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e Partition functions of modules over VOA — vector-valued
modular forms.

e Theory of general vector-valued modular forms for integral
weight k € Z (Bantay, Gannon, Knopp, Marks, Mason,...)

e From number theory: vectors of theta functions, Weil
representation, Jacobi forms, mostly weight %Z (Borcherds,
Bruinier, Eichler-Zagier, Skoruppa, ...)
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Main Problem

Let p: SL2(Z) — GL(V) be a complex f.d. representation, M(p)
the space of holomorphic vector-valued modular forms of weight k,

M(p) = €D Mi(p),

kEZ

viewed as a graded module over M(1) = C|[Ea, Eg].
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Main Problem

Let p: SL2(Z) — GL(V) be a complex f.d. representation, M(p)
the space of holomorphic vector-valued modular forms of weight k,

M(p) = €D Mi(p),

kEZ

viewed as a graded module over M(1) = C|[Ea, Eg].

Theorem (Mason-Marks, Gannon, C.-Franc,...)

M(p) is a free module of rank n = dim p over M(1).

Main Problem

Given p, find the weights ki, ..., k, of the generators for M(p), the
generating weights.
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Vector valued modular forms

Let p: SL2(Z) — GL(V) be a complex, f.d. representation.

Definition
A p-valued modular form of weight k € Z is a holomorphic
function f : h — V such that

F(y7) = (7 + d)*p(v) f(7)

forall v = (25) € SLy(Z).
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Definition
A p-valued modular form of weight k € Z is a holomorphic
function f : h — V such that
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Vector valued modular forms

Let p: SL2(Z) — GL(V) be a complex, f.d. representation.

Definition
A p-valued modular form of weight k € Z is a holomorphic
function f : h — V such that

F(y7) = (7 + d)*p(v) f(7)

forall v = (25) € SLy(Z).

Let # = [SL2(Z)\b]
o v (cT + d)¥ gives a line bundle Ly over .Z.
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Vector valued modular forms

Let p: SL2(Z) — GL(V) be a complex, f.d. representation.

Definition
A p-valued modular form of weight k € Z is a holomorphic
function f : h — V such that

F(y7) = (7 + d)*p(v) f(7)

forall v = (25) € SLy(Z).

Let # = [SL2(Z)\b]
o v (cT + d)¥ gives a line bundle Ly over .Z.

e p gives a local system V(p) over .Z .

e f is a section of Vk(p) :== V(p) @ Lk.

12 /66
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Geography of .#

The compactification .# of .# is given by the diagram:

[{=F2, TI\B] 5~ [12\D*]

271'17'

[SL2(Z)\b] = .2 [112\D].
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Geography of .#

The compactification .# of .# is given by the diagram:

[{=F2, TI\B] 5~ [12\D*]

[SL2(Z)\b] = .« [112\D] .

Vector bundles on . correspond to triples (V, W, ¢), where V is a
vector bundle on .Z, W is a vector bundle on [u2\D] and

¢ 11V~ W

is a bundle isomorphism lying over 7 > q.
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(1) Ly = (Lx, My, ¢(z,7) = (2,q)), where M, = [u2\C x D],
action given by (£1)(z,q) = ((£1)*z, q).
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(1) Ly = (Lx, My, ¢(z,7) = (2,q)), where M, = [u2\C x D],
action given by (£1)(z,q) = ((£1)*z, q).

HO( , L) = M(1), the space of holomorphic modular forms of
weight k

(2) Sk = (Lx, My, ¢(2,7) = (g2, q))
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(1) Ly = (Lx, My, ¢(z,7) = (2,q)), where M, = [u2\C x D],
action given by (£1)(z,q) = ((£1)*z, q).

HO( , L) = M(1), the space of holomorphic modular forms of
weight k

(2) Sk = (Lx, My, ¢(2,7) = (g2, q))

HO(.#,Sy) = Sk(1), the space of cusp forms of weight k J
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Canonical extension of V(p)

e Let W(p) = [p2\V x D], action (£1)(v, q) = (p(£h)v, q)
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Canonical extension of V(p)

e Let W(p) = [u2\V x D], action (+1)(v, q) = (p(£k)v, q)
o letgp:Vxh—VxD, (v,7)— (e*L7v, q), where

(31) =t
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Canonical extension of V(p)

e Let W(p) = [u2\V x D], action (+1)(v, q) = (p(£k)v, q)
o letgp:Vxh—VxD, (v,7)— (e*L7v, q), where

(31) =t

* Vi(p) == (V(p), W(p), 1)
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Canonical extension of V(p)

e Let W(p) = [u2\V x D], action (+1)(v, q) = (p(£k)v, q)
o letgp:Vxh—VxD, (v,7)— (e*L7v, q), where

