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Variation 1: Littlewood-Richardson coefficients

Indexed by partitions: [T7T] Hﬂ Hjj H:l E

@ Tensor product multiplicities

VN @ V(u) = @ auv

@ Symmetric function coefficients

— v
S\Sy = g Sy and Su/N = E S
o

@ Intersections in the Grassmannian
Cl\//, = X ﬂXM N Xy
@ Cohomology of the Grassmannian structure constants
oxUo, = Z €\, 0y

vCrect
(Banff) October 16, 2013 2 /28



Combinatorial description

Littlewood—Richardson rule
¢, = # skew tableaux t of shape /A and weight 1 such that row(t) is a
reverse lattice word.
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Combinatorial description

Littlewood—Richardson rule
¢, = # skew tableaux t of shape /A and weight 1 such that row(t) is a
reverse lattice word.

Example

SE}]SE}]:.“JF?S— qFoec

211 121 o 112 = 2, =2

1] 1] 2]

Gordon James (1987) on the Littlewood-Richardson rule:

“Unfortunately the Littlewood-Richardson rule is much harder to
prove than was at first suspected. The author was once told that
the Littlewood-Richardson rule helped to get men on the moon

but was not iroved until after the‘ i ot there.”
(Banff) October 16, 2013 3/28



Crystal graph

Action of crystal operators ¢;, f;, s; on tableaux:
© Consider letters i and i 4+ 1 in row reading word of the tableau
@ Successively “bracket” pairs of the form (i + 1, /)
@ Left with word of the form i"(i + 1)°
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Crystal graph

Action of crystal operators ¢;, f;, s; on tableaux:
© Consider letters i and i 4+ 1 in row reading word of the tableau
@ Successively “bracket” pairs of the form (i + 1, /)
@ Left with word of the form i"(i + 1)°

i +1)t ifs>0
0 else

e(i"(i+1)°) = {

{F10+IFH if r>0

ATG1)) = else

si(i"(i+1)°) = i*(i + 1)

(Banff) October 16, 2013 4 /28



Crystal reformulation

[3]

_
sy
N

3[3[3]
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Crystal reformulation

’? — € — ’?

— fr

1[1]2E]3]3] 1[1]22]3]3]

e: change leftmost unpaired 3 into 2
f>: change rightmost unpaired 2 into 3
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Crystal reformulation

[3]

_
sy
N

3] 3]3]

— € — E

— fr

e: change leftmost unpaired 3 into 2
f>: change rightmost unpaired 2 into 3

—_
N

2] 3] 3]

b where all e;(b) = 0 (highest weight)
— connected component
«— irreducible

(Banff)
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Crystal reformulation

|? — € — E

— fr

—_
—_
N
[
=
N

3] 3]3] 2] 3] 3]

e: change leftmost unpaired 3 into 2
f>: change rightmost unpaired 2 into 3

b where all e;(b) = 0 (highest weight)
— connected component

«— irreducible

Reformulation of LR rule

¢, counts tableaux of shape v/\ and weight p which are highest weight.

v

(Banff) October 16, 2013 5/28



Decomposition
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The set F,, of complete flags:
O=WoccWyC---C Ww,=C"

subvarieties indexed by permutations of S,
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The set F,, of complete flags:
o=WycWyc---cW,=C"

subvarieties indexed by permutations of S,

Intersections in the flag variety ]

Count points in the intersection ¢, = X, N X, N Xyyw

uv

Structure constants in cohomology of the flag variety

w
oy,Uoy, = E C 0w

WES,
Schubert polynomial coefficients ]
6,6, =) 6,
w

(Banff) October 16, 2013 8 /28



Variations 1 and 2 quantized

Grassmannian

Gromov-Witten invariants
Quantum cohomology
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Variations 1 and 2 quantized

