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Quadratic Fields
Imaginary Quadratic Number Fields

Q(VA) = {x+yVA | x,y € Q} : quadratic field
e A=0,1 (mod 4): discriminant (€ Z, A or A/4 square-free)
o A < 0: imaginary quadratic field

Op C Q(v/A) : maximal order of Q(v/A) (ring of algebraic integers)
@ Zx : group of invertible, fractional ideals of Oa
@ Pp : principal, fractional ideals, subgroup of Za
o Clpn =Za/Pna : class group
@ ha = |Cla| : class number

@ unique reduced ideal representatives of group elements
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Quadratic Fields

Relations

Relation: power-product of prime ideals that is principal

Used in index-calculus algorithms for:

@ invariant computation (class number, class group structure,
regulator/fundamental unit)

o discrete logarithm computation, principality testing / norm equations

@ computing large-degree isogenies and endomorphism rings of ordinary
elliptic curves over finite fields

Efficiency of all depends on quickly finding relations
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Quadratic Fields

Example: Computing the Class Group

Outline:
@ factor base FB : prime ideals p; of norm p; < B, must generate Cla

@ surjective homomorphism (assume |FB| = k)

@ ZK = Cla

(vis-oosvie) = Iop byl

o Z¥/\ = Clp, where A = ker ¢ is the lattice of all relations wrt FB

@ randomly construct generating system of A, linear algebra (Smith
normal form) to compute group structure

Expected run time (GHR): La(1/2,+/2), where
La(e, B) = exp((8 + o(1))(log|A])*(log log| A])* %)
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Quadratic Fields

Example: Computing Large-Degree Isogenies

Ell; ,(Fg) : isomorphism classes of elliptic curves over Fg with trace t and
endomorphism ring O 25, € Q(v/Ak)

Let a C O,2p, be prime of norm L. Then a acts on Ell; ,(Fy) via a degree
¢ isogeny, defining a faithful group action by Clp, -

Jao, Soukharev 2010: idea (compute isogeny of degree ¢):
o Compute relation p,[]pf in Clap, for pj small, N(p,) = ¢
o [pe] = 1lpil ™ € Clzn,

o Evaluate the degree £ isogeny via evaluations of degree p; isogenies

Expected run time (GRH): L4(1/2,+/3/2)log?
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Quadratic Fields Computing Relations

Finding Relations

Main idea:
o Compute a ~ [Tp{ (but not equal!)
o If a=T[]p/, then [Tp% ¥ is principal

One approach: random selection of a via choice of e; (or random walks)

Better approach: sieving
oleta=ax+ (b+VA)2y € a=aZ+ (b+VA)/2Z
o N(a) = a(ax?®+ bxy + cy?) where ¢ = (b*> — A)/(4a)
o there exists ideal b with N(b) = ax® + bxy + cy? and («) = ab
e find x,y € Z such that f(x,y) = ax? + bxy + cy? factors over the p;

Mike Jacobson (University of Calgary) Relation Generation May 11, 2013 6 /17



Quadratic Fields Computing Relations

Sieving

Finding relations <+ finding smooth values of £(X, Y) = aX? + bXY +cY?
One approach: find all x < M, x € Z, with f(x,1) = ax? 4 bx 4 ¢ smooth

For each prime ideal of norm p; :
@ compute root(s) r such that f(r,1) =0 (mod p;)
@ pi|r,and p|kpi +rforall k e Z

@ use analogue of Sieve of Eratosthenes to factor all f(x, 1) by
“marking off” every p;th cell in an array, starting at r

Can adapt quadratic sieve methods from integer factoring, including
self-initialization
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Quadratic Fields Results and Challenges

Some Results

Biasse (2010): class group for A = —4 x 10110 — 4
Cla = 7,/8576403641950292891121955131452148838284294200071440Z x (Z/2Z)"

Biasse, J. (2010): class group and regulator for A = 4 x 10110 4 4

Cla = ZJ12Z x 727
Ra = 70795074091059722608293227655184666748799878533480399.67302

4 days for relations (260 2.4 GHz Xeons), 4 days for linear algebra (2.4
GHz Opteron, 32 GB RAM), 4 days for GRH-verification
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Quadratic Fields Results and Challenges

Isogeny and Endomorphism Ring Computation: Obstacles

Parameter tuning is really hard

@ Composition of factor base can affect results dramatically
e Eg. (J. 1999), computing Cla
o typical 70-decimal digit A : 18h
e 70-decimal digit A with no p; < 353 in factor base: 6.5 days

Need really small factor bases for isogeny and endomorphism ring
computation

@ only small prime degree isogenies are efficient to compute

@ sieving becomes more effective with larger factor bases
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Quadratic Fields Results and Challenges

