

$$C_{\lambda}^{[N;i,j,k]}: y^N = x^i (1-x)^j (1-\lambda x)^k.$$

- For each $d \mid N$, there is a natural covering from $C_{\lambda}^{[N;i,j,k]}$ to $C_{\lambda}^{[d;i,j,k]}$.
- For a given curve $C_{\lambda}^{[N;i,j,k]}$, we let J_{λ}^{new} be the subvariety of $\operatorname{Jac}(X_{\lambda}^{[N;i,j,k]})$ which is not induced from $C_{\lambda}^{[d;i,j,k]}$ for all $d \mid N$, d < N.
- dim $J_{\lambda}^{new} = \varphi(N)$.
- Let K be the Galois closure of $\mathbb{Q}(\lambda)$. For any fixed prime ℓ , one can construct a compatible family of degree- $2\varphi(N)$ representations

$$ho_{\ell}^{\mathsf{new}}(\lambda): G_{\mathsf{K}} := \mathit{Gal}(\overline{\mathsf{K}}/\mathsf{K}) o \mathit{GL}_{2\varphi(N)}(\overline{\mathbb{Z}}_{\ell})$$

via the Tate module of J_{λ}^{new}

$$C_{\lambda}^{[N;i,j,k]}: y^N = x^i (1-x)^j (1-\lambda x)^k.$$

- For each $d \mid N$, there is a natural covering from $C_{\lambda}^{[N;i,j,k]}$ to $C_{\lambda}^{[d;i,j,k]}$.
- For a given curve $C_{\lambda}^{[N;i,j,k]}$, we let J_{λ}^{new} be the subvariety of $\operatorname{Jac}(X_{\lambda}^{[N;i,j,k]})$ which is not induced from $C_{\lambda}^{[d;i,j,k]}$ for all $d\mid N$, d< N.
- dim $J_{\lambda}^{new} = \varphi(N)$.
- Let K be the Galois closure of $\mathbb{Q}(\lambda)$. For any fixed prime ℓ , one can construct a compatible family of degree- $2\varphi(N)$ representations

$$\rho_{\ell}^{\mathsf{new}}(\lambda) : G_{\mathcal{K}} := \mathsf{Gal}(\overline{\mathcal{K}}/\mathcal{K}) \to \mathsf{GL}_{2\varphi(\mathcal{N})}(\overline{\mathbb{Z}}_{\ell})$$

via the Tate module of J_{λ}^{new} .

For any good prime $\mathfrak{p} \in \mathcal{O}_K$ with residue field \mathbb{F}_q ,

$$\mathrm{Tr} \rho_{\ell}^{\mathsf{new}}(\lambda)(\mathsf{Frob}_{\mathfrak{p}}) = -\sum_{m \in (Z/N\mathbb{Z})^{\times}} {}_{2}\mathcal{P}_{1} \begin{pmatrix} \eta_{N}^{-km} & \eta_{N}^{im} \\ & \eta_{N}^{(i+j)m} \end{pmatrix} \lambda \end{pmatrix}$$

Let ζ be a primitive Nth root of unity. The map $A_{\zeta}: (x,y) \mapsto (x,\zeta^{-1}y)$ induces an action on the ρ_{ℓ} . Consequently,

$$\rho_{\ell}^{\mathsf{new}}(\lambda)|_{G_{K(\zeta)}} = \bigoplus_{\mathsf{gcd}(m,N)=1} \sigma_{m,\ell}(\lambda).$$

Here $\sigma_{m,\ell}(\lambda)$ is 2-dimensional when (n, N) = 1.

17/33

For any good prime $\mathfrak{p} \in \mathcal{O}_K$ with residue field \mathbb{F}_q ,

$$\mathrm{Tr} \rho_{\ell}^{\mathsf{new}}(\lambda)(\mathsf{Frob}_{\mathfrak{p}}) = -\sum_{m \in (\mathbb{Z}/N\mathbb{Z})^{\times}} {}_{2}\mathcal{P}_{1} \begin{pmatrix} \eta_{N}^{-km} & \eta_{N}^{im} \\ & \eta_{N}^{(i+j)m} \end{pmatrix} \lambda \end{pmatrix}$$

Let ζ be a primitive Nth root of unity. The map $A_{\zeta}: (x,y) \mapsto (x,\zeta^{-1}y)$ induces an action on the ρ_{ℓ} . Consequently,

$$\rho_{\ell}^{\textstyle \mathsf{new}}(\lambda)|_{G_{\mathcal{K}(\zeta)}} = \bigoplus_{\gcd(m,N)=1} \sigma_{m,\ell}(\lambda).$$

Here $\sigma_{m,\ell}(\lambda)$ is 2-dimensional when (n, N) = 1.

17/33

Theorem (Fuselier, Long, Ramakrishna, Swisher, T.)