Grassmannian

Gromov-Witten invariants
Quantum cohomology

count rational curves of degree d count equivalence classes of rational
that meet X, X,,, Xp curves of multidegree d in F,,
_ d NY _ d
O\N*q Oy = q )\uo-l/ Oy*qOy = q (U, v, W>dJW0W
vCrect wES,
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Variations 1 and 2 quantized

Grassmannian

Gromov-Witten invariants
Quantum cohomology

count rational curves of degree d count equivalence classes of rational
that meet X, X,,, Xp curves of multidegree d in F,,
d d
O\ %q Oy = Z q NKH oy Ou*q Oy = Z q° (u, v, W)d Ouew
vCrect wES,
Polynomial coefficients modulo an ideal ]
Ring of symmetric functions ZIX1y oy Xni 1y -« s Gn—1]
Schur functions quantum Schubert polynomials
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Modulo an ideal is non-trivial

S\Sy = Z ci’us,,—i— Z cKus,,

vCrect v rect

N® Z[q] - QH*(Gran)

o when A C rectangle
S\ —
+q*o5 when X\ ¢ rectangle
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Modulo an ideal is non-trivial

S\Sy = Z ci’us,,—i— Z cKus,,

vCrect v rect

N ® Z[q] — QH*(Gran)
{O‘)\ when A C rectangle
Sy —

+q*o5 when X\ ¢ rectangle

§ d
O *q UN = q NK;I Ov

vCrect

It is not enough to compute in A or in Z[x1,...,Xn; q1,- -, qn—1]
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Crystal operators and flag Gromov-Witten invariants

° [Littlewood-Richardson templatej

o | Variations

e (k-Schur functions)

° [Crystal operators on affine factorizationsj
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k-Schur functions

@ Originally an empirical study [Lascoux, Lapointe, Morse], for A; < k,

Ha(ia, ) = S Ka(a, ) AP (x; 1),
1<k

where K,(q,t) € N[t].
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k-Schur functions

@ Originally an empirical study [Lascoux, Lapointe, Morse], for A; < k,

Ha(ia, ) = S Ka(a, ) AP (x; 1),
1<k

where K,(q,t) € N[t].

o Crazy difficulty led to family of functions {s,gk)}#lgk defined in terms
of a k-Pieri rule where it was conjectured that Aftk)(x; 1) = sﬁk)

° {sff)}mgk basis for A = Z[hy, ..., hy]

(big) _
@5, =5,
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v

Variation 1q: quantized ¢

A
Wess-Zumino-Witten model of Verlinde algebra J
Gromov-Witten invariants of the Grassmannian )
O)*q Oy = Z q? NS, ov

vCrect
[v|=|Al+p|—dn
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Variation 1q: quantized Chu

Wess-Zumino-Witten model of Verlinde algebra J
Gromov-Witten invariants of the Grassmannian J
O)*q Oy = Z q? NS, ov

vCrect
[v|=|Al+p|—dn

Symmetric function coefficients ]

@ Schur coefficients in product of Schur functions modulo an ideal
@ k-Schur coefficients in a product of k-Schur functions

s>(\k) s/(f) = Z NS, slgk) + Z c{’# slgk)

D=(a*,vCrect) D#(a*,vCrect)
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Variation 1q: quantized Chu

Wess-Zumino-Witten model of Verlinde algebra J
Gromov-Witten invariants of the Grassmannian J
O)*q Oy = Z q? NS, ov

vCrect
[v|=|Al+p|—dn

Symmetric function coefficients ]

@ Schur coefficients in product of Schur functions modulo an ideal
@ k-Schur coefficients in a product of k-Schur functions

s>(\k) s/(f) = Z NS, slgk) + Z c{’# slgk)

D=(a*,vCrect) D#(a*,vCrect)

( Computation in A J
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Variation 2q: Flag Gromov-Witten invariants

Affine Grassmannian
Gr = SL(n,C((¢)))/SL(n,C][[t]) n=k+1

homology of affine Grassmannian — quantum cohomology of Grassm.

