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Perturbation of symmetry: general aspects

Perturbation of symmetry: general aspects
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Departure from normality
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Perturbation of symmetry

formalize the idea of perturbation of a symmetric ‘base density’
start with dimension d = 1
‘perturbation’ (or ‘modulation’) of symmetric pdf f0(x) as

f (x) = 2 f0(x)G0{w(x)}

where (1) w(−x) = −w(x) and
(2) G0 is continuous cdf, G0(−x) = 1− G0(x)

Proof that integrates to 1, extraordinarily simple:
if T ∼ G0 and Z0 ∼ f0, independent, then

1
2 = P{T − w(Z0) ≤ 0} = E{P{T ≤ w(x)|Z0 = x}}

=

∫
R

G0{w(x)} f0(x) dx QED
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Perturbation of symmetry (ctd)

f (x) = 2 f0(x) G0{w(x)}︸ ︷︷ ︸
G(x)

then
G (x) ≥ 0, G (x) + G (−x) = 1

any G of this form produces a valid pdf

f (x) = 2 f0(x) G (x)

the two forms are essentially equivalent
if w(x) ≡ 0, i.e. G (x) ≡ 1

2 , then f = f0
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Multivariate version

f (x) = 2 f0(x) G0{w(x)}︸ ︷︷ ︸
G(x)

x ∈ Rd

f0(x) = f0(−x) for x ∈ Rd

w is real-valued, with w(−x) = −w(x)

the rest as before
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Example with d = 2

f0(x) is the N(0, I2) density
G0 is standard logistic cdf

w(x) =
sin(p1 x1 + p2 x2)

1 + cos(q1 x1 + q2 x2)
, x = (x1, x2) ∈ R2
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Example with d = 2 (ctd)
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Stochastic representations

f (x) = 2 f0(x) G0{w(x)} = 2 f0(x) G (x), x ∈ Rd

If Z ∼ f , the argument of the proof indicates that

Z d
= (Z0|T ≤ w(Z0))

also

Z = SZ0 Z0, SZ0 =

{
+1 w.p. G (Z0)

−1 w.p. G (−Z0)
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Perturbation invariance

Z = SZ0 Z0, SZ0 =

{
+1 w.p. G (Z0)

−1 w.p. G (−Z0)

Corollary: property of perturbation invariance

for any even function t(·) =⇒ t(Z )
d
= t(Z0)

In the example, ‖Z‖2 ∼ χ2
2

Note: property holds for multi-valued functions t(·)
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A noteworthy case: the skew-normal distribution

A noteworthy case: the skew-normal distribution
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The skew-normal distribution (SN), case d = 1
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f (x) = 2 φ(x) Φ(αx), α ∈ R
α = 0 leads back to usual Normal
if Z ∼ SN(α), then −Z ∼ SN(−α)

Z 2 ∼ χ2
1

for practical work, add location and scale: Y = ξ + ωZ , ω > 0
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The multivariate SN distribution

‘Normalized’ form (no location and scale):

f (x) = 2φd (x ; Ω̄) Φ(α>x), x ∈ Rd

for some correlation matrix Ω̄ and shape α ∈ Rd

MGF: for an appropriate δ = δ(α, Ω̄),

M(t) = 2 exp(1
2 t>Ω̄t) Φ(δ>t)

distribution of a quadratic form Z>AZ as for Nd (0, Ω̄)

for practical work, add location and scale: Y = ξ + ωZ ,
where ξ ∈ Rd and ω = diag(ω1, . . . , ωd ) > 0
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Multivariate SN density

−2 −1 0 1 2

−
3

−
2

−
1

0
1

2
3

−2 −1 0 1 2

−
3

−
2

−
1

0
1

2
3



Perturb symmetry SN SEC Generalize Statistics References

Stochastic representations of SN

representation by conditioning: can transform (Z0,T ) into(
Z0
Z1

)
∼ Nd+1

(
0,
(

Ω̄ δ
δ> 1

))
and set

Z d
= (Z0|Z1 > 0)

additive representation: another manipulation leads to

Z =
(
Id − diag(δ)2)1/2 U0 + δ|U1|

for independent U0 ∼ Nd and U1 ∼ N(0, 1)

representation via maxima/minima
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Adjustable tails and skew-elliptical distributions

Adjustable tails and skew-elliptical distributions
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Heavy and adjustable tails

f (x) = 2 f0(x) G0{w(x)}︸ ︷︷ ︸
G(x)

x ∈ Rd

the mechanism can make tails thinner, but not thicker
to handle heavy tails, start from base f0 with heavy tails
even better consider f0 with adjustable tails
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From EC to SEC

Elliptically contoured (EC) densities: for a suitable g(·),

f0(x) =
kd

det(Ω̄)1/2
g(x>Ω̄−1x), x ∈ Rd

denoted ECd (0, Ω̄, g)

A natural option for perturbation is

f (x) = 2 f0(x) G (x)

. . . but consider instead(
Z0
Z1

)
∼ ECd+1

(
0,
(

Ω̄ δ
δ> 1

)
, g
)

followed by

Z d
= (Z0|Z1 > 0), called SEC

the distribution of Z is of type f (x). Note: not vice versa
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A noteworthy case: the skew-t distribution (ST)

Multivariate Student’s t: genesis is

U/
√

V

where U ∼ Nd and V ∼ χ2
ν/ν are independent

Multivariate skew-t:
Z ′ = Z/

√
V

where Z ∼ SNd with shape α
It is equivalent to start from Y ∼ SECd+1 of Student’s t type,
and consider

Z ′ = (Y1:d |Yd+1 > 0)

Here α regulates skewness, ν regulates tail thickness
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Further generalizations

Further generalizations
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So-called ‘extended’ forms

‘extended’ form: non-odd w(x),
e.g. in SN case w(x) = α0 + α>x ,
normalizing constant no longer 2,
must be computed afresh for any case
property of perturbation invariance vanishes
in some cases, subject-matter motivation
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Multiple latent variables/constraints

start from (d+m)-dimensional variate (Z0,Z1) and consider

Z d
= (Z0|Z1 ∈ C ), C ⊂ Rm

density is

f (x) = f0(x)
P{Z1 ∈ C |Z0 = x}

P{Z1 ∈ C}
special focus on case where f0 is symmetric
extremely general in principle,
but computation of the two probabilities often problematic
beware of overparameterization
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Statistical aspects

Statistical aspects
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Statistics is harder than probability

as a broad rule, the statistical side is less smooth than the
probability side
some formal issues (with proposed solutions)
less formal but equally important issues
Note: these are aspects with space for improvement,
it does not mean we are helpless
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Classical formal issues

refer to parameter set (ξ, ω, α) or alike, for simplicity

for SN (and some other cases) Info matrix singular at α = 0;
can be tackled via appropriate re-parameterization;
proposals exist, but not unique

for finite samples, P{MLE(α) =∞} > 0
can be avoided by penalized likelihood and/or prior;
proposals exist, but not unique
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Less formal issues but equally important

what is the ‘optimal’ parameterization for inference?
hassle-free and meaningful

highly flexible distributions can be constructed:
how much flexible can we be in practice?
how to combine flexibility with meaningful parameterization?
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General references

M.G.Genton (2004), edited book
A. Azzalini (2005, SJS) review paper + discussion with MGG
A.Azzalini & A. Capitanio, forthcoming book
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