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Calculating spectra is useful because it enables
spectroscopists to

@ predict the position (and intensity) of unobserved transitions

@ verify the accuracy of or refine potential energy surfaces

e extract information about interactions

@ assign observed spectra
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A new method for computing ro-vibrational spectra that is
particularly efficient for Van der Waals clusters

@ Clusters consist of stable molecules held together by Van der
Waals (VdW) interactions.

@ Design a basis that exploits the weakness of coupling between
intra- and inter-monomer coordinates, but with which
matrix-vector products and hence iterative eigensolvers are
efficient.

@ Apply it to compute ro-vibrational levels of the water dimer for
which a lot of detailed experimental information is available,

e important for understanding liquid water, solutions, some
biological processes
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Water dimer
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We do not force the monomers to be rigid.

Allowing monomers to vibrate is important for some VdW
clusters (for which coupling between intra- and inter-monomer
coordinates is significant).

Benchmark for assessing the accuracy of the rigid-monomer
approximation.

Calculating the spectrum of a VdW cluster is difficult because
large amplitude motion makes harmonic models poor.
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How does one solve the Schroedinger equation ?

@ represent wavefunctions with basis functions

Un(r,0) =Y i fi(r,0)
k

@ compute eigenvalues and eigenvectors of the Hamiltonian
matrix
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r, basis eigenvalues, energies,
H—7H-— _g & .
eigenvectors wavefunctions

— Spectrum



We want to be able to deal with large amplitude motion

Normal coordinates are not appropriate for molecules with large
amplitude motion.

For VAW clusters, it is best to use inter- and intra-monomer
vibrational coordinates.
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For water dimer

mm——————
=
(V/

N

The intra-monomer coordinates are g4 = {R14, R2a,04} and
g8 = {Ris, RoB, 0B}
The inter-molecular coordinates are

Q - {r0705A75A7’YA7a37/837’}/B}-
The rotational coordinates are {«, 5}.
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For a dimer, four frames are used to define the coordinates :

@ A space-fixed (SF) frame

@ The dimer-fixed frame, whose orientation is specified by the
two polar angles, o and 3, that orient rg in the SF frame.

@ Two monomer-fixed (MF) frames attached to the two
monomers and whose orientation is specified by Euler angles.

24BAY4, MF frame (A)
SF frame 27, DF frame
:‘”B"’B”B MF frame (B)

10 / 41



For water dimer a convenient basis is

XEARLA)X22(0a)X 22 (Roa) X XEE (Ri)x%E (08)X2E (R2B)
X2 (r0) x DI (cva, Ba,va)DIE" (o, Be;v8) Dijic (e, 8, 0)

In this basis

@ there are simple equations for all matrix elements of angular
terms in the kinetic energy operator (KEO)

@ singularities in the KEO cause no trouble.
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About 10 1-d functions required for each vibrational coordinate.

= (2J + 1) * 103N=% multi-d basis functions required.

This is the curse of dimensionality.

The Hamiltonian matrix is
@ too large to calculate
@ too large to store in memory

@ too large to diagonalise
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How large is too large ?

To calculate only the J = 0 levels of H,O, one requires a
~ 103 x 103 matrix, ~ 0.008 GB

Add a single atom :
to calculate only the J = 0 levels of CH,O, one requires a

~ 10% x 10 matrix, ~ 8000 GB

For methane, to calculate the J = 0O levels, one requires a
~ 102 x 10° matrix, ~ 8 x 10° GB

For water dimer, to calculate the J = 0 levels, one requires a
~ 102 x 10'? matrix, ~ 8 x 10%> GB

13 /41



Diagonalization can be avoided by using iterative methods

@ Energy levels, intensities, rate constants, cross sections can be
computed from time-independent methods that require only
evaluating matrix-vector products

@ Matrix-vector products can be done without storing a
Hamiltonian matrix or even computing its elements

@ Only a few vectors are stored

@ Using multi-dimensional quadrature does not significantly
increase the cost
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Lanczos Algorithm

@ Amongst the eigenvalues of T are eigenvalues of H

@ Eigenvectors of H are obtained from those of T
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Even for J = 0, a product basis is too large for water dimer

It would be necessary to use ~ 1012 basis functions (8000 GB for
one vector) !