!

quantum cohomology of flags
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Affine Grassmannian
Gr = SL(n,C((¢)))/SL(n,C][[t]) n=k+1

homology of affine Grassmannian — quantum cohomology of Grassm.

!

quantum cohomology of flags

Product of k-Schurs Flag Gromov-Wittens
k k
( ) ( ) = Z Cy 1/51/ Oy *gq UV:ZWqud<U7V7W>d0W0W
k-bounded partitions permutations of Sy
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Variation 2q: Flag Gromov-Witten invariants

Affine Grassmannian
Gr = SL(n,C((¢)))/SL(n,C][[t]) n=k+1

homology of affine Grassmannian — quantum cohomology of Grassm.

!

quantum cohomology of flags

Product of k-Schurs Flag Gromov-Wittens
k k
( ) ( ) = Z Cy 1/51/ Oy *gq UV:ZWqud<uav7W>d0W0W
k-bounded partitions permutations of Sy

Theorem (Morse-Lapointe)

Precise relation between C,,,, and (u,v,w)q (up to relabeling).
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Indexing sets

k-bounded partition k + 1-core (k=4)
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Indexing sets

k-bounded partition k + 1-core (k=4)

1
A = o hl:l:lj = 2[3[4]0]1]

ol
[ (en]
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Indexing sets

k-bounded partition k + 1-core (k=4)

- b - e

Action of affine symmetric group on cores:

o[l

[ (@]

1
2[3]4]0]1]

all boxes of residue i/ added
siT = T+ < all boxes of residue i removed

nothing
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Indexing sets

k-bounded partition k + 1-core (k=4)

- b - e

Action of affine symmetric group on cores:

o_h(ul
[ (@]

1
2[3]4]0]1]

all boxes of residue i/ added
siT = T+ < all boxes of residue i removed

nothing

0 =2 [0] %52 [Q[1[2[314]
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Indexing sets

k-bounded partition k + 1-core (k=4)

- b - e

Action of affine symmetric group on cores:

[ (@]

1
2[3]4]0]1]

o[l

all boxes of residue i/ added
siT = T+ < all boxes of residue i removed

nothing
[47011]
0 -2, [0] =% [O[1121314] % [O[1[2]314]011]
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Indexing sets

k-bounded partition k + 1-core (k=4)

1
- - % — 2[314101T]

Action of affine symmetric group on cores:

o_h(ul
[ (@]

all boxes of residue i/ added

siT = T+ < all boxes of residue i removed

nothing
[47011] §0|1\
0 =2, [0] 2% [0[1121314] =% [0[1213141011] = [0[1[213141011]
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Indexing sets

k-bounded partition k + 1-core (k=4)

Action of affine symmetric group on cores:

o_h(ul
[ (@]

1
2[3]4]0]1]

all boxes of residue i/ added
siT = T+ < all boxes of residue i removed

nothing

3]
[47011] 41011
0 =2, [0] 2% [0[1121314] =% [0[1213141011] = [0[1[213141011]

Affine Grassmannian element in §k+1/5k+1:

(Banff)

W)\ = 5351505453525150

October 16, 2013 15 / 28



Affine symmetric group

Affine symmetric group S, J

(50,51, ---,51—-1) Where s;s; = s;s;
sisiv1Si = si+1Sisi+1 (all indices mod n)
s?=1

(Banff) October 16, 2013 16 / 28



Affine symmetric group

Affine symmetric group S, J

(50,51, ---,51—-1) Where s;s; = s;s;

sisiv1Si = si+1Sisi+1 (all indices mod n)
s?=1

Example

For n = 3, 51525150 = S2515250
5251505250 = 5251525052 = 5152515052
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Affine symmetric group

Affine symmetric group S, J
(50,51, ---,51—-1) Where s;s; = s;s;
sisiv1Si = si+1Sisi+1 (all indices mod n)
s?=1
Example

For n = 3, 51525150 = S2515250
5251505250 = 5251525052 = 5152515052
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All reduced words end in sy
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Affine horizontal strips and Pieri rule