If gcd(m, N) = 1, then

$$-\mathrm{Tr}\sigma_{m,\ell}(\mathit{Frob}_q)$$
 and ${}_2\mathcal{P}_1\left(egin{matrix} \eta_N^{-\mathit{km}} & \eta_N^{\mathit{im}} \\ & \eta_N^{\mathit{m}(i+j)} \end{matrix} \middle| \lambda
ight)$

agree up to different embeddings of $\mathbb{Q}(\zeta_N)$ in \mathbb{C}

Theorem (Deines, Fuselier, Long, Swisher, Long,

Let N=3.4.6 and $N \nmid i + i + k$. Then for each

endomorphism algebra of J_{n}^{new} contains a quaternion alg

and only if

Theorem (Fuselier, Long, Ramakrishna, Swisher, T.)

If gcd(m, N) = 1, then

$$-\mathrm{Tr}\sigma_{m,\ell}(\mathit{Frob}_q)$$
 and ${}_2\mathcal{P}_1\left(egin{array}{ccc} \eta_N^{-km} & \eta_N^{im} \\ & \eta_N^{m(i+j)} \end{array} \middle| \lambda
ight)$

agree up to different embeddings of $\mathbb{Q}(\zeta_N)$ in \mathbb{C}

Theorem (Deines, Fuselier, Long, Swisher, T.)

Let N=3,4,6, and $N \nmid i+j+k$. Then for each $\lambda \in \overline{\mathbb{Q}}$, the endomorphism algebra of J_{λ}^{new} contains a quaternion algebra over \mathbb{Q} if and only if

$$B\left(\frac{i}{N},\frac{j}{N}\right)\Big/B\left(\frac{N-k}{N},\frac{i+j+k-N}{N}\right)\in\overline{\mathbb{Q}}.$$

For a given
$$\lambda$$
, let $S_m := {}_2\mathcal{P}_1 \left(egin{matrix} \eta_N^{-km} & \eta_N^{im} \\ & \eta_N^{(i+j)m} \end{matrix} \middle| \lambda \right)$.

 Atkin-Li-Liu-Long: If End(J^{new}) contains a quaternion algebra, then the function

$$F(\eta_N) := S_1/S_{N-1} = J(\eta_N^i, \eta_N^i)/J(\eta_N^{-k}, \eta_N^{i+j+k})$$

is a character.

• Yamamoto: The quotient

$$B\left(\frac{i}{N}, \frac{j}{N}\right) / B\left(-\frac{k}{N}, \frac{i+j+k}{N}\right)$$

is algebraic.

For a given
$$\lambda$$
, let $S_m := {}_2\mathcal{P}_1 \left(egin{matrix} \eta_N^{-km} & \eta_N^{im} \\ & \eta_N^{(i+j)m} \end{matrix} \middle| \lambda \right)$.

 Atkin-Li-Liu-Long: If End(J^{new}) contains a quaternion algebra, then the function

$$F(\eta_N) := S_1/S_{N-1} = J(\eta_N^i, \eta_N^j)/J(\eta_N^{-k}, \eta_N^{i+j+k})$$

is a character.

• Yamamoto: The quotient

$$B\left(\frac{i}{N}, \frac{j}{N}\right) / B\left(-\frac{k}{N}, \frac{i+j+k}{N}\right)$$

is algebraic.

For a given
$$\lambda$$
, let $S_m := {}_2\mathcal{P}_1 \left(egin{matrix} \eta_N^{-km} & \eta_N^{im} \\ & \eta_N^{(i+j)m} \end{matrix} \middle| \lambda \right)$.

 Atkin-Li-Liu-Long: If End(J^{new}) contains a quaternion algebra, then the function

$$F(\eta_N) := S_1/S_{N-1} = J(\eta_N^i, \eta_N^j)/J(\eta_N^{-k}, \eta_N^{i+j+k})$$

is a character.

• Yamamoto: The quotient

$$B\left(\frac{i}{N},\frac{j}{N}\right)/B\left(-\frac{k}{N},\frac{i+j+k}{N}\right)$$

is algebraic.

₂F₁-hypergeometric Functions over Finite Fields

$$\Gamma(a) \leftrightarrow g(A)$$

 $B(a,b) \leftrightarrow J(A,B)$

Define

$$_{2}\mathbb{F}_{1}\begin{bmatrix}A&B\\&C\end{bmatrix}$$
; $_{\lambda}$ $=\frac{1}{J(B,C\overline{B})}{_{2}}\mathcal{P}_{1}\begin{pmatrix}A&B\\&C\end{pmatrix}\lambda$,

which is a finite field analogue of

$$_{2}F_{1}\begin{bmatrix}a&b\\c;\lambda\end{bmatrix}=\frac{1}{B(b,c-b)}_{2}P_{1}\begin{bmatrix}a&b\\c;\lambda\end{bmatrix}$$

$$egin{aligned} a = rac{i}{N} & \leftrightarrow & A = \eta_N^i \ & & & & & g(A) \ B(a,b) = rac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)} & \leftrightarrow & J(A,B) = rac{g(A)g(B)}{g(AB)} ext{ if } A
eq \overline{A} \end{aligned}$$