When an iterative eigensolver by itself is not enough

Methods that exploit a sum-of-products PES

@ Prune the product basis : Halonen and Child, TC and Wang,
Poirier, Tannor

@ Use optimized 1-d basis functions : MCTDH
@ Coupled cluster type methods, Christiansen

@ Use a sum-of-products basis that is not a direct product
basis : work with Arnaud Leclerc and Phillip Thomas

Methods that exploit a multimode decomposition (ANOVA)

@ Prune the product basis using an electronic-structure-theory
motivated scheme
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When an iterative eigensolver by itself is not enough

Methods designed to use a general potential

@ Prune the product basis and use a Smolyak nondirect product
quadrature (similar ideas can be used to fit potentials). TC
and Avila, Lauvergnat

@ Use “simply contracted” basis functions and avoid the need to
store the potential on a full grid by storing an intermediate
matrix
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Kinetic energy operator (KEO)

T = TA(qA; pA)jA) + TB(qB; pBajB) + Tint(Q; pr07jA7jB7 J)
A_Ll( 4y ( G(da) o(qa) ) ( PA )
=3 ( A la ) o'(aa) T(qa) A

]_ 62 2 a . . 2 . .
Tt = =50 -+ B0(10) |40t 555+ i + o)~ 2(im +Jo) 3

TA and TEB are standard triatomic ro-vibrational KEOs, but the
rotational coordinates are wrt the DF frame and not a SF frame.

Brocks, van der Avoird, Sutcliffe, Tennyson, Mol. Phys. 50, 1025 (1983)
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Any known triatomic KEO can be copied and pasted into the full
KEO.

One can use bisector or Eckart axes. One can use Radau or Jacobi
vectors. (We use bisector axes and Radau coordinates.)

Well known ro-vibrational triatomic basis sets can be used for the
monomer coordinates.
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H=TA4 TP+ Tine + V
V = VA(ga) + VB(gs) + AV(qa, 98, Q)

H=Hpa +TA+TA +TE+TE + Tint

where

Hest = T) 4+ T2 + VA(qa) + VB(g8) + AV(qa, g8, Q)



The [6-+6] adiabatic approach of Leforestier

Leforestier makes a vibrational basis by solving

Hfast¢v(qAa as, Q) = S(Q)¢V(QA7 as; Q)

and then solving

[Tine + T2+ TP + £(Q)Ixk(Q) = Exxi(Q)

in a basis

L(Q) * Djx(a, 8,0)

where

L(Q) = (Q|ao; ja: ka, ma; jg, ks, mg)
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He uses

and

[0~ (6v(qa, q8; Q)IT(qa)|dv(qa, 98; Q)

@ The intra-monomer basis functions depend parametrically on

Q.
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Our simply-contracted basis function method

Re-write

H= Tin+ H*+ H? + AV(qa, 8, Q) + T/ + TP + Tl + TS

cor cor
Solve
HX¢VX = ng¢VX X = A') B .

Solve the Schroedinger equation in the basis

bva(qa)dvs (98)L(Q) Divix(a, 8,0)
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Matrix elements

(V'|H|v)
1. 1 1
=§JI\<V'|FA| >JA+2 (V'|oapalv >JA+21A< | phaalv)ia

TA TA,

r

1 1, 1,
+2 ( |rB‘ >B+2JB< |UBPB‘ >B+2JB< |PBUB‘ v)jB

v~

TB TB

r cor

+ TintOyr,y + (V'|AV(qa, gb, Q)|v) + (Ev, + Evg)our v

e A diagonal block of (V'|AV/(qa, gb, Q)|v) is a
reduced-dimension PES. The required number of blocks
depends on the importance of the coupling and the desired
accuracy.
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Disadvantages of Leforestier's approach