Schur function Pieri rule p

h,s) = Z Sy

v
v/ horizontal r-strip
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Affine horizontal strips and Pieri rule

Schur function Pieri rule p

h,s) = Z Sy

v
v/X horizontal r-strip

k-Schur function Pieri rule J

hrsg\k) = Z 51(/k)

v
v/ weak horizontal r-strip
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Affine horizontal strips and Pieri rule

Schur function Pieri rule p

h,s) = Z Sy

v
v/X horizontal r-strip

k-Schur function Pieri rule J

hrsg\k) = Z 51(/k)

v
v/ weak horizontal r-strip

v/ is weak horizontal r-strip if WVVV/\_l is cyclically decreasing of length r.
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Cyclically decreasing permutation

Definition

w € S5, is cyclically decreasing if every reduced word has no j — 1
preceeding j (mod n).
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Cyclically decreasing permutation

Definition

w € S5, is cyclically decreasing if every reduced word has no j — 1
preceeding j (mod n).

In particular, every letter in the reduced word appears at most once. l
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Cyclically decreasing permutation

Definition

w € S5, is cyclically decreasing if every reduced word has no j — 1
preceeding j (mod n).

In particular, every letter in the reduced word appears at most once.

Example

For n = 4, cyclically decreasing: w = sysps3 and W = s35;
not cyclically decreasing w = s3s159
0

2

v

(Banff) October 16, 2013 18 / 28



k-tableaux or affine factorizations

Schur case J

tableau < sequence of horizontal strips

3]

[y
[y
N

3[3[3]
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k-tableaux or affine factorizations

Schur case J

tableau < sequence of horizontal strips

[3]
1[2]2]3 “
1[1]2[3]3][3] <

N
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k-tableaux or affine factorizations

Schur case J

tableau < sequence of horizontal strips

3]
annE | "4 "=8
1[1]2]3]3[3] « C

N
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k-tableaux or affine factorizations

Schur case J

tableau < sequence of horizontal strips

[3]
| 13 “=arq *
1[1]2]3]3[3] « C C

N
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k-tableaux or affine factorizations

Schur case J

tableau < sequence of horizontal strips

3

w

N
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k-tableaux or affine factorizations

Schur case J

tableau < sequence of horizontal strips

3

w

N

k-Schur case )

horizontal strip < cyclically decreasing element
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k-tableaux or affine factorizations

Schur case J

tableau < sequence of horizontal strips

3

w

N

k-Schur case )

horizontal strip < cyclically decreasing element

Definition

A k-tableau or affine factorization of shape A and weight « is a
factorization of Wy = v" - - - v1 such that:

o (W) = |of

e V' is cyclically decreasing of length «;
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k-tableaux or affine factorizations (continued)

Definition
A k-tableau or affine factorization of shape A and weight « is a
factorization of Wy = v" - - - v! such that:

o ((Wy) = |a

e v' is cyclically decreasing of length «;
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k-tableaux or affine factorizations (continued)

Definition

A k-tableau or affine factorization of shape A and weight « is a
factorization of Wy = v" - - - v! such that:

o ((Wy) = |o

e v' is cyclically decreasing of length «;

Example

Affine factorizations of W)\ = 5355351590 = $535S1S0 € Sa

with weight a = (21°)  {(s3)(s2)(s3)(5150); (52)(53)(52)(51%0) }

with weight a = (122) {(s352)(s351)(s0)}

(Banff) October 16, 2013 20 / 28
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@ k-Schur functions

o Crystal operators on affine factorizations
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Schur times k-Schur

(k)

k-Schur coefficients in s, s;™” include

o all fusion coefficients
o coefficients in Schur times a Schubert polynomial

e Gromov-Witten invariants for flags (u, v, w)4 where u has one descent
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Schur times k-Schur

(k)

k-Schur coefficients in s, s;™” include

o all fusion coefficients
o coefficients in Schur times a Schubert polynomial

e Gromov-Witten invariants for flags (u, v, w)4 where u has one descent

Can use Giambelli formula:

Su sék) = det (hy;+j-1); sék)

where W is an affine factorization of weight a.