(31) = et

* Vi(p) == (V(p), W(p), 1)

Suppose all eigenvalues of L have real part in [0,1). Then
HO(A Vi k(p) =: Vi(p)) = Mk(p), the space of holomorphic
p-valued modular forms of weight k.
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Canonical extension of V(p)

e Let W(p) = [u2\V x D], action (+1)(v, q) = (p(£k)v, q)
o letgp:Vxh—VxD, (v,7)— (e*L7v, q), where

(31) = et

* Vi(p) == (V(p), W(p), 1)

Suppose all eigenvalues of L have real part in [0,1). Then
HO(A Vi k(p) =: Vi(p)) = Mk(p), the space of holomorphic
p-valued modular forms of weight k.

Suppose all eigenvalues of L have real part in (0,1]. Then
HO(A Vi k(p) =: Sk(p)) = Sk(p), the space of p-valued cusp
forms of weight k.

23 /66
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The free-module Theorem

Let

M(p) := EP M(p),

kEZ
viewed as a graded module over M(1) = C[Ey, E¢).
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The free-module Theorem

Let

M(p) := EP M(p),

kEZ
viewed as a graded module over M(1) = C[Ey, E¢).

Theorem (Mason-Marks, Gannon, C.-Franc,...)

(i) M(p) is a free module of rank n = dim p over M(1).

(i) Ifky < ... < kn, kj € Z, are the weights of the free
generators, then

n
> kj=12Tr(L).
j=1

(iii) If p is unitary, then 0 < k; < 11.
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Finding the generating weights

Main Question

Given p, find the weights ki, ..., k, of the generators for M(p), the
generating weights of M(p).
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Finding the generating weights

Main Question

Given p, find the weights ki, ..., k, of the generators for M(p), the
generating weights of M(p).

e We have

_ thi 4 4 the
dim Mi(p)tk = Z[t
é Im k(p) (1 — t4)(1 — t6) € |[ ]]

so the question is equivalent to finding dim My(p) for all k.
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The metaplectic group

e The metaplectic group Mpy(Z) is the unique nontrivial
central extension

1 — o — Mpy(Z) — SLa(Z) — 1.
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The metaplectic group

e The metaplectic group Mpy(Z) is the unique nontrivial
central extension

1 — o — Mpy(Z) — SLa(Z) — 1.

o (A=(25),0(1)) € Mpy(Z), A € SLo(Z), ¢* = c7 + d,
T Eb.
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The metaplectic group

e The metaplectic group Mpy(Z) is the unique nontrivial
central extension

1 — o — Mpy(Z) — SLa(Z) — 1.

o (A=(25),0(1)) € Mpy(Z), A € SLo(Z), ¢* = c7 + d,
T Eb.

e Multiplication:

(A1, 91(7)) - (A2, 2(7)) = (A1A2, ¢1(A2T)d2(7)).
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The metaplectic group

e The metaplectic group Mpy(Z) is the unique nontrivial
central extension

1 — o — Mpy(Z) — SLa(Z) — 1.

o (A=(25),0(1)) € Mpy(Z), A € SLo(Z), ¢* = c7 + d,
T Eb.

e Multiplication:

(A1, 91(7)) - (A2, 2(7)) = (A1A2, ¢1(A2T)d2(7)).

e Generators: T:=((§1),1), S:=((23).v7)

31/66
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Vector valued modular forms of weight k € %Z

Let p: Mpy(Z) — GL(V) be complex, finite-dimensional
representation.

Definition

A p-valued modular form of weight k € %Z is a holomorphic
function f : h — V such that

f(yr) = ¢** p(M) f(7)

for all M = (v, ¢) € Mp,(Z).
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Vector valued modular forms of weight k € %Z

Let p: Mpy(Z) — GL(V) be complex, finite-dimensional
representation.

Definition

A p-valued modular form of weight k € %Z is a holomorphic
function f : h — V such that

f(yr) = ¢** p(M) f(7)

for all M = (v, ¢) € Mp,(Z).

v

e Growth conditions at oo are specified by a matrix L such that
p( T) — e27r/L

e Denote by M(p) (resp. Sk(p)) the space of holomorphic
modular forms (resp. cusp forms).
33/66
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The free-module Theorem

Let

M(p) = €D Mi(p),

keiz

viewed as a module over M(1) = C[Ea, E¢].
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The free-module Theorem

Let

M(p) = €D Mi(p),

keiz
viewed as a module over M(1) = C[Ea, E¢].