Gauss' multiplication formula

$$\Gamma(ma)(2\pi)^{(m-1)/2} = m^{ma-\frac{1}{2}}\Gamma(a)\Gamma\left(a+\frac{1}{m}\right)\cdots\Gamma\left(a+\frac{m-1}{m}\right)$$

$$\downarrow$$

$$\prod_{\substack{\chi \in \widehat{\mathbb{F}_q^{\times}} \\ \chi^m = \varepsilon}} g(\chi\psi) = -g(\psi^m)\psi(m^{-m})\prod_{\substack{\chi \in \widehat{\mathbb{F}_q^{\times}} \\ \chi^m = \varepsilon}} g(\chi)$$

Hasse-Davenport relation

 $\leftrightarrow g(A)g(\overline{A}) = A(-1)q, A \neq \varepsilon$

 $\Gamma(a)\Gamma(1-a)=\frac{\pi}{\sin a\pi}, \ \ a\notin\mathbb{Z}$

$$a = \frac{i}{N} \qquad \leftrightarrow \qquad A = \eta_N^i$$

$$\Gamma(a) \qquad \leftrightarrow \qquad g(A)$$

$$B(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)} \qquad \leftrightarrow \qquad J(A,B) = \frac{g(A)g(B)}{g(AB)} \text{ if } A \neq \overline{A}$$

$$\Gamma(a)\Gamma(1-a) = \frac{\pi}{\sin a\pi}, \quad a \notin \mathbb{Z} \quad \leftrightarrow \quad g(A)g(\overline{A}) = A(-1)q, \quad A \neq \varepsilon$$

Gauss' multiplication formula

$$\Gamma(ma)(2\pi)^{(m-1)/2} = m^{ma-\frac{1}{2}}\Gamma(a)\Gamma\left(a+\frac{1}{m}\right)\cdots\Gamma\left(a+\frac{m-1}{m}\right)$$

$$\uparrow$$

$$\prod_{\substack{\chi \in \widehat{\mathbb{F}_q^{\times}} \\ \chi^m = \varepsilon}} g(\chi\psi) = -g(\psi^m)\psi(m^{-m})\prod_{\substack{\chi \in \widehat{\mathbb{F}_q^{\times}} \\ \chi^m = \varepsilon}} g(\chi)$$

Hasse-Davenport relation

Theorem (Fuselier-Long-Ramakrishna-Swisher-T.)

Let q be an odd prime power, $z \neq 1 \in \mathbb{F}_q^{\times}$, ϕ be the quadratic character, and $A \in \widehat{\mathbb{F}_q^{\times}}$ of order larger than 2. Then

$${}_{2}\mathbb{F}_{1}\begin{bmatrix}A & \phi A \\ & \phi\end{bmatrix} = \\ \begin{cases}0, & \text{if } z \text{ is not a square,} \\ \overline{A}^{2}(1+\sqrt{z}) + \overline{A}^{2}(1-\sqrt{z}), & \text{if } z \text{ is a square.}\end{cases}$$

This is the analogue to the classical result

$$_2F_1 \begin{bmatrix} a & a+rac{1}{2} \ & rac{1}{2} \end{bmatrix}; \ z = rac{1}{2} \left((1+\sqrt{z})^{-2a} + (1-\sqrt{z})^{-2a} \right).$$

Theorem (Fuselier-Long-Ramakrishna-Swisher-T.)

Let q be an odd prime power, $z \neq 1 \in \mathbb{F}_q^{\times}$, ϕ be the quadratic character, and $A \in \widehat{\mathbb{F}_q^{\times}}$ of order larger than 2. Then

$$\frac{1}{J(\phi A, \overline{A})} {}_{2}\mathcal{P}_{1} \begin{pmatrix} A & \phi A \\ \phi & z \end{pmatrix} = {}_{2}\mathbb{F}_{1} \begin{bmatrix} A & \phi A \\ \phi & z \end{bmatrix} = \begin{cases} 0, & \text{if } z \text{ is not a square,} \\ \overline{A}^{2}(1+\sqrt{z}) + \overline{A}^{2}(1-\sqrt{z}), & \text{if } z \text{ is a square.} \end{cases}$$

This is the analogue to the classical result

$$_2F_1\begin{bmatrix} a & a+rac{1}{2} \ & rac{1}{2} \ \end{bmatrix} = rac{1}{2}\left((1+\sqrt{z})^{-2a}+(1-\sqrt{z})^{-2a}
ight).$$

22/33

Theorem (T.-Yang)