Our Approach (on-going work)

Analytic model to estimate smoothness probabilities given a particular
factor base

@ extend numerical methods to approximate ¢(x, y) to ideals of
quadratic fields

o would take into account differing splitting behavior of small primes

@ use as basis of search for optimal parameters

Use Sutherland’s improvements to evaluation of low-degree isogenies
o feasible to evaluate isogenies of larger prime degree

@ may be sufficient to realize benefits from sieving

Mike Jacobson (University of Calgary) Relation Generation May 11, 2013 10 / 17



Function Fields
Imaginary Quadratic Function Fields

C : y? + h(t)y = f(t) non-singular, h, f € F,[t]

C is imaginary (genus g) if
@ gis odd, h=0, f monic and square-free with deg(f) =2g + 1
@ g is even, h # 0 with deg(h) < g and f monic with deg(f) =2g +1

(a.k.a. hyperelliptic curves)

deg 0 divisor class group (ideal class group of Fg(C)):
o finite abelian, size ~ g&
@ unique reduced divisor/ideal representatives of group elements
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Function Fields

Example Application: Weil Descent

Reduce elliptic curve discrete logarithm problem (over Fang) to
hyperelliptic curve discrete logarithm problem (genus g over Fyn)

@ Enge,Gaudry (index-calculus): if g > log g, expected run time
Lge(1/2,5.73 4 o(1))
@ J, Menezes, Stein: implementation, parameter optimization

o solved ECDLP over F231, F264, IF293, and F2124
o genus 31 hyperelliptic curves defined over Fy, Fy2, Fys, and Fo

@ Velichka, J., Stein: application of sieving, solved ECDLP over Fyiss
e genus 31 hyperelliptic curve defined over Fys

Mike Jacobson (University of Calgary) Relation Generation May 11, 2013 12 / 17



Function Fields = Index Calculus and Sieving

Overview of Index Calculus and Sieving

Same general approach as in quadratic fields
o factor base: prime ideals p with deg p; < B (p; irreducible)

@ find random relations

@ solve linear algebra problem (linear system modulo group order)

Can apply same approach to finding relations, including sieving

@ relation generation reduces to finding smooth values of
f(X) = aX? + bX + c defined over Fgt]

@ same improvements (eg. self-initialization) are possible

Mike Jacobson (University of Calgary) Relation Generation May 11, 2013



Function Fields = Index Calculus and Sieving

Challenges with Sieving

Need to find all x € Fg[t] with deg(x) < M such that f(x) is B-smooth

How to map x € Fg[t] to a cell in an array?

o Natural map (Flassenburg, Paulus 1998), g = p¢ :

v:Fqt] > Z
Xmt™ + -+ 4 x0 = vo(x) g’ + - - + vo(x0)

where

v :Fqg—{0,...,9—1}

vo(aga® + -+ +ag) = agp? + -+ + a

Works, but painful to evaluate frequently

Mike Jacobson (University of Calgary) Relation Generation May 11, 2013



Function Fields = Index Calculus and Sieving

Challenges with Sieving, cont.

For irreducible p; € Fg[t] and r € Fg[t] such that f(r) =0 (mod p;) :

e how to rapidly find all v(kp; + r) for k € Fq[t] such that
deg(kpi +r) < M?
@ map v does not lead to regular spacing through the sieve array

Velichka, J., Stein 2008: enumerate all k of appropriate degree, evaluate
v(kp; + r) directly using previous results and precomputations

o use k'p; +r = (kpi + r) + (k' — k)p; (add appropriate multiple of p)

Trei, J. Stein 2013: further optimizations, including
@ evaluation at g using Horner’s rule
@ better use of intermediate results
@ observation that v(x 4+ y) = v(x) @ v(y) (all ops on integers)
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Function Fields Numerical Results

Numerical Results

VJS 2008 results (278 Intel P4 Xeon 2.4 GHz CPUs, 26 2.8 GHz):
o ECDLP over Fyize (HCDLP with g = 31, g = 2%):
e 9 hours, 7.5 hours for relations (24 hours with random walks)
e First solution of ECDLP over Fyi5s (HCDLP with g = 31, g = 2°):
o 3 weeks, 1 week for relations (random walks estimate 5 weeks)

TJS 2013 results (64 Intel Xeon X7560 2.27 GHz CPUs):
@ [F5124 : 3 hours (27 min. for relations)

@ [Fy1s5 @ in progress (2.5 days for relations)
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Conclusions

Future Work

Complete analytic model to aid parameter selection

Two dimensional (lattice) sieving?

Batch smoothness test for candidates produced by the sieve?

Function fields:
o add double large primes
@ try odd characteristic

@ lower genus?
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