@ Inherent approximations
o Discard T4, and T2

cor cor
o Because ¢,(qa, gs; Q) depends parametrically on Q,

(dv(ga, g8; Q)T (ga)ldv(qa, gs; Q) depends on Q. To avoid
this Leforestier makes additional approximations.

o Non-adiabatic coupling is neglected (Leforestier uses a single

®v(qa, 98; Q))

o Computational cost

e Two 3-d “fast” Schroedinger equation must be solved at about
a million slow geometries. We solve two 3-d “fast” Schroedinger
equations only once.
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How do we deal with (V'|AV/(qa, g, Q)|v)

This is critical.

The most obvious approach is,

(L'){V'|AV(qa, g, Q)IV)L|)
= > wawsl'(Qa)v'((q4)s. (98)s) AV((9a)s. (d8)s, Qu)
a

v((9a)s, (98)5)L(Qa)

This requires storing AV/((qa)s, (98)3Qa) Which is an array with
~ 102 components.

AV((qa)s,(gB)3Qx) is a 12th order or 12-d tensor.
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(L'[(V'|AV(qa, g8, Q)IV)|L)
—Z Tur.alV1AV(qa, 38, Qa)[V)(T L

= Z TL’,a v’,v;a(Tt)a,L 5
@

where

TL’,a = \/W_aLI(Qa)



@ F is a 3rd order or 3d tensor ( 3 < 12).

Owing to the fact that there are very few |v), the memory
cost of storing F is small.

@ F matrix elements for different v can be computed on
different cores.

@ The calculation of F is the most time consuming step. On
1024 cores it takes 20 hours ( 10° @ points; 103 g points).

The same sort of idea was used previously for methane and CH;r
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[(v'alAV (g, Qu)lve) | (alL)

/ _a

L o L” e o o o
L v v VHE e e a Fi 0 0 0
v Vi vy vEE . o 0 £y, 0 0

= (WLAV|oL) = (/| AV [va)
oo ver | oyee | o 0 0 FY 0

0 0 0
4-index array 3-index array: F-matrix
. . NZN2 N} .
= 3-index array is much smaller —£=% = = ~ millions
N.NZ T N,



On SAPT-5st PES

AV barrier height, A tunneling splittings A Acceptor Tunneling

/s -oe%s  — -OJ
_ -1 A~ -1 0;,., = -
AV =156 cm™ ', A ~ 10 cm T i \q?’

Donor-Acceptor Interchange Tunneling

AV = 185 em™, A ~ 0.3 cm ™! o;wozx . .‘:.}" — k‘“%

Donor (Bifurcation) Tunneling

AV = 636 cm™", A ~ 0.02 em™ /.;ﬁoi% _ ?:ﬁo . \‘?EQ

= Only the acceptor tunneling path does not break the H-bond. It therefore has the
lowest barrier and the largest splitting.

Figure from Groenenboom, Wormer, van der Avoird, Mas, Bukowski, Szalewicz, JCP, 113, 6702(2000)



Energy level pattern

@ The appropriate permutation-inversion group is Gig
@ There are 8 equivalent equilibrium structures
e Tunnelling splits each state into 8 states (6 levels)

————

02(0)

D

Al

Vi

01 0
(0) N 2
. ~—— g+
Al
Acceptor _, Interchange _,  Bifurcation

J=K=0 = Tunneling Tunneling Tunneling

Dvke. JCP 66. 492 (1977)
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Why are problems with multiple minima difficult ?

Basis functions must have amplitude in all the wells
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Convergence errors of ET vibrational levels of (H20), (in cm™!)

Ny — 1 3 10 22 48

Eew — 1. 1600. 3800. 5400. 7500.

