Fluid limits for Bandwidth-Sharing Networks with Rate Constraints

Maria Frolkova (CWI) Josh Reed (NYU) Bert Zwart (CWI)

BIRS workshop on Asymptotics of Large-Scale Interacting Networks

・ロト ・ 理 ト ・ ヨ ト ・

-

BS Networks Stochastic model State descriptor

BS: Congestion at flow level

Massouliè & Roberts (1998, 1999)

- J links of capacities C₁,..., C_J
- / routes / flow classes
- $A_{ji} = \mathbb{I}\{\text{link } j \in \text{route } i\}$
- Multiple flows on a route are served at the same rate
- Rate constraint: m_i maximum service rate on route i

ヘロト ヘワト ヘビト ヘビト

 Model description Results
 BS Networks Stochastic model State descriptor

 BS protocol
 BS Networks

Given population z, $\Lambda_i(z) :=$ bandwidth allocated to route $i = z_i \times$ service rate on route i

 $\Lambda(z)$ is the unique solution to

maximize $\sum_{i \leq I} z_i U_i(\Lambda_i/z_i)$ subject to $A\Lambda \leq C$, $\Lambda_i \leq m_i z_i, i \leq I$,

 $U_i(\cdot)$, strictly increasing, concave, twice differentiable.

イロン 不得 とくほ とくほう 一日

BS Networks Stochastic model State descriptor

Stochastic model

for $i \leq I$,

- arrivals to route *i*: counting process $E_i(\cdot)$
- sizes of class *i* flows: i.i.d. copies of $B_i > 0$ a.s.
- patience times of class *i* flows: i.i.d. copies of $D_i > 0$ a.s.
- $\mathbb{E}B_i < \infty, \mathbb{E}D_i < \infty$
- $D_i \geq B_i/m_i$ a.s.
- $Z(t) = (Z_1(t), \dots, Z_l(t))$ population vector at time *t*.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Model description Results BS Networks Stochastic model State descriptor

Measure valued state descriptor

Maria Frolkova, Josh Reed, Bert Zwart

BS with rate constraints

Large capacity scaling

consider a sequence of BS networks $A^{R} = A, R \rightarrow \infty$

grow to ∞ :	of a fixed order:
• link capacities $C^R = RC$	• rate constraints $m^R = m$
• arrival rates $E_i^R(\cdot)/R \Rightarrow \{\nu_i t; t \ge 0\}$	 flow sizes and patience times

Theorem (Convergence to fluid limit): $Z^{R}(\cdot)/R \Rightarrow z(\cdot)$

イロト 不得 とくほ とくほ とうほ

Unique fixed point of fluid limit

 $z(\cdot)$ is constant if z = z(0) satisfies

$$z_i = \eta_i \mathbb{E} \min \left\{ \frac{B_i}{\Lambda_i(z)/z_i}, D_i \right\}, \quad i \leq I$$

Theorem

Recall that $D_i/B_i \ge 1/m_i$, $i \le I$.

If $1/m_i$ is the left most point of the support of D_i/B_i , $i \le I$, then the fixed point is unique and can be computed in polynomial time.

Proof: combine fixed point equations with KKT conditions of $\Lambda(z)$: Educated guess of optimization problem of which Λ is the solution.