Theorem (C., Franc, 2015)

(i) M(p) is a free module of rank n = dim p over M(1).

(i) Ifky < ... < kn, kj € %Z, are the weights of the free
generators, then

> kj=12Tr(L).
j=1

(iii) If p is unitary, then 0 < k; < 23/2.
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Finding the generating weights

Main Question

Given p, find the weights ki, ..., k, of the generators for M(p), the
generating weights of M(p).
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Finding the generating weights

Main Question

Given p, find the weights ki, ..., k, of the generators for M(p), the
generating weights of M(p).

e We have
R
> dim My (p)t* = Z[t*?
: Im k(p) (1 — t4)(1 — t6) € |[ ]]
keiz

so the question is equivalent to finding dim M (p) for all k.
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Finite quadratic modules

Definition

A finite quadratic module is a pair (D, q) of a finite abelian group
D together with a quadratic form g : D — Q/Z, whose associated
bilinear form we denote by b(x, y) := q(x + y) — q(x) — q(y)-
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Finite quadratic modules

Definition

A finite quadratic module is a pair (D, q) of a finite abelian group
D together with a quadratic form g : D — Q/Z, whose associated
bilinear form we denote by b(x, y) := q(x + y) — q(x) — q(y)-

For m > 0 even, let A = (Z,x — Px?), a rank 1 lattice. The
discriminant form of A is the finite quadratic module

X2
Am = (Z/mZ,X = %)

39 /66
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The Weil Representation

Let (D, q) be a finite quadratic module. Let C(D) be the C-vector
space of functions f : D — C. This space has a canonical basis
{0x}xep of delta functions, i.e. dx(y) = dx,.

40 / 66



Vector-valued modular forms Half-integral weight The WEeil representation Generating Weights

The Weil Representation

Let (D, q) be a finite quadratic module. Let C(D) be the C-vector
space of functions f : D — C. This space has a canonical basis
{0x}xep of delta functions, i.e. dx(y) = dx,.

Definition

The Weil representation pp : Mp,(Z) — GL(C(D)) is defined
with respect to the basis {dx}xcp by

po(T)(6) = e 295,

\/—s1g D)Z oy
pp(S)(6:) = Yo 3 ity
|D yeD

2mig(x) — \/fig(D) .

where \/— Y xeD €

41 /66
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Generating weights of Weil representations

Main Question
Given D, find the generating weights of M(pp).

(Equivalent to finding dim Mk(pp) for all k € 37Z).
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Generating weights of Weil representations

Main Question
Given D, find the generating weights of M(pp).

(Equivalent to finding dim Mk(pp) for all k € 37Z).

E.g.
For D = A, k € %+Z, we have
Mk(pa,,) =~ Jk+1/2,m/2’
i.e. Jacobi forms of weight k + 1/2, index m/2 and
M(pp) = Jm/2

the (free) C[E4, Es]-module of Jacobi forms of index m/2.

)
43 /66
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Attempt to compute dim My (pp) via Riemann-Roch

e Form the vector bundle W (pp) over .41, = [Mp,(Z)\b] .
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Attempt to compute dim My (pp) via Riemann-Roch

e Form the vector bundle W (pp) over .41, = [Mp,(Z)\b] .

o Compute x(Wk(pp)) = dim Mk(pp) — dim H'(Wi(pp))
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Attempt to compute dim My (pp) via Riemann-Roch

e Form the vector bundle W (pp) over .41, = [Mp,(Z)\b] .
o Compute x(Wk(pp)) = dim Mk(pp) — dim H'(Wi(pp))

e When is the H! term zero?
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Attempt to compute dim My (pp) via Riemann-Roch

e Form the vector bundle W (pp) over .41, = [Mp,(Z)\b] .
o Compute x(Wk(pp)) = dim Mk(pp) — dim H'(Wi(pp))

e When is the H! term zero?

Theorem (Case Azp, p > 3 prime, k € 1/2 + Z)

Let L, such that e™» = pp, (T), and with eigenvalues in [0,1).

54+ k
p— 5 Tr{Lp) + (—1(G+ 25 e

_ 5+ k 1
XWk(pa,,)) = ETH

Here

47 / 66
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Case Ay

For p = PAsys P prime, we have:

(i) M(p) =0 if k < 0.
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For p = PAsys P prime, we have:

(i) M(p) =0 if k < 0.

(i) Mi(p) = 0 if k € Z.
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For p = PAsys P prime, we have:

(i) M(p) =0 if k < 0.

(i) Mk(p) =0 if k € Z.

Serre Duality: dim H'(Wi(pp)) = dim So_ (")
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For p = PAsys P prime, we have:

(i) Mi(p) =0 if k < 0.