ZPE 10.34 4.63 0.67 0.09 -1108.49
GS -0.02 0.01 0.00 0.00 0.41
DT 0.29 -0.13 0.02 0.00 62.03
AW 0.26 0.35 0.03 0.01 109.17
AT 0.39 0.23 0.05 0.01 117.18
1.29 0.09 0.03 0.01 129.69

-0.11 -0.02 0.05 0.02 143.34

1.66 0.20 0.05 0.01 171.82

0.85 0.35 0.07 0.02 189.06

= E* levels appear in the triple sub-folk of each vibrational state.

= N, =10 is the final basis chosen with errors smaller than 0.1 cm™.
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Comparison with the adiabatic results for E* levels of (H50)s (in cm™?).

N, =48 [6-+6]D diff.
Eeyy = 7500.

ZPE -1108.49 -1108.27 0.22
GS 0.41 0.26 -0.15
DT 62.03 61.84 -0.19
AW 109.17 109.06 -0.11
AT 117.18 117.43 0.25
129.69 129.60 -0.09

143.34 143.30 -0.04

171.82 171.95 0.13

189.06 189.32 0.26

* We also computed the DMC ZPE on the PES, -1109(2) cm™ in good agreement with our
variational calculation
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"
02(0) \— 5 ¥ b2 B
The most important (largest) tunneling splitting : e Uy
acceptor tunneling splitting. 2
Obs. [6+6]D  This work
'
a(K = 0) N.A. 12.75 12.50 A < a(0) = 03(0) — 01(0)
a(K =1) NA. 3.10 2.98
a(K =0)+a(K =1) 13.92 15.84 15.48 o
——
Cal. — Obs. 0.00 1.92 1.56 /] PR
01(0) \_ T I
—
K=o o fomor o e ., St

= Our acceptor tunneling splitting is 0.4 cm! less than the [6+6]D result. This reduces
the difference between theory and experiment from 1.9 to 1.5 cm™.
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Bifurcation splittings b (K) and by(K) (in cm™?t) .

Expt. [64+6]D  This work CC-pol-

85(6D)

b1(0) N/A  -0.0490 0.0333 0.0218
bi(1) N/A 01235  -0.0296  -0.0198
([b1(0)] + [B1(1)])/2 0.0227 0.0862 0.0314 0.0208
b2 (0) N/A 0.1198 0.0331 0.0216
by(1) N/A 00521  -0.0360  -0.0255
(Ib2(0)] + [b2(1)])/2 0.0249 0.0859 0.0346 0.0236

02(0) <: r b2 B

A a(0) = 02(0) — 01(0)
[T =5
01(0) \— o o1 Et

e —
4

Acceptor _, Interchange _, Bifurcation
Tunnelina Tunnelina Tunnalina
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Conclusion

@ A new method for computing ro-vibrational spectra of
molecules or clusters whose vibrational coordinates can be
divided into inter-monomer and intra-monomer groups

@ Does not require using a sum-of-products PES
@ Works even for PESs with multiple wells

@ Able to cope with large amplitude motion because it does not
depend on normal coordinates

@ Use both contracted basis functions and a Lanczos eigensolver

@ Store a small intermediate matrix to obviate the need to store
the potential on a full-d grid

@ For HyO dimer our results agree well with those obtained from
a [6-+6] adiabatic approach. For HOD dimer differences will be
larger
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Because the basis is huge it would be far too costly to form the
potential matrix and explicitly multiply the matrix with vectors.

To illustrate the computation of a matrix-vector product consider
Wirm = Z Vl’m’,/m Xim
Im

replace

Vit im = / do / &Yy (0, D)V (0, 8) Yim(0, &)

~ Z T/’}}; Qmry V(05,94) Qmy Tig
B
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o = S5 T Qi V(0526) Qo Th 51

Im By

Wim =Y T Qun V(05:05) Y Quy Y T/B xim
y m /

B

The largest vector is labelled by the grid indices.
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