Let p be a prime congruent to 1 modulo 4, $\mathfrak p$ be a prime ideal of $\mathbb Z[i]$ lying above p. Let $\psi_{\mathfrak p}$ be the quartic multiplicative character on $\mathbb F_p^\times$ satisfying $\psi_{\mathfrak p}(x)\equiv x^{(p-1)/4}\mod \mathfrak p$, for every $x\in\mathbb Z[i]$. Then, for $a\neq 0$, 1, if one of a and 1-a is not a square in $\mathbb F_p^\times$, we have

$$_{2}\mathcal{P}_{1}\begin{pmatrix}\phi\psi_{\mathfrak{p}}&\psi_{\mathfrak{p}}\\&\phi\end{pmatrix}a)=0,$$

and

$$_2\mathcal{P}_1 \left(egin{array}{cc} \phi\psi_\mathfrak{p} & \psi_\mathfrak{p} \ \phi \end{array} \middle| a
ight) = 2\psi_\mathfrak{p}(-1)\phi\left(1+b\right)\chi(\mathfrak{p}),$$

if $a=b^2$ for some $b\in \mathbb{F}_p^{\times}$, where χ is the Hecke character associated to the elliptic curve $E: y^2=x^3-x$ satisfying $\chi(\mathfrak{p})\in \mathfrak{p}$ for all primes \mathfrak{p} of Z[i].

The curve C_4 : $y^4 = x(x-1)(x-a)$ has genus 3 and it is a 2-fold cover of the following 3 elliptic curves

$$C_2: y^2 = x(x-1)(x-a),$$

$$E_+: y^2 = x^3 + (1+b)^2 x,$$

$$E_-: y^2 = x^3 + (1-b)^2 x.$$

We have similar results for ψ_n of order N=3, 6, 8, and 12.

The curve C_4 : $y^4 = x(x-1)(x-a)$ has genus 3 and it is a 2-fold cover of the following 3 elliptic curves

$$C_2: y^2 = x(x-1)(x-a),$$

 $E_+: y^2 = x^3 + (1+b)^2 x,$
 $E_-: y^2 = x^3 + (1-b)^2 x.$

We have similar results for $\psi_{\mathfrak{p}}$ of order N=3, 6, 8, and 12.

24/33

Quadratic Formula

Theorem (Fuselier, Long, Ramakrishna, Swisher, and T.)

Let $B, D \in \widehat{\mathbb{F}_q^{\times}}$, and set $C = D^2$. When $D \neq \phi$, $B \neq D$ and $x \neq \pm 1$, we have

$$\overline{C}(1-x) {}_{2}\mathbb{F}_{1}\begin{bmatrix} D\phi\overline{B} & D \\ & C\overline{B} \end{bmatrix}; \frac{-4x}{(1-x)^{2}} = {}_{2}\mathbb{F}_{1}\begin{bmatrix} B & C \\ & C\overline{B} \end{bmatrix}; x$$

This is the analogue to the classical result

$$(1-z)^{-c} \, {}_2F_1 \left[\begin{matrix} \frac{1+c}{2} - b & \frac{c}{2} \\ & c - b + 1 \end{matrix} \; ; \; \frac{-4z}{(1-z)^2} \right] = \, {}_2F_1 \left[\begin{matrix} b & c \\ & c - b + 1 \end{matrix} \; ; \; z \right].$$

Analogue to the classical result

$$_{2}F_{1}\begin{bmatrix} a & a-\frac{1}{2} \\ & 2a \end{bmatrix} = \left(\frac{1+\sqrt{1-z}}{2}\right)^{1-2a}.$$

Let q be an odd prime power, $z\in\mathbb{F}_q^{\times}$, ϕ be the quadratic character, and $A\in\widehat{\mathbb{F}_q^{\times}}$ of order larger than 2. Then

$${}_{2}\mathbb{F}_{1}\begin{bmatrix}A&\phi A\\&A^{2}\ ;\ z\end{bmatrix}=\begin{cases}0,&\text{if }\phi(1-z)=-1,\\ \overline{A}^{2}\left(\frac{1+\sqrt{1-z}}{2}\right)+\overline{A}^{2}\left(\frac{1-\sqrt{1-z}}{2}\right),&\text{if }\phi(1-z)=1.\end{cases}$$

Remark The Galois perspective tells us that "using the dictionary directly" does not work.

