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Notation

R CR" reduced irreducible root system
a; € R simple roots

o) € RY simple coroots

S; simple reflections

W = (s;) Weyl group

(w) length function

wo long element

Q=P Za; root lattice

P weight lattice

Untwisted affinization of R (results hold more generally)

RY + 76 affine coroots

ay =—0"+46 0¥ = highest coroot

W =Q x W affine Weyl group

Wet = P xW extended affine Weyl group

IT = Wext/Wag = P/Q  length zero elements
W =1 Ly (o) dir(w) where w € Wey, wt(w) € P, dir(w) € W
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Nonsymmetric Macdonald polynomials

The nonsymmetric Macdonald polynomials Ex(X;q,v) lie in the group
algebra Q(q,v)[P] = Q(g,v)[X* : X € PJ; they form a basis.

They are variants of the symmetric Macdonald polynomials Py (X;q,v),
which form a basis of Q(q,v)[P]" and generalize the Weyl characters
(¢ = v?), Hall-Littlewood polynomials (g = 0), Jack polynomials

(v? = ¢%), and other important families of symmetric polynomials.

The E) can be constructed (and are most naturally defined) using double
affine Hecke algebras (Cherednik).
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algebra Q(q,v)[P] = Q(g,v)[X* : X € PJ; they form a basis.
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The E) can be constructed (and are most naturally defined) using double
affine Hecke algebras (Cherednik).

Demazure-Lusztig operators

-1
— —Y A = xw)
T, = vs; + X — 1( —1) where w(X) =X

These operators are an important ingredient in the construction of the F.

Tp:=T, T}

i, 1s independent of the reduced expression w = s;, --- s;

0"
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Example for R = By

_ 1—v)(1+wv B
E(—LO)(X;Q>U) = X( L0) + (1)# (X(O’l) + X(O, 1))
—qu

(L=0)(1+0)(1—gv") )
(1 —qu?)(1 — qv3)(1 + qv?)
(1 —v)(1+2v)(1+ qv?)(1 — qv?)
(1 —qv?)(1 — qv3)(1 + qv?)

Remarks
@ Sage calculates E)(X;q,v) for any (affine) type.
o E\(X;q,v) is well-defined at ¢™' = 0 or v*! = 0.

@ Let m, denote the minimal coset representative of t for Wex/W.
Then X* appears in E)\(X;q,v) iff m, < my in Bruhat order.



Some specializations of F)\(X;q,v)

q=0 q = o0
p-adic lwahori-Spherical p-adic lwahori-Whittaker
functions functions
(lon) (Brubaker-Bump-Licata)
v=20 V=00
level-one affine Demazure
characters 77

(lon)
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Alcove paths

Let u,w € Wy and fix a reduced expression w = 7s;, - - - s;,.

Definition
An alcove path of type (i1,...,4¢) starting at u is a sequence of elements
UQ, UL, - - -, Uy € Wext satisfying

up=um and ug € {ug_1,ux_15;,} for k > 1.



Alcove paths

Let u,w € Wy and fix a reduced expression w = 7s;, - - - s;,.

Definition
An alcove path of type (i1,...,4¢) starting at u is a sequence of elements
UQ, UL, - - -, Uy € Wext satisfying

up=um and ug € {ug_1,ux_15;,} for k > 1.
By abuse of notation, we write B(u,w) for the set of alcove paths of type
(i1,...,1p) starting at u.
Say that p has a +-fold at step k if up = up_1 and

up—1(ay,) € Z6 + RY.



Visualizing alcove paths
Alcoves are connected components of R™ \ [J v ms1 : (@, z) +m = 0}.

Wag acts simply-transitively on the set of alcoves.

Examples: Alcove paths for R = Bs. ap = (1,-1), as =1(0,1)
5 —(1/2,1/2)
5182 _ | 51
$1828150 | 515281 id
(0,0)

u =1d, w = $152518¢
no folds



(1/2,1/2)

| id
(0,0) e<—2
52
‘2
|8281
B
2525150

u = ld, W = S$1598150
+-fold at step 1
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Ram-Yip formula

Recall that m is the minimal coset representative of ¢y for Wey /W
Define wy € W by t\ = myw,.