(i) Mk(p) =0 if k € Z.

Serre Duality: dim H'(Wi(pp)) = dim So_ (")

(iii) dim M(p) = x(Wk(p)), k > 3/2
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For p = PAsys P prime, we have:

(i) M(p) =0 if k < 0.

(i) Mk(p) =0 if k € Z.

Serre Duality: dim H'(Wi(pp)) = dim So_ (")

(iii) dim M(p) = x(Wk(p)), k > 3/2

(iv) My/o(p) = 0 (Serre-Stark, Skoruppa)
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For p = PAsys P prime, we have:

(i) Mi(p) =0 if k < 0.

(i) Mk(p) =0 if k € Z.

Serre Duality: dim H'(Wi(pp)) = dim So_ (")

(iii) dim M(p) = x(Wk(p)), k > 3/2

(iv) My/o(p) = 0 (Serre-Stark, Skoruppa)

(v) dim Ms/5(p) = x(W32(p)) (i.e. H' =0, Skoruppa).

53 /66
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Computations

For p =5, the generating weights for M(pa,,) are

1
5(7,9,11,11,13,15,15,17,19,21)
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Computations

For p =5, the generating weights for M(pa,,) are

1
5(7,9,11,11,13,15,15,17,19,21)

For p =7, the generating weights for M(pa,,) are

1
5(7,7,9,11,11,11,13,13,15,15,17,17,19,21)
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Computations

For p =5, the generating weights for M(pa,,) are

1
5(7, 9,11,11,13,15,15,17,19,21)

For p =7, the generating weights for M(pa,,) are

1
5(7, 7,9,11,11,11,13,13,15,15,17,17,19,21)

Try some larger primes p = 61,1151,4139,13109, ...

56 /66
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Generating weights for m =2p, p > 5

weight = 1/2 | multiplicity = 0

3/2| 3a(p+1) = 3 Tr(Lp) =6 — et
5/2| 2(p—1)—3Tr(Lp) + 0

7/2 | E(p+1)—3Tr(Ly) — 6 +ey
9/2 | 32(p—1) = 3 Tr(Lp) + 0+ -

11/2 | 3(p+1) + ey

13/2 | 3(p—1) —e_

15/2 | Z2(p+ 1)+ 3 Tr(Lp) +6 — ex

17/2 | 52 (p—1)+ 3 Tr(Lp) — 6 — e

19/2 | 52(p+1) + L Tr(Lp) + 4

21/2 | F(p— 1)+ 3 Tr(Lp) — 0 + e

23/2 10 58 /66
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Distribution as p — o0

Theorem (C., Franc, Kopp, 2016)
Let p be an odd prime and let m = 2p, p > 3. Then

p-l—%hp—% p=1 (mod 4),
Tr(Lp) =< p+2h,—z p=3 (mod38),
p+h,—% p=7 (mod8).

where hy, is the class number of Q(\/—p).
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Distribution as p — o0

Theorem (C., Franc, Kopp, 2016)
Let p be an odd prime and let m = 2p, p > 3. Then

p-l—%hp—% p=1 (mod 4),
Tr(Lp)=4p+2h,—% p=3 (mod8),
p+h,—% p=7 (mod8)

where hy, is the class number of Q(\/—p).

Corollary

If p=pa,, then

TrlLy) —1/2, p—oo.
2p

60 /66
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Distribution of weights for m = 2p, as p — oo

weight = 1/2 ‘ proportion = 0
3/2|1/48
5/2|3/48
7/2]5/48
9/2|7/48

11/2 | 8/48
13/2 | 8/48
15/2 | 7/48
17/2 | 5/48
19/2 | 3/48
21/2]1/48
23/2 (0 61/66
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Future directions

e Compute the weight distribution for all m.
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Future directions

e Compute the weight distribution for all m.

e How general is this distribution, among families of Weil
representations? Among all unitary representations?
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Future directions

e Compute the weight distribution for all m.

e How general is this distribution, among families of Weil
representations? Among all unitary representations?

e Deduce bounds for weight 1 (scalar) modular forms?
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Future directions

Compute the weight distribution for all m.

e How general is this distribution, among families of Weil
representations? Among all unitary representations?

Deduce bounds for weight 1 (scalar) modular forms?

Applications to CFT?
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Future directions

Compute the weight distribution for all m.

e How general is this distribution, among families of Weil
representations? Among all unitary representations?

Deduce bounds for weight 1 (scalar) modular forms?

Moral of the story

Applications to CFT?

Generating weights might be easier to study than dimensions
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