Analogue to the classical result

$$_{2}F_{1}\begin{bmatrix} a & a-\frac{1}{2} \\ & 2a \end{bmatrix} = \left(\frac{1+\sqrt{1-z}}{2}\right)^{1-2a}.$$

Let q be an odd prime power, $z\in\mathbb{F}_q^{\times}$, ϕ be the quadratic character, and $A\in\widehat{\mathbb{F}_q^{\times}}$ of order larger than 2. Then

$${}_{2}\mathbb{F}_{1}\begin{bmatrix}A&\phi A\\&A^{2}\ ;\ z\end{bmatrix}=\begin{cases}0,&\text{if }\phi(1-z)=-1,\\\overline{A}^{2}\left(\frac{1+\sqrt{1-z}}{2}\right)+\overline{A}^{2}\left(\frac{1-\sqrt{1-z}}{2}\right),&\text{if }\phi(1-z)=1.\end{cases}$$

Remark The Galois perspective tells us that "using the dictionary directly" does not work.

Analogue to the classical result

$$_{2}F_{1}\begin{bmatrix} a & a-\frac{1}{2} \\ & 2a \end{bmatrix} = \left(\frac{1+\sqrt{1-z}}{2}\right)^{1-2a}.$$

Let q be an odd prime power, $z\in\mathbb{F}_q^{\times}$, ϕ be the quadratic character, and $A\in\widehat{\mathbb{F}_q^{\times}}$ of order larger than 2. Then

$${}_{2}\mathbb{F}_{1}\begin{bmatrix}A&\phi A\\&A^{2}\ ;\ Z\end{bmatrix}=\begin{cases}0,&\text{if }\phi(1-z)=-1,\\\overline{A}^{2}\left(\frac{1+\sqrt{1-z}}{2}\right)+\overline{A}^{2}\left(\frac{1-\sqrt{1-z}}{2}\right),&\text{if }\phi(1-z)=1.\end{cases}$$

Remark The Galois perspective tells us that "using the dictionary directly" does not work.

Let $X_{\lambda}^{[6;4,3,1]}$ and $X_{\lambda}^{[12;9,5,1]}$ be the smooth models of

$$y^6 = x^4(1-x)^3(1-\lambda)$$
, and $y^{12} = x^9(1-x)^5(1-\lambda)$,

respectively.

Theorem (Fuselier, Long, Ramakrishna, Swisher, and T.)

Let
$$\lambda \in \overline{\mathbb{Q}}$$
 such that $\lambda \neq 0, \pm 1$. Let $J_{\lambda,1}^{new}$ (resp. $J_{\frac{-4\lambda}{(1-\lambda)^2},2}^{new}$) be the primitive part of the Jacobian variety of $X_{\lambda}^{[6;4,3,1]}$ (resp. $X_{\lambda}^{[12;9,5,1]}$). Then

$$J^{new}_{rac{-4\lambda}{(1-\lambda)^2},2}\sim J^{new}_{\lambda,1}\oplus J^{new}_{\lambda,1}$$

over some number field depending on λ .

Their corresponding arithmetic traingle groups are

Let $X_{\lambda}^{[6;4,3,1]}$ and $X_{\lambda}^{[12;9,5,1]}$ be the smooth models of

$$y^6 = x^4(1-x)^3(1-\lambda)$$
, and $y^{12} = x^9(1-x)^5(1-\lambda)$,

respectively.

Theorem (Fuselier, Long, Ramakrishna, Swisher, and T.)

Let
$$\lambda \in \overline{\mathbb{Q}}$$
 such that $\lambda \neq 0, \pm 1$. Let $J_{\lambda,1}^{new}$ (resp. $J_{\frac{-4\lambda}{(1-\lambda)^2},2}^{new}$) be the primitive part of the Jacobian variety of $X_{\lambda}^{[6;4,3,1]}$ (resp. $X_{\lambda}^{[12;9,5,1]}$). Then

$$J_{rac{-4\lambda}{(1-\lambda)^2},2}^{ extit{new}}\sim J_{\lambda,1}^{ extit{new}}\oplus J_{\lambda,1}^{ extit{new}}$$

over some number field depending on λ .

Their corresponding arithmetic traingle groups are

As an analogue of the classical hypergeometric series, we inductively define

$$\begin{array}{cccc}
 & A_1 & \dots & A_n \\
 & B_1 & \dots & B_n; \lambda
\end{array} = \\
& \sum_{y \in \mathbb{F}_q} A_n(y) \overline{A}_n B_n(1-y) \cdot {}_n \mathcal{P}_{n-1} \begin{bmatrix} A_0 & A_1 & \dots & A_{n-1} \\ & B_1 & \dots & B_{n-1}; \lambda y \end{bmatrix}$$

where A_i , $B_i \in \widehat{\mathbb{F}_q^{\times}}$, and $\lambda \in \mathbb{F}_q$.