Let wt(p) = wt(uy), dir(p) = dir(uy).
Theorem (Ram-Yip)
T.Ex(X;qv) =v™) % 7 XA E) £ (p) £ (p)

pEB(u,my)

Here f*(p) are explicit rational functions of ¢, v built from the +-folds.

They are products of terms of the form (where a,b > 0)
vl —w f
=g or +

(v —v)g™®

T g for —
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Specialization at ¢ = oo
Let B~ (u,w) be the set of alcove paths with all folds negative.

Let |p| denote the number of folds in an alcove path p.

Proposition (O.-Shimozono)

E)\(X; OO,'U_l) _ vé(wo)—%(u»\) Z th(p),vf(wodir(p))(,v—l . ,U)\p\
pEB‘(id,m/\)

Schwer proved a similar result at ¢ = 0 in terms of positively-folded alcove
paths; his result inspired the Ram-Yip formula.
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Specialization at ¢ = oo
Let B~ (u,w) be the set of alcove paths with all folds negative.

Let |p| denote the number of folds in an alcove path p.

Proposition (O.-Shimozono)

E)\(X; OO,'U_l) _ vé(wo)—%(u»\) Z th(p),vf(wodir(p))(,v—l . ,U)\p\
peB~(id,m})

Schwer proved a similar result at ¢ = 0 in terms of positively-folded alcove
paths; his result inspired the Ram-Yip formula.

Proof. Use the formula
E}\(X—l; q—1’ v—l) _ vf(wo)—Zé(wA)TwOE_wO()\) (X;q,v)

and take ¢ — 0 in the Ram-Yip formula for the right-hand side.
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Quantum Bruhat graph

Our formula for at v = co requires the quantum Bruhat graph, which has
vertices w € W and directed labeled edges w = ws, for a € R, and

lwsy) = (w) + 1 (Bruhat edge)
or Uwsy) = L(w) — (¥, 2p) + 1 (quantum edge)
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Quantum Bruhat graph
Our formula for at v = co requires the quantum Bruhat graph, which has
vertices w € W and directed labeled edges w = ws, for a € R, and
lwsy) = (w) + 1 (Bruhat edge)
or Uwsy) = L(w) — (¥, 2p) + 1 (quantum edge)

We also need a projection of p € B(u,w) to a sequence in WPl defined
by successively deleting simple reflections at fold positions from left to
right and taking dir.

Example. Take u =id and w = t(~1,0) = 51525150 for R = By. Let p have
folds at steps 1 and 3. Then the projection of p is (yo, y1,y2) where

UW = S§1825150 Yo = dir(81828180) =id
59285150 Y1 = dir(828180) = S1

s2 Sp yo = dir(s250) = s2515251
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Specialization at v = o0

%
Let OB(u,w) be the subset of B(u,w) made up of alcove paths that
project to reverse paths in the quantum Bruhat graph.

Theorem (O.-Shimozono)
Ex(X;q !, 00) = Z X7 gn®)  for explicit n(p) € Zso.
pe0B(id,m,)
Remarks
@ An analogous result at v = 0 due to Lenart was our starting point.
@ Proof uses the “T},,-formula” but is more subtle than at ¢ = oo.
o Corollary: E)(X;q™1,00) has coefficients in Z>o[q].

@ Cherednik and E. Feigin conjecture a relation to the PBW filtration of
level-one affine Demazure modules, for antidominant .
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Example for R = By

A= (-1,0) my =ty = $1525150

Let p € B(id, s1528150) with folds at steps 1 and 3.
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Example for R = By

A= (-1,0) my =ty = $1525150

Let p € B(id, s1528150) with folds at steps 1 and 3.

Then:
o wt(p) = wt(s2s0) = (1,0)

@ p projects to the following reverse path in the quantum Bruhat graph

. « a1 +2a
id <+ S1 Vit MY 5258159951

with both edges quantum.
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Example for R = By

A= (-1,0) my =ty = $1525150

Let p € B(id, s1528150) with folds at steps 1 and 3.
Then:
o wt(p) = wt(s2s9) = (1,0)

@ p projects to the following reverse path in the quantum Bruhat graph

. « a1 +2a
id <+ S1 Vit MY 5258159951

with both edges quantum.

E(—l,O) (X’ q_1’ OO) = X(_lvo) + q2X(170) —+ q (X(O,—l) + X(O,l) + X(0,0))
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