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Perturb symmetry
Perturbation of symmetry

o formalize the idea of perturbation of a symmetric ‘base density’
@ start with dimension d =1

@ ‘perturbation’ (or ‘modulation’) of symmetric pdf fy(x) as
F(x) = 2 fo(x) Go{w(x)}

where (1) w(—x) = —w(x) and
(2) Gp is continuous cdf, Go(—x) =1 — Go(x)

@ Proof that integrates to 1, extraordinarily simple:
if T ~ Gg and Zy ~ f, independent, then

3= P{T—w(Z) <0} =E{P{T < w(x)|Z = x}}
- /R Go{w(x)} fo(x) dx QeD
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Perturb symmetry

Perturbation of symmetry (ctd)

f(x) = 2 fo(x) Go{w(x)}
—_——
G(x)
@ then
G(x) >0, G(x)+ G(—x) =1

@ any G of this form produces a valid pdf
f(x) = 2fo(x) G(x)

@ the two forms are essentially equivalent

o if w(x)=0,ie G(x)=1, then f =t
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Perturb symmetry
Multivariate version

f(x) =2 f(x) Go{w(x)}  xeR
G(x)

o fo(x) = fo(—x) for x € RY
e w is real-valued, with w(—x) = —w(x)

o the rest as before
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Perturb symmetry
Example with d = 2

e fy(x) is the N(O, /) density
@ Gy is standard logistic cdf

sin(p1 x1 + p2 x2)
(x) =

= , x = (x1, %) € R?
1+COS(Q1X1—|-q2X2) (1 2)
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Example with d =2 (ctd)




Perturb symmetry
Stochastic representations

f(x) = 2 fo(x) Go{w(x)} = 2 fo(x) G(x), x € RY
e If Z ~ f, the argument of the proof indicates that

Z < (2|T < w(2o))

e also

+1 w.p. G(%)
£=%nk = {1 w.p. G(~Zo)
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Perturb symmetry

Perturbation invariance

+1 w.p. G(Z)
Z =52 %, 52 = {—1 w.p. G(—2p)

@ Corollary: property of perturbation invariance

for any even function t(-) = t(Z) 4 t(2)

e In the example, || Z||> ~ x3

e Note: property holds for multi-valued functions t(-)
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SN

The skew-normal distribution (SN), case d = 1

f(x) =2¢(x) d(ax), aeR
o = 0 leads back to usual Normal
if Z ~ SN(«), then —Z ~ SN(—a)
72 ~

i s
for practical work, add location and scale: Y =¢§ +wZ, w >0"""



SN

The multivariate SN distribution

@ ‘Normalized’ form (no location and scale):
f(x) = 2¢04(x; Q) ®(a ' x), x e RY
for some correlation matrix Q and shape o € RY
@ MGF: for an appropriate § = 6(a, Q),
M(t) =2 exp(3t'Qt) d(5 " ¢)
o distribution of a quadratic form ZTAZ as for N4(0, Q)

o for practical work, add location and scale: Y =& +wZ,
where ¢ € RY and w = diag(w, . ..,wq) > 0
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SN

Multivariate SN density
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SN

Stochastic representations of SN

@ representation by conditioning: can transform (Zy, T) into
Z Q 9
(2) ~ e (057 1))

72 (2|2, > 0)

and set

o additive representation: another manipulation leads to
Z = (Iy — diag(6)2)"" Up + 6| Us |
for independent Uy ~ Ny and U; ~ N(0,1)

@ representation via maxima/minima
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SEC

Adjustable tails and skew-elliptical distributions
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SEC

Heavy and adjustable tails

f(x) =2 f(x) Go{w(x)}  xeR
G(x)

@ the mechanism can make tails thinner, but not thicker
@ to handle heavy tails, start from base fy with heavy tails

@ even better consider fy with adjustable tails
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From EC to SEC

e Elliptically contoured (EC) densities: for a suitable g(+),

k =_
fo(x) = W g(x"Q1x), x € RY

denoted EC4(0,Q, g)
@ A natural option for perturbation is

f(x) =2 fo(x) G(x)

@ ...but consider instead
Z Q 46
(ZS) ~ ECd+1 <Oa <5T 1> 7g>

72 (2|2, > 0), called SEC

o the distribution of Z is of type f(x). Note: not vice versa

followed by

‘/f\‘ s St



SEC

A noteworthy case: the skew-t distribution (ST)

@ Multivariate Student's t: genesis is
uNv
where U ~ Ny and V ~ x2 /v are independent
o Multivariate skew-t:
7' =Z/VV
where Z ~ SNy with shape «

@ It is equivalent to start from Y ~ SECy, of Student's t type,
and consider
Z' = (Y1.4|Ya41 > 0)

@ Here « regulates skewness, v regulates tail thickness
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Generalize

Further generalizations

Further generalizations




Generalize

So-called ‘extended’ forms

‘extended’ form: non-odd w(x),

e.g. in SN case w(x) = ag + ' x,
normalizing constant no longer 2,
must be computed afresh for any case

property of perturbation invariance vanishes

in some cases, subject-matter motivation




Generalize

Multiple latent variables/constraints

start from (d+m)-dimensional variate (Zp, Z1) and consider

Z4(Z|z,eC), CcCR™

density is
P{Zl S C’Zo = X}
]P’{Zl < C}

special focus on case where fy is symmetric

f(x) = fo(x)

extremely general in principle,
but computation of the two probabilities often problematic

@ beware of overparameterization
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Statistical aspects
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Statistics

Statistics is harder than probability

@ as a broad rule, the statistical side is less smooth than the
probability side

@ some formal issues (with proposed solutions)
@ less formal but equally important issues

@ Note: these are aspects with space for improvement,
it does not mean we are helpless




Statistics

Classical formal issues

o refer to parameter set (&, w, a) or alike, for simplicity

e for SN (and some other cases) Info matrix singular at o = 0;
can be tackled via appropriate re-parameterization;
proposals exist, but not unique

e for finite samples, P{MLE(a) = o0} >0
can be avoided by penalized likelihood and/or prior;
proposals exist, but not unique




Statistics

Less formal issues but equally important

@ what is the ‘optimal’ parameterization for inference?
hassle-free and meaningful

@ highly flexible distributions can be constructed:
how much flexible can we be in practice?
how to combine flexibility with meaningful parameterization?
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