Example: Consider the higher dimensional analogue of the legendre curve:

$$C_{n,\lambda}: \quad y^n = (x_1x_2\cdots x_{n-1})^{n-1}(1-x_1)\cdots (1-x_{n-1})(1-\lambda x_1x_2x_3\cdots x_{n-1})$$

- $C_{2,\lambda}$ are known as Legendre curves.
- Up to a scalar multiple, ${}_{n}F_{n-1}\begin{bmatrix} \frac{1}{n} & \frac{1}{n} & \cdots & \frac{1}{n} \\ 1 & \cdots & 1 \end{bmatrix}$ for any $1 \le j \le n-1$, when convergent, can be realized as a period of $C_{n+1,\lambda}$.
- Let $q=p^e\equiv 1\pmod n$ be a prime power. Let η_n be a primitive order n character and ε the trivial multiplicative character in $\widehat{\mathbb{F}_q^\times}$. Then

$$\# \textit{\textbf{C}}_{n,\lambda}(\mathbb{F}_q) = 1 + q^{n-1} + \sum_{i=1}^{n-1} {}_{n}\mathcal{P}_{n-1} \left(\begin{array}{ccc} \eta_n^i & \eta_n^i & \cdots & \eta_n^i \\ & \varepsilon & \cdots & \varepsilon \end{array}; \lambda \right).$$

◆□ > ◆□ > ◆ ■ > ◆ ■ → ● ● の Q ○

Example: Consider the higher dimensional analogue of the legendre curve:

$$C_{n,\lambda}: \quad y^n = (x_1x_2\cdots x_{n-1})^{n-1}(1-x_1)\cdots (1-x_{n-1})(1-\lambda x_1x_2x_3\cdots x_{n-1})$$

- C_{2,λ} are known as Legendre curves.
- Up to a scalar multiple, ${}_{n}F_{n-1}$ $\begin{vmatrix} \frac{1}{n} & \frac{1}{n} & \cdots & \frac{1}{n} \\ 1 & \cdots & 1 \end{vmatrix}$ for any $1 \le j \le n-1$, when convergent, can be realized as a period of $C_{n+1,\lambda}$.
- Let $q = p^e \equiv 1 \pmod{n}$ be a prime power. Let η_n be a primitive

$$\#C_{n,\lambda}(\mathbb{F}_q)=1+q^{n-1}+\sum_{i=1}^{n-1}{}_{n}\mathcal{P}_{n-1}\left(\begin{array}{ccc}\eta_n^i&\eta_n^i&\cdots&\eta_n^i\\\varepsilon&\cdots&\varepsilon\end{array};\lambda\right).$$

Example: Consider the higher dimensional analogue of the legendre curve:

$$C_{n,\lambda}: \quad y^n = (x_1x_2\cdots x_{n-1})^{n-1}(1-x_1)\cdots (1-x_{n-1})(1-\lambda x_1x_2x_3\cdots x_{n-1})$$

- $C_{2,\lambda}$ are known as Legendre curves.
- Up to a scalar multiple, ${}_nF_{n-1}\begin{bmatrix} \frac{1}{n} & \frac{1}{n} & \dots & \frac{1}{n} \\ 1 & \dots & 1 \end{bmatrix}$ for any $1 \leq j \leq n-1$, when convergent, can be realized as a period of $C_{n+1,\lambda}$.
- Let $q=p^e\equiv 1\pmod n$ be a prime power. Let η_n be a primitive order n character and ε the trivial multiplicative character in $\widehat{\mathbb{F}_q^\times}$. Then

$$\#C_{n,\lambda}(\mathbb{F}_q)=1+q^{n-1}+\sum_{i=1}^{n-1}{}_{n}\mathcal{P}_{n-1}\left(\begin{array}{ccc}\eta_n^i&\eta_n^i&\cdots&\eta_n^i\\ &\varepsilon&\cdots&\varepsilon\end{array};\lambda\right).$$

Local *L*-functions of $C_{3,1}$ and $C_{4,1}$

Theorem (Deines, Long, Fuselier, Swisher, T.)

Let η_3 , and η_4 denote characters of order 3, or 4, respectively, in \mathbb{F}_q^{\times} .

• Let $q \equiv 1 \pmod{3}$ be a prime power. Then

$$_3\mathcal{P}_2\left(egin{matrix}\eta_3 & \eta_3 & \eta_3 \ & arepsilon & arepsilon \end{smallmatrix};\mathbf{1}
ight)=J(\eta_3,\eta_3)^2-J(\eta_3^2,\eta_3^2).$$

(Greene's transformation formula)

• Let $q \equiv 1 \pmod{4}$ be a prime power. Then

$${}_{4}\mathcal{P}_{3}\left(\begin{matrix}\eta_{4}&\eta_{4}&\eta_{4}&\eta_{4}\\\varepsilon&\varepsilon&\varepsilon&\varepsilon\end{matrix};1\right)=J(\eta_{4},\phi)^{3}+qJ(\eta_{4},\phi)-J(\overline{\eta_{4}},\phi)^{2}.$$

(McCarthy's finite field version of Whipple's formula)

Local *L*-functions of $C_{3,1}$ and $C_{4,1}$

Theorem (Deines, Long, Fuselier, Swisher, T.)