(Banff) October 16, 2013 22 /28



Crystal operators on affine factorizations

Recall e; pairing and action:
E pairingl? & E
2 —

3]3]3] 1]1

—
ey
N
N
w

[

[
[y
—
N

2|3]3]
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Crystal operators on affine factorizations

Label cells diagonally

E pairing |3—0 & m
112|123 e 12(25(24|35 I 15(25(24|35
3[3]3] 14[15]25[37[3s[30] 14[15]25]27]38]30]

—
ey
N

(Banff) October 16, 2013 23 /28



Crystal operators on affine factorizations

Label cells diagonally

’? pairingm & E
1]2]2]3 — [12]2s]24]2: —  [12[2s]24]3:
1]1]2[3]3]3] 14]15[2|37]3s[30] 14|15]2:]27[36[30]

(98750) (643)
——

~——
label of 3's label of 2's

(Banff) October 16, 2013 23 /28



Crystal operators on affine factorizations

Label cells diagonally

’? pairingm & E
1]2]2]3 — [12]2s]24]2: —  [12[2s]24]3:
1]1]2[3]3]3] 14]15[2|37]3s[30] 14|15]2:]27[36[30]

(98750) (643) "€ (98750) (643)

—_——— —— —_——— ——
label of 3's label of 2's label of 3's label of 2's

from left to right:
pair x € 3's with smallest y € 2's that is bigger than x
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Crystal operators on affine factorizations

Label cells diagonally

’? pairingm & E
1]2]2]3 — [12]2s]24]2: —  [12[2s]24]3:
1]1]2[3]3]3] 14]15[2|37]3s[30] 14|15]2:]27[36[30]

(98750) (643) ™%(98750) (643) -2 (9850) (7643)
——— N - ——— N - N N——
label of 3's label of 2's label of 3's label of 2's label of 3's label of 2's

from left to right:
pair x € 3's with smallest y € 2's that is bigger than x
delete rightmost unpaired z € 3's and add z — t to 2's

Definition

The above defines & and f; on factorizations
W=v"--vie(s,...,8,...,5,_1) where v' is cyclically decreasing.

(Banff) October 16, 2013 23 /28



Main Results (with Morse)

For partition pn C (a"~?) and affine Grassmannian v, let

Sy sék) = Z CZV\”/ s‘(zlk) .

Ifwi=t e (So, 5009FRpooo ,Sn_1>,
Clg 7 of affine factorizations of Wv—1 with weight u killed by all &;.
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Main Results (with Morse)

For partition pn C (a"~?) and affine Grassmannian v, let

Sy sék) = Z CZV\”/ s‘(zlk) .

Ifwi=t e (So, 5009FRpooo ,Sn_1>,
Clg 7 of affine factorizations of Wv—1 with weight u killed by all &;. )
Proof J

Via sign-reversing involution using §;&; following Remmel-Shimozono.
All terms cancel in Giambelli formula except highest weight elements..
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Corollaries

Schubert polynomial expansion of sy &,, for any w € S, and partition A
where |A¢| < n.
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Fusion rules NKu for any A, i and v such that

e v/u has a cut-point
@ or \ satisfies |A°| < n.
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Corollaries
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Corollary

Fusion rules NKu for any A, i and v such that
e v/u has a cut-point
@ or \ satisfies |A°| < n.

Corollary
Gromov-Witten invariants for flags (u, v, w), when u has one descent and
v,wgwl € S;

(v, is v shifted by r; wg, element obtained from rth k-rectangle)
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o Gromov-Witten invariants
Closer study of crystal structure on affine factorizations and crystal
operators on dual k-tableaux

o t-analogue of k-Schur functions and relation to energy on KR crystals
(charge plus offset)

@ Schur expansion for LLT polynomials

Thank you !
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