Let η_3 , and η_4 denote characters of order 3, or 4, respectively, in $\widehat{\mathbb{F}_q^{\times}}$.

• Let $q \equiv 1 \pmod{3}$ be a prime power. Then

$$_{3}\mathcal{P}_{2}\begin{pmatrix} \eta_{3} & \eta_{3} & \eta_{3} \\ & \varepsilon & \varepsilon \end{pmatrix} = J(\eta_{3},\eta_{3})^{2} - J(\eta_{3}^{2},\eta_{3}^{2}).$$

(Greene's transformation formula)

• Let $q \equiv 1 \pmod{4}$ be a prime power. Then

$$_4\mathcal{P}_3\left(egin{matrix}\eta_4 & \eta_4 & \eta_4 & \eta_4 \\ & arepsilon & arepsilon & arepsilon \end{matrix};\mathbf{1}
ight)=J(\eta_4,\phi)^3+qJ(\eta_4,\phi)-J(\overline{\eta_4},\phi)^2.$$

(McCarthy's finite field version of Whipple's formula)

◆□▶ ◆□▶ ◆豊▶ ◆豊▶ 豊 夕♀(

Local L-functions of $C_{3,1}$ and $C_{4,1}$

Theorem (Deines, Long, Fuselier, Swisher, T.)

Let η_3 , and η_4 denote characters of order 3, or 4, respectively, in \mathbb{F}_a^{\times} .

• Let $g \equiv 1 \pmod{3}$ be a prime power. Then

$$_{3}\mathcal{P}_{2}\begin{pmatrix} \eta_{3} & \eta_{3} & \eta_{3} \\ & \varepsilon & \varepsilon \end{pmatrix} = J(\eta_{3},\eta_{3})^{2} - J(\eta_{3}^{2},\eta_{3}^{2}).$$

(Greene's transformation formula)

• Let $q \equiv 1 \pmod{4}$ be a prime power. Then

$$_4\mathcal{P}_3\left(egin{matrix} \eta_4 & \eta_4 & \eta_4 & \eta_4 \ & arepsilon & arepsilon & arepsilon \end{matrix}; 1
ight) = J(\eta_4,\phi)^3 + qJ(\eta_4,\phi) - J(\overline{\eta_4},\phi)^2.$$

(McCarthy's finite field version of Whipple's formula)

4 D > 4 A > 4 B > 4 B >

$$C_{4,1}: y^4 = (x_1x_2x_3)^3(1-x_1)(1-x_2)(1-x_3)(x_1-x_2x_3)$$

Ahlgren-Ono For any odd prime p,

$${}_{4}\mathcal{P}_{3}\begin{pmatrix} \eta_{4}^{2} & \eta_{4}^{2} & \eta_{4}^{2} & \eta_{4}^{2} \\ \varepsilon & \varepsilon & \varepsilon & \varepsilon \end{pmatrix} = -a(p) - p,$$

where a(p) is the pth coefficient of the weight-4 Hecke eigenform $\eta(2z)^4\eta(4z)^4$, with $\eta(z)$ being the Dedekind eta function.

The factor of the zeta function $Z_{C_{4,1}}(T,p)$ corresponding to

$$y^{2} = (x_{1}x_{2}x_{3})^{3}(1 - x_{1})(1 - x_{2})(1 - x_{3})(x_{1} - x_{2}x_{3})$$

İS

$$Z_{C_{4,1}^{old}}(T,p) = \frac{(1-a(p)T+p^3T^2)(1-pT)}{(1-T)(1-p^3T)}$$

$$C_{4,1}: y^4 = (x_1x_2x_3)^3(1-x_1)(1-x_2)(1-x_3)(x_1-x_2x_3)$$

Ahlgren-Ono For any odd prime p,

$$_{4}\mathcal{P}_{3}\begin{pmatrix} \eta_{4}^{2} & \eta_{4}^{2} & \eta_{4}^{2} & \eta_{4}^{2} \\ \varepsilon & \varepsilon & \varepsilon \end{pmatrix} = -a(p) - p,$$

where a(p) is the pth coefficient of the weight-4 Hecke eigenform $\eta(2z)^4\eta(4z)^4$, with $\eta(z)$ being the Dedekind eta function.

The factor of the zeta function $Z_{C_{4,1}}(T,p)$ corresponding to

$$y^2 = (x_1x_2x_3)^3(1-x_1)(1-x_2)(1-x_3)(x_1-x_2x_3)$$

is

$$Z_{C_{4,1}^{old}}(T,p) = \frac{(1-a(p)T+p^3T^2)(1-pT)}{(1-T)(1-p^3T)}.$$

- $_{4}\mathcal{P}_{3}\left(\begin{matrix} \eta_{4} & \eta_{4} & \eta_{4} & \eta_{4} \\ & \varepsilon & \varepsilon & \varepsilon \end{matrix}; 1 \right) = J(\eta_{4}, \phi)^{3} + qJ(\eta_{4}, \phi) J(\overline{\eta_{4}}, \phi)^{2}$
- Hasse-Davenport relation Let \mathbb{F} be a finite field and \mathbb{F}_s an extension field over \mathbb{F} of degree s. If $\chi \neq \varepsilon \in \widehat{\mathbb{F}^{\times}}$ and $\chi_s = \chi \circ N_{\mathbb{F}_s/\mathbb{F}}$ a character of \mathbb{F}_s . Then

$$(-g(\chi))^{s} = -g(\chi_{s}).$$

• The factor of $Z_{C_{r+1}(T,p)}$ corresponding to new part is

$$(1 + (\beta_{\rho}^{3} + \overline{\beta}_{\rho}^{3})T + \rho^{3}T^{2}) (1 + (\beta_{\rho} + \overline{\beta_{\rho}})\rho T + \rho^{3}T^{2})$$

$$(1 - (\beta_{\rho}^{2} + \overline{\beta}_{\rho}^{2})T + \rho^{2}T^{2}),$$

where $\beta_D = J(\eta_4, \phi)$

- $_{4}\mathcal{P}_{3}\left(\begin{matrix} \eta_{4} & \eta_{4} & \eta_{4} & \eta_{4} \\ & \varepsilon & \varepsilon & \varepsilon \end{matrix}; 1 \right) = J(\eta_{4}, \phi)^{3} + qJ(\eta_{4}, \phi) J(\overline{\eta_{4}}, \phi)^{2}$
- Hasse-Davenport relation Let \mathbb{F} be a finite field and \mathbb{F}_s an extension field over \mathbb{F} of degree s. If $\chi \neq \varepsilon \in \widehat{\mathbb{F}^{\times}}$ and $\chi_{s} = \chi \circ N_{\mathbb{F}_{s}/\mathbb{F}}$ a character of \mathbb{F}_{s} . Then

$$(-g(\chi))^{s} = -g(\chi_{s}).$$

• The factor of $Z_{C_{4,1}(T,p)}$ corresponding to new part is

$$\begin{split} &(1+(\beta_p^3+\overline{\beta}_p^3)T+p^3T^2)\left(1+(\beta_p+\overline{\beta_p})pT+p^3T^2\right)\\ &(1-(\beta_p^2+\overline{\beta}_p^2)T+p^2T^2), \end{split}$$

where $\beta_p = J(\eta_4, \phi)$.

Batyrev-Van Straten: Calabi-Yau manifolds whose Picard Fuchs equations are hypergeometric functions of the form

$${}_4F_3\begin{bmatrix} d_1 & 1-d_1 & d_2 & 1-d_2 \\ & 1 & 1 & 1 \end{bmatrix}, \quad d_1,d_2 \in \left\{\frac{1}{2},\frac{1}{3},\frac{1}{4},\frac{1}{6}\right\}.$$

Conjectures: z = 1

• [Cohen]

$$_{4}\mathbb{F}_{3}\begin{bmatrix} \eta_{3} & \overline{\eta}_{3} & \eta_{4} & \overline{\eta}_{4} \\ & \varepsilon & \varepsilon & \varepsilon \end{bmatrix} = -J(\eta_{3},\eta_{3})^{3} - J(\overline{\eta}_{3},\overline{\eta}_{3})^{3} + \eta_{12}(-1)p$$

• [Long] Numerically, Long finds the weight 4 cuspidal Hecke forms corresponding to $d_1 = \frac{1}{2}$ and $d_2 = \frac{1}{3}, \frac{1}{4}, \frac{1}{6}$.

Batyrev-Van Straten: Calabi-Yau manifolds whose Picard Fuchs equations are hypergeometric functions of the form

$${}_4F_3\begin{bmatrix} d_1 & 1-d_1 & d_2 & 1-d_2 \\ & 1 & 1 & 1 \end{bmatrix}, \quad d_1,d_2 \in \left\{\frac{1}{2},\frac{1}{3},\frac{1}{4},\frac{1}{6}\right\}.$$

Conjectures: z = 1

• [Cohen]

$${}_4\mathbb{F}_3\left[egin{array}{cccc} \eta_3 & \overline{\eta}_3 & \eta_4 & \overline{\eta}_4 \ & arepsilon & arepsilon & arepsilon \end{array}; \ \mathbf{1}
ight] = -J(\eta_3,\eta_3)^3 - J(\overline{\eta}_3,\overline{\eta}_3)^3 + \eta_{12}(-1)
ho$$

• [Long] Numerically, Long finds the weight 4 cuspidal Hecke forms corresponding to $d_1 = \frac{1}{2}$ and $d_2 = \frac{1}{3}, \frac{1}{4}, \frac{1}{6}$.